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Time-delayed feedback control, attributed to Pyragas [Phys. Lett. A 170, 421 (1992)], is
a method known to stabilize periodic orbits in low-dimensional chaotic dynamical systems.
A system of the form ẋ(t ) = f (x) has an additional term G(x(t − T ) − x(t )) introduced
where G is some “gain matrix” and T a time delay. The form of the delay term is such
that it will vanish for any orbit of period T , therefore making it also an orbit of the
uncontrolled system. This noninvasive feature makes the method attractive for stabilizing
exact coherent structures in fluid turbulence. Here we begin by validating the method for
the basic flow in Kolmogorov flow; a two-dimensional incompressible Navier-Stokes flow
with a sinusoidal body force. The linear predictions for stabilization are well captured
by direct numerical simulation. By applying an adaptive method to adjust the streamwise
translation of the delay, a known traveling wave solution is able to be stabilized up to
relatively high Reynolds number. We discover that the famous “odd-number” limitation
of this time-delayed feedback method can be overcome in the fluid problem by using the
symmetries of the system. This leads to the discovery of eight additional exact coherent
structures which can be stabilized with this approach. This means that certain unstable
exact coherent structures can be obtained by simply time stepping a modified set of
equations, thus circumventing the usual convergence algorithms.

DOI: 10.1103/PhysRevFluids.7.014401

I. INTRODUCTION

Borrowing mathematical theory from dynamical systems and applying it to the Navier-Stokes
equations has seen the computational discovery of unstable exact coherent structures (ECSs) which
serve as organizing centres of a turbulent flow. These unstable solutions can take the form of steady
equilibria, traveling waves or time periodic orbits. The idea is that chaotic trajectories navigate
a high-dimensional phase space between the neighborhoods of these solutions directed via their
stable and unstable manifolds [1–4]. This approach has elucidated the transition to turbulence when
the laminar state remains stable and a boundary in phase space exists between states which excite
turbulence and those which decay [5,6]. In sustained turbulence it is hoped that such solutions act
as proxies for the complexity of the flow and so help to unravel the processes sustaining turbulence
[4,7,8]. There is also a hope that ECSs can act as a reduced description of the chaos and periodic
orbit theory can be used to reconstruct turbulent averages [9,10].

Despite these successes the computational methods used so far have some important shortcom-
ings. The current state of the art for converging unstable periodic orbits (UPOs) form what has
become known as “recurrent flow analysis,” pioneered in [1,9,11,12]. This requires nearly recurrent
episodes to be located in numerical simulations which form guesses for a high-dimensional Newton
solution of the recurrence condition x(t ) − x(t − T ) = 0, for an orbit of period T . The algorithms
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circumvent the formation of the Jacobian matrix by way of a GMRES solution (or similar Krylov
method) and maintain the Newton step size within a trust region of its linearization by a hookstep
[11]. We refer to this solution algorithm as Newton-GMRES hookstep (NGh). Such algorithms, as
with any Newton method, require an initial guess sufficiently close to the solution for guaranteed
convergence. This becomes increasingly difficult to determine for more severe turbulence where
instability is increased and close approaches to a target solution are more fleeting. Moreover
the basins of attraction for convergence are highly complex and usually fractal in nature, and
therefore convergence is very difficult to predict. By far the biggest computational inefficiency
with the recurrent flow analysis is in the resource spent attempting convergences which fail or
result in a known ECS. There is significant room for improvement and several subsequent studies
have been working on refinements or alternatives, including using dynamic-mode decomposition
[13], variational methods [14,15], and preconditioning [16]. A promising approach which obtains
solutions with a single unstable direction embedded in the “edge” manifold by a feedback control
method has recently shown significant efficiency savings by avoiding costly bisection iterations [17].
One objective of this paper is to trial a more general control method which can stabilize solutions
with high-dimensional unstable manifolds so that they may be obtained simply by time stepping a
slightly modified set of equations.

For small systems of nonlinear ordinary differential equations a method known as time-delayed
feedback control (TDF) attributed to Pyragas [18] (and so is also known as Pyragas control in the
literature) has seen considerable success at stabilizing periodic orbits from chaotic systems. The
key idea is to include into an evolution equation of the form ẋ = f (x), an additional time-delayed
difference term:

ẋ = f (x) + G(t )[x(t − T ) − x(t )].

It can be shown that for a given period T and gain matrix G this additional delay difference term
can stabilize some periodic orbits. Notice that this term has the property that for a periodic solution
with period T it vanishes identically. This means that such a solution of the controlled system is
also a solution of the original system. The method is therefore termed “noninvasive.” The method is
particularly appealing because of its simplicity, any direct numerical simulation code can be easily
adapted to include the extra terms, and it does not require a priori knowledge of the controlled
solution, as for other control methods [19–21]. Only the delay period is required, which has been
shown can be iteratively obtained [22,23].

This method, and its variants have seen success in a variety of systems, for example, semi-
conductor lasers [24,25], neuroscience [26,27], microscopy [28], and chemical turbulence [29].
Delayed feedback also has been used to stabilize standing waves in complex Ginzburg-Landau
equations [30] and an experimental study controlling Taylor-Couette flow [31]. To the best of our
knowledge only two applications of the method for the Navier-Stokes equations have been reported
[23,32]. Kawahara [32] reports the result of stabilizing the gentle periodic orbit of [1] using Pyragas
control, while this is highly encouraging there is not much guidance on how one may effectively
employ TDF in the fluid problem. More recently Shaabani et al. [23] report the application of
Pyragas control to suppress vortex pairing in a periodically forced jet. This work approaches the
control method as a way of filtering out nonharmonic frequencies, leaving only T behind. These
authors report a number of interesting results, including reducing the memory burden of storing
the history vector by interpolation between checkpoints, as well as the application of a method to
converge T when it is not known a priori. These studies serve as good motivation for a systematic
attempt at using the method to stabilize multiple nonlinear solutions embedded in the chaotic set.

One sticking point of TDF is that it is argued that orbits with an odd number of real, positive
unstable Floquet multipliers are unable to be stabilized by this method [33,34]. An explanation of
this feature is provided in [35] from the perspective of bifurcation theory. First, suppose a UPO is
stabilized at a certain G = Ḡ, and delay period T . This means between G = 0 (the uncontrolled
system) and G = Ḡ there is a change in stability of the orbit, and therefore a bifurcation. Next,
as mentioned earlier, the number of UPOs of period T cannot vary with G: e.g., an orbit in the
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controlled system must be an orbit in the original system. This excludes any bifurcations which
involve a change in the number of period-T orbits through coalescence, for example, pitchfork or
saddle node (see later for a transcritical exception). Any bifurcation must therefore involve complex
Floquet exponents crossing the imaginary axis (Hopf or period doubling), requiring an even number
of exponents to form conjugate pairs. It should be noted that there have since been various studies
offering resolutions to this issue, including forcing oscillation of the unstable manifold through G
[36,37] and by counterexample [38,39]. Fiedler et al. [38] show that an orbit with a single unstable
Floquet multiplier can be stabilized through a transcritical bifurcation, using complex gain, where
the exchange of stability occurs with a delay-induced orbit which has only a period matching the
target UPO at the point of bifurcation, thereby avoiding the issues described by Nakajima [35].
Generically we must be aware of this limitation when tackling UPOs in the Navier-Stokes equations.
From the perspective of the method as a frequency damping technique, as described in [23], one
can view this limitation as restricting us to stabilizing orbits which have only oscillatory unstable
manifolds (at least locally); where an unstable direction is “torsion free” there is no incipient
frequency to damp and this growth can go unchecked by TDF. We should also emphasize that
the odd-number limitation is a condition under which we should expect TDF to fail; there is no
guarantee TDF will succeed should we have a solution with an even number of unstable eigenvalues.

In this paper we seek to address several outstanding questions regarding the application of TDF
to the Navier-Stokes equations, namely, can ECSs be stabilized and is there a simple way to avoid
the “odd-number” limitation? If so, what are the requirements for success, and how can we develop
the method into a practical tool for the dynamical systems approach to turbulence?

The paper is organized as follows. Section II describes the system under consideration and the
methods used. Section III shows a linear stability analysis for the basic flow and validates the
numerical application of TDF by stabilizing the laminar state in a direct numerical simulation
(DNS) and provides insight for the effective application of the method. Section IV demonstrates the
stabilization of traveling waves using an adaptive method to fix the phase speed. We demonstrate
the work-around of the odd-number limitation which arises naturally at high Reynolds numbers by
applying an additional symmetry operation in the feedback term. In Sec. V by exploring different
possible symmetry combinations and multiple delay terms, we discover that eight more equilibria
and traveling waves can be stabilized with a single parameter set. Finally in Sec. VI we summarize
and discuss the results before considering possible avenues of further work.

II. FORMULATION

In this paper we will present the application of time-delayed feedback control to Kolmogorov
flow: the sinusoidally body forced incompressible two-dimensional Navier-Stokes equations. This
flow is widely studied both for transition to turbulence and for the recurrent flow analysis men-
tioned in the introduction [9,40]. We consider a vorticity formulation for which the equations, in
nondimensional form, are

∂ω

∂t
+ u · ∇ω = 1

Re
�ω − n cos(ny) + f , (1)

∇ · u = 0, (2)

with vorticity ω = ∇ × u · ẑ, (x̂, ŷ, ẑ) being the standard cartesian unit vectors, velocity u, Re the
Reynolds number and f is a second forcing term. We will consider the periodic torus [0, 2π ] ×
[0, 2π ] and a forcing wave number n = 4 and solve the equations with a standard pseudospectral
method using two-thirds dealiasing, fourth-order Runge-Kutta time stepping on the nonlinear and
forcing terms and Crank-Nicolson on the viscous term. For Re � 40 a resolution of 1282 is used
and 200 � Re > 40, 2562. The code is implemented in CUDA to run on GPUs and is available at
[41] with a Python version in Jupyter notebooks available in the Supplemental Material [42].
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The standard, f = 0, Kolmogorov flow system is invariant under the symmetries

S : [u, v, ω](x, y) → [−u, v,−ω]
(
−x, y + π

n

)
, (3)

R : [u, v, ω](x, y) → [−u,−v, ω](−x,−y), (4)

Ts : [u, v, ω](x, y) → [u, v, ω](x − s, y) for 0 � s � 2π, (5)

where S represents the discrete shift-and-reflect symmetry, R rotation through π and Ts is the set
of continuous translations by s in x.

A. Flow measures

In order to discuss various features of the flows considered we define here some diagnostic
quantities. Total energy, energy dissipation rate, and energy input rate are defined in the standard
way as

E (t ) := 1
2 〈u2〉V , D(t ) := 1

Re 〈|∇u|2〉V , I (t ) := 〈u sin(ny)〉V , (6)

where the volume average is defined as 〈 〉V := 1
4π2

∫ 2π

0

∫ 2π

0 dx dy. Note that the energy budget is
such that dE/dt = I − D meaning that any steady state, and any time average, must satisfy D = I .

For Kolmogorov flow the basic flow, which is the global attractor at small Reynolds number
Re, is given by the precise balance between forcing and dissipation; the profile and its energy and
dissipation rate are

ulam := Re

n2
sin nyx̂, ωlam := Re

n
cos ny, Elam := Re2

4n4
, Dlam := Re

2n2
. (7)

B. Time-delayed feedback

Time-delayed feedback is included by setting

f = G(t )[ψ (x, t ) − ψ (x, t − T )], (8)

where the stream function, ψ , is defined as u = (ψy,−ψx ), such that ω = −∇2ψ . T is the delay
period, G(t ) is a scalar gain function.

It should be noted that, in principle, we have a great deal of freedom in choosing G. It could be
a function of space as well as time, or even be an operator. In fact the choice above is equivalent
to f = −Ĝ(t )[ω(x, t ) − ω(x, t − T )] with Ĝ(t ) = G(t )∇−2. This choice was made in small part to
improve the performance of the method; it means that the perturbing feedback force is relatively
stronger on large scales (∇2 being a factor −|k|2 in Fourier space) compared to f = G(t )[ω(x, t −
T ) − ω(x, t )]. It is mainly motivated by allowing a cleaner linear analysis in the next section.

While the above form of f is the basic delay difference for TDF, we will show that exploiting
the symmetries of unstable solutions can improve the ability of TDF to stabilize them. Moreover, to
obtain traveling wave solutions or relative periodic orbits, we must translate the delayed term by a
distance s at the rate dictated by the phase speed of the solution c = s/T . To this end we will include
a translation symmetry transformation (3) to one of the terms in the TDF forcing such that

f = G(t )[ψ (x, t ) − Tsψ (x, t − T )] (9)

or equivalently

f = G(t )[ψ (x, t ) − ψ (x − sx̂, t − T )]. (10)

We will consider including the shift-and-reflect and rotational symmetries in later sections.
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III. LINEAR STABILITY ANALYSIS OF THE BASIC FLOW

In order to give some theoretical motivation and validation of the TDF method we first apply
it to the basic flow, Eq. (7). This laminar state has a well-known linear instability [43] at a
critical Reynolds number, Rec. For n = 4 this is Rec ≈ 9.97. The linear analysis can be extended
to approximately include the time-delayed term. Rewriting Eq. (1) in terms of stream function,
expanding about the base flow, ψ = ψlam + ψ ′, and linearizing yields

∂∇2ψ ′

∂t
+ Re sin(ny)

(
1

n2
∇2ψ ′

x + ψ ′
x

)
= 1

Re
∇4ψ ′ + G[ψ ′(x, t ) − ψ ′(x − sx̂, t − T )], (11)

using the usual ansatz ψ ′ = ψ̂ (y)eiαx+σ t the modified Orr-Sommerfeld equation now reads

σ

(
d2

dy2
− α2

)
ψ̂ = − iαRe sin(ny)

[
1

n2

(
d2

dy2
− α2

)
ψ̂ + ψ̂

]

+ 1

Re

(
d2

dy2
− α2

)2

ψ̂ + G(1 − e−iαs−σT )ψ̂. (12)

The equation is now transcendental in the eigenvalue σ due to the exponential coming from the
delay term. If we assume T is small but nonzero (reasonable since we are attempting to stabilize
the laminar equilibrium and not a UPO) and are interested only in σ ≈ 0, (again reasonable if we
are tracing stability boundaries and not interested in growth rates in general), then we may expand
the exponential to linear terms in σ , e−σT ≈ 1 − σT , resulting in

σ

(
d2

dy2
− α2 − GTe−iαs

)
ψ̂ = − iαRe sin(ny)

[
1

n2

(
d2

dy2
− α2

)
ψ̂ + ψ̂

]

+ 1

Re

(
d2

dy2
− α2

)2

ψ̂ + G(1 − e−iαs)ψ̂. (13)

We solve the eigenvalue problem numerically using a Fourier series expansion ψ̂ (y) =∑
k 	̂keiky. The result is a generalized eigenvalue problem of the form

σB�̂ = A�̂ ⇒ σ �̂ = B−1A	̂, (14)

where

�̂ =

⎛
⎜⎝

...

ψ̂k
...

⎞
⎟⎠, Bi j =

{
k2 + α2 + GTe−iαs, i = j
0 i 	= j,

(15)

Ai j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(k2 + α2)2/Re + G(e−iαs − 1), i = j,

−Reα
2n2 (k2 + α2 − n2), i = j − n,

Reα
2n2 (k2 + α2 − n2), i = j + n,

0, otherwise.

(16)

The spanwise wave number k = i − M and N = 2M + 1 is the total number of Fourier modes set
to 33 in the results to follow. Note that B is diagonal and therefore trivial to invert; however, it is
useful to separate the contributions from A and B. We solve the eigenvalue problem in Python using
the numpy eigenvalue solver [44,45]. Figure 1 (left panel) shows the relevant part of the eigenvalue
spectrum at Re = 40 and α = 1 without any feedback, G = 0. This is well above criticality; in
fact, the flow is chaotic at Re = 40 and α = 1 is the first streamwise mode to become unstable.
There are five unstable modes with positive real part (one purely real and two complex conjugate
pairs). Setting G = 1000, T = 0.01 but no translation s = 0 shows the unstable spectrum being
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FIG. 1. (Left) Eigenvalue spectra for the modified Orr-Sommerfeld operator with α = 1, R = 40. Blue
circles show the result for G = 0, the uncontrolled Kolmogorov flow case. Orange diamonds show the rescaling
of the spectrum for G = 1000 and s = 0. Green stars show the shifting of the spectrum for G = 20 and s = 1
demonstrating the crossing of the imaginary axis of the eigenvalues with largest real part. (Right) Neutral curves
for various Reynolds numbers in the (s, G) plane with stable region lying to the right of the curves. Contours
(outward in) Re = 20 blue, 40 orange, 60 green, 100 purple, 200 red. Of note are the regions about s = π & 2π

3
(dashed line) where instability is always found regardless of the size of G (the curves are generated for all α).
The symbols are included to indicate where the DNS validation has been conducted (circles Re = 40, G = 20,
squares Re = 200, G = 100); in particular the blue circle at G = 20, s = 1.5 lies on the Re = 40 neutral
curve.

rescaled toward the origin. Setting G = 20, and T = 0.01 but now s = 1 we see the whole spectrum
shift/rotate and all of the unstable modes cross the axis, including the purely real ones.

We can interpret the effect of TDF on the laminar solution by examining the effect of the terms
involving G, in Eq. (14) and the matrices (15) and (16). The contribution involving G to the matrix
A is homogeneous (in y) meaning one can write it as a constant, g = G(1 − e−iαs), multiplying the
identity. Such a transformation, C − gI, will translate the eigenvalue spectrum of C by g. When
s = 0, or indeed αs = 2π , this translation disappears as g = 0.

The contribution of the TDF terms to B when s = 0 does not translate the spectrum, it adjusts
the multiplicative effect of B−1. For positive G this will make each entry of B−1 smaller (recall B
is diagonal), hence rescaling eigenvalues toward the origin, but never crossing the imaginary axis.
For G < 0 the opposite is true and the spectrum is inflated; however, there are critical levels where
GT = −(k2 + α2) and B becomes singular. If GT 
 −(k2 + α2), then a change of sign can occur
and previously stable eigenvalues become unstable. This observation is useful as it justifies the sign
choice for G in what follows; direct numerical simulations blow up for negative G. If s 	= 0 then the
“rotation” embedded in B−1 can also contribute to the stabilization; however, the combined effect
of T and s becomes nontrivial. Needless to say, if σT is small, as assumed, this rotation will also be
a small correction.

Because the main effect of the translation s is at O(1) not O(T ) in (16) it remains as T → 0. This
limit would be equivalent to no time delay and a perturbing force f = G(t )[ψ (x, t ) − Tsψ (x, t )].
Indeed, we find stabilization of the laminar profile can also be achieved without a delay, provided
s is chosen correctly. Although we do not consider this case further for the laminar flow, we will
revisit this situation in Sec. V B when considering nonlinear equilibria. One consequence of these
observations is that for a general equilibrium solution with s = 0 and no other symmetry (rotation
or shift-and-reflect), TDF will always fail.

In this implementation we have translated the delayed term forward in x; however, we should
also address why one should not translate the current state back, in other words setting f =
G(t )[T−sψ (x, t ) − ψ (x, t − T )] rather than Eq. (9). In the limit T → 0 it is clear this choice is
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equivalent to reversing the sign of G and will destabilize rather than stabilize. One could recover
stabilization by choosing negative G. However, for nonzero T and negative G the “critical levels”
described above come into play where B can become singular. Therefore in this formulation there
is a clear and correct choice for how to set the TDF terms as shown in Eq. (9) and ensuring G > 0.

To get a broader picture of how this stabilization depends on G, s, and Re, Fig. 1 (right panel)
shows neutral curves on the (G, s) plane for various Re now accounting for all unstable α, namely,
α = 1, 2, 3 (note the left panel is for α = 1 only). The stable region is to the right of the contour, i.e.,
large G. This shows that there is an interval of s that can stabilize the base flow which reduces in size
as Re increases, but can be increased on increasing G. There are two branches, one approximately
centered at s = 1 and one around s = 2.5 with a gap of instability around s = 2 regardless of Re
or G. We can understand the structure by referring back to the shifting of the eigenvalues by g
described above; when αs = 2π this term vanishes and the main effect of this translation in x on
the spectrum is lost. Up to Re = 200 only α = 1, 2, and 3 are unstable in the uncontrolled case,
therefore s ≈ π & 2π

3 will fail to stabilize the laminar solution.
These predictions can be verified by applying the method to the full nonlinear equations. This

is achieved using a Crank-Nicolson-type time stepping (average of forward and backward Euler)
for numerical stability. Note that we need to integrate the equations for at least T time units before
the feedback can be applied. Also if feedback is introduced discontinuously during time integration,
for example, in one time step, then a discontinuity will propagate through the solution in time (a
well-known issue in delay differential equations [46]). To mitigate this we introduce G(t ) gradually
by the following form:

G(t ) = min(Gmax, κ (t − Tstart )), (17)

where κ is some rate, we use κ = 100 for stabilization of the laminar state, and Tstart the time at
which we introduce TDF with Gmax the final maximum. In the interests of brevity, and to highlight
the correspondence with the G used in the linear analysis, when G is referred to in the context of the
DNS it is equivalent to the late time Gmax in (17).

We demonstrate the stabilization of the laminar solution at Re = 40 and Re = 200 in Fig. 2 using
Tstart = 50 to allow “spin-up” of the uncontrolled dynamics (from the usual uniform amplitude,
〈ω2〉V = 1, randomized phase initial condition in Fourier space) and T = 0.01 to be a small delay
to give good agreement with the linear theory. To quantify the size of the delay term and approach
to the laminar state we introduce the following distance and error measures:

Q(t ) = 〈[ψ − ψ (x − s, y, t − T )]2〉 1
2
V

〈ψ2〉 1
2
V

and EI (t ) =
∣∣∣1 − I

Dlam

∣∣∣. (18)

To demonstrate the precision of the neutral curve estimate we perform numerical simulations
with s = 1.49 and 1.51, and also s = 1 and 2 to show behavior well within the stable and unstable
regions. Figure 2 shows that s = 1.49 gives asymptotic stability of the laminar flow while s = 1.51
is initially attracted towards ulam but then picks up the unstable manifold and moves away. Figure 1
indicates at Re = 40 and G = 20 a neutral curve is found at s = 1.5, marked with the blue circle on
the orange Re = 40 contour. In contrast, far from the neutral curve, s = 2 does not exhibit a close
approach to the laminar flow but settles onto a different attractor in the controlled system. Also of
interest is that the curves for s = 1 and s = 1.49 are indistinguishable indicating that the decay rate
is not sensitive to the specific choice of stable s. The rightmost panel of Fig. 2 shows the result of
the same type of calculation but at Re = 200 and G = 100 with s = 1.2 and s = 2, chosen to lie in
the middle of the stable and unstable regions. As predicted s = 1.2 shows stabilization and s = 2
does not.

Figure 3 shows snapshots of the vorticity field at the end of these simulations, showing the
laminar profile at Re = 40, and the flow for Re = 40, G = 20, s = 1.51, and Re = 200, G =
100, s = 2. We note that in these latter two cases that do not stabilize we see a clear streamwise
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FIG. 2. TDF stabilization of laminar Kolmogorov flow. Left panels show the relative size of the feedback
term Q and the right ones the relative error of the energy input rate relative to the laminar state EI , Top row
for Re = 40 and G = 20 with various choices for s demonstrating stabilization only within the boundaries
shown in Fig. 1, bottom row at Re = 200, G = 100 with s = 1.2 showing stabilization and s = 2 not, again in
agreement with the linear analysis.

mode 3 pattern. This is consistent with the analysis that this instability region is due to α = 3; the
other wavelengths are stabilized and mode 3 persists in the controlled dynamics, even at high Re
and large amplitude.

IV. TRAVELING WAVES: ADAPTIVE PHASE SPEED

The goal of this work is not to merely control turbulence; there is a vast literature on this topic
and potentially more effective or applicable methods than TDF. Rather we seek to use this method
as an efficient means to discover unstable nonlinear solutions embedded in the turbulent attractor. In
this case it is impossible to perform any linear stability analysis a priori and predict what parameter
values TDF will work for. We will also need to guess the value of the period for UPOs, or phase
speed of traveling waves, or indeed translations for relative UPOs. Moreover even if a solution is
stabilized there is no guarantee that it will be the unique attractor and that our initial condition will
be in its basin of attraction. In general we may desire some adaptive approaches to automatically
obtain gain G, period T and shifts s to stabilize target ECSs.

As a first step in this direction we demonstrate the case of stabilizing the unstable traveling wave
which we will denote TWa, reported in [9] as T 1 for 40 � Re � 100. This solution is particularly
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FIG. 3. Snapshots of the vorticity fields ω at the end of the simulations shown in Fig. 2. Left: The stabilized
laminar solution at Re = 40, n = 4; note that the laminar looks exactly the same at Re = 200 only with larger
amplitude. Middle: The unstable case near the neutral curve Re = 40, G = 20, and s = 1.51; the state is close
to the laminar solution with a streamwise mode 3 (α = 3) disturbance in agreement with the linear theory.
Right: The unstable case at Re = 200, G = 100, and s = 2; the flow field is turbulent but again retains the
mode three signature expected when applying TDF for s ≈ 2π

3 in this system.

amenable to our approach due to being relatively weakly unstable (compared to other solutions) with
an unstable spectrum with entirely nonzero imaginary parts (see Fig. 5 later). Nonlinear traveling
waves, including TWa, will require that the specific combination for the phase speed of the solution
c = s

T to be respected in order for the TDF terms to vanish. While phase speeds for certain traveling
waves are reported in the literature, we treat it as an unknown to be computed.

Our approach to finding c is to implement an adaptive method, varying s(t ) via gradient descent
using a simple ordinary differential equation

ṡ = γ δs, (19)

where γ is some parameter varying the speed of the descent and δs is the translation which
minimises the delay difference term ‖ω(x, y, t ) − ω(x − s − δs, y, t − T )‖. In other words δs is an
estimate of the translation remaining between the current flow field and the delayed and translated
state. This mean translation is computed by averaging the phase shifts across the individual complex
Fourier amplitudes,

sk = 1

ikx
arg

[
ω̂k(t )

ω̂k(t − T )

]
,

where ω = ∑
k ω̂keik·x, i.e., ω̂ are the complex Fourier coefficients with k = (kx, ky) the wave vector,

as used in the numerical solution. The individual sk being the “shift” required for the phase of
that particular mode ω̂k(t ) to equal ω̂k(t − T ). Obtaining these sk requires some care with the
branches of the complex logarithm (or arctan) when computing the complex argument; the full code
is provided in the Supplemental Material [42]. Once satisfactory sk are obtained they are simply
averaged such that δs = 1

N

∑N
k sk − s where N will be the total number of dealiased modes in the

Galerkin truncation. The ODE is solved alongside the DNS using Adams-Bashforth time stepping.
Note that δs could equally be obtained by minimizing ‖ω(x, y, t ) − ω(x − δs, y, t − T )‖ over all
translations δs; however, this would require iteration of some kind, at the very least a trial of a
discrete set of δs. The method described above is direct as given two state vectors, one for ω(x, y, t )
and one for ω(x − l, y, t ) then δs = l , without any iteration and accumulating only rounding errors.

We compute TWa using the TDF stabilization method, the results shown in Fig. 4 at Re = 40
and 100 using Gmax = 100, γ = 0.05, s(0) = 0, κ = 1 and T = 0.1. Note that this case again sets
Tstart = 50 giving us a turbulent initial condition before TDF is turned on. These parameter values
were arrived at after a very short amount of trial and error; in fact, this traveling wave is stabilized
over a large range of parameters at these Reynolds numbers. At Re = 40 we demonstrate the effect
of removing the adaptive shift by setting γ = 0; this also shows that the laminar solution is not
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FIG. 4. TDF stabilization of the TWa traveling-wave solution of Kolmogorov flow shown via time series of
E/Elam, Q, and s (left to right) when applying TDF at Re = 40 and Re = 100 both with G = 100 and Re = 200
with G = 5000. For Re = 40 and Re = 100 the TWa traveling wave is stabilized completely provided γ 	= 0.
The right panel shows the convergence of the phase speed c using the descent method of Eq. (19). When
Re = 200 the traveling wave is no longer stabilized.

stabilized in agreement with the results of the previous section. We notice that the dynamics are
steady with the kinetic energy E settling onto a value close, but not equal, to that of TWa (the same
is true for D and I , not shown for brevity) and the size of Q tends to a small nonzero value. Our
interpretation here is that TWa is partially stabilized (because c is small in this case) but Q cannot
tend to zero as s is incorrect, thereby leaving some invasive energetics in effect. By setting γ = 0.05,
s adaptively adjusts such that c = 0.00198 which is in agreement with the value reported in [9], at
the same time Q drops to machine precision.

The result is repeatable at Re = 100 with the rest of the parameters held fixed, only now the
convergence rate is decreased. At Re = 200 stabilization is not found, even on increasing to Gmax =
5000. To understand the issue here we converge the TWa solution at Re = 100 using NGh (using
the code from [9] and [40]) and perform arc-length continuation in Re. At Re = 100 and Re = 200
we then conduct a stability analysis of the solution via Arnoldi iteration, the unstable part of the
spectrum is shown in Fig. 5. The important feature to note is that the unstable traveling wave has
gained an unstable direction at Re = 200 with a purely real eigenvalue, thus violating the so-called
odd-number limitation. This is why the stabilization has been unsuccessful.

FIG. 5. Left shows the unstable part of the eigenvalue spectrum for the TWa traveling wave at Re = 100
(blue circles) and 200 (orange stars). Note at Re = 200 the smallest eigenvalue sitting on the real axis circled
in red. On projection onto the RS3Tπ subspace the solution loses this purely real eigenvalue; this spectrum is
shown in green diamonds. Right demonstrates the symmetry operation under which TWa is invariant.
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FIG. 6. TDF stabilization of the TWa traveling-wave solution of Kolmogorov flow shown via time series
of E/Elam, (left) and Q (right) when applying TDF at Re = 200, G = 500, γ = 0.1 in the case of applying
the symmetry (orange) and not (blue). Stabilzation of TWa is found to be successful, and the odd-number
limitation is overcome, when applying the additional symmetry operation in the delay term, as in Eq. (20).
Note Q includes the symmetry as in Eq. (21).

Not to be deterred, we should consider possible ways to avoid this issue. In the case of the laminar
solution in Sec. III the odd-number issue was avoided by taking advantage of the symmetry of the
solution and adding a symmetry operator, in that case a translation in x, into the TDF terms. For
TWa the continuous T symmetry has been broken; however, on close inspection the solution is, in
fact, invariant under a RS3Tπ symmetry operation, see Fig. 5 (right).

We can, therefore, attempt an adjustment of the feedback forcing for TWa with this additional
symmetry imposed:

f = G(t )[ψ (x, y, t ) − RS3Tπψ (x − s, y, t − T )]

= G(t )

[
ψ (x, y, t ) + ψ

(
x − π − s,−y − 3π

4
, t − T

)]
. (20)

We find that stabilization is recovered at Re = 200, G = 500 and γ = 0.1. Figure 6 shows the
energy E and the residual Q, now with the symmetry included:

Q(t ) = 〈[ψ − RS3Tπψ (x − s, y, t − T )]2〉
1
2
V

〈ψ2〉
1
2
V

. (21)

Figure 7 shows vorticity snapshots for the stabilized case demonstrating the evolution from a highly
disordered turbulent flow at early times to the more ordered but still nonlinear traveling wave
solution (a movie is available in the Supplemental Material [42]).

Of course, a priori there was no guarantee such a change would have the required effect on
the unstable spectrum, therefore we should consider how the application of this symmetry operator

FIG. 7. Vorticity, ω, snapshots for the Re = 200 stabilization of the TWa traveling wave with TDF using
the symmetrized forcing as in Eq. (20).
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in TDF has recovered stabilization of TWa. It is evident that the forcing terms (20) will drive
the solution into, or at least towards, the RS3Tπ symmetric subspace. Inside that subspace the
TWa solution will have different symmetry properties. We can check the stability properties in
the subspace by Arnoldi iteration while projecting the vorticity field, ω = (ω + RS3Tπω)/2. The
unstable eigenvalues are shown in Fig. 5. While the traveling wave remains highly unstable in
the symmetric subspace, the purely real eigenvalue is no longer present, explaining why TDF
is successful. An obvious alternative having observed how the symmetry avoids the odd-number
limitation, is to conduct TDF DNS in the projected subspace using the original TDF forcing (9).
Results, not shown, confirm the solution is indeed stabilized with such a projection approach.
However, this arrangement is not in keeping with the spirit of TDF where we are, in general, hoping
to stabilize solutions which may be time periodic, satisfying some recurrence condition

ω(x, y, t ) − RiSmTsω(x, y, t − T ) = 0.

Notice this condition does not necessarily restrict the dynamics into the symmetric subspace, but
certainly will for a steady solution. We also note that, similarly to the description given in Sec. III
when analyzing the stability of the laminar solution, the form of Eq. (20) is important. Applying
the symmetry operation to the first term results in destabilization and reversing the sign of G results
in the “critical level” instability. Here the effect is not as simple to interpret as the laminar solution
since the symmetry operation, the underlying solution and its unstable manifold are all far more
complicated. However, by a simple analysis of Eq. (20) it can be seen that applying the symmetry
operation to the term at t rather than at t − T will result in a perturbation away from a symmetric
solution only being “removed” from the flow if the perturbation itself is also symmetric, but, of
course, not the generic situation.

This naturally opens up the possibility of stabilizing other traveling wave, or equilibrium solu-
tions by using their symmetries. Moreover using the symmetries of the solution offers a simple way
to constrain TDF to avoid previously stabilized solutions. It should be noted that the other known
steady solutions in this system all suffer from the odd-number limitation at these Reynolds numbers,
having at least one unstable eigenvalue on the real axis. The work of Farazmand [47] contains
possibly the most comprehensive study of steady and traveling wave solutions in this flow, making
joint use of adjoint-descent and NGh to find highly unstable and rarely visited, high dissipation
equilibria and traveling waves (16 equilibria and nine traveling waves, including ωlam and TWa).
The majority of those reported (i.e., Tables 1 and 2 in [47]) have a largest unstable direction which
does not oscillate (has a purely real eigenvalue). Fortunately the majority of these solutions also lie
in a symmetric subspace; this suggests that the odd-number limitation might be avoided by imposing
a symmetry in the delay term of TDF.

V. SYMMETRIES IN TDF

A. Systematic search

We now present the results of a systematic investigation of the various choices of symmetry
which can be imposed in Eq. (8), while keeping the delay T small. Rotation R forms a cyclic group
of order 2 and shift-and-reflect S forms a cyclic group of order 2n, meaning there are 4n distinct
discrete symmetries. It should be noted that RS 	= SR, however, S2n−1R = RS and SRS = R.
Therefore to consider these 4n discrete symmetries and the continuous symmetry T we will set the
TDF force as

f = G(t )[ψ (x, t ) − R jSmTsψ (x, t − T )], (22)

with j = 0, 1 and m = 0, 1, 2n − 1 giving the 4n discrete symmetries and Ts giving the continuous
symmetry. To avoid excessive calculations and noting that the adaptive method to converge s
described previously should self-select the required translations, we will consider only five starting
translations: s = 2π/2n, n = 0, 1, 2, 3, 4. For this set of calculations we modify the form of the
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TABLE I. List of equilibrium solutions (EQ) and traveling-wave solutions (TW) stabilized with TDF. The
symmetries which stabilize the solution are given in the table; where multiple translations stabilize they are
shown with either multiple subscripts on T or if many starting s stabilize we denote with an asterisk. Full
details are available in the Supplemental Material [42]. All solutions have been confirmed by convergence
with NGh and their unstable directions computed via Arnoldi iteration. The leading unstable eigenvalue of the
solutions is λ = λR + iλI . Here N is the number of unstable eigenvalues (dimension of the unstable manifold),
and the value in parentheses denotes the number of purely real unstable eigenvalues.

c I = D E λR λI N Symmetry

EQa 0 0.1273 0.7615 0.2181 1.137 6 (2) RT∗, RS2T∗, RS4T∗,RS5T∗,RS6T∗
EQb 0 0.07953 0.6151 0.5961 0.0 9 (9) ST0,π/4, S2, S3T∗,S6, S7T∗,
EQc 0 0.1341 0.3927 0.3984 0.0 9 (3) S2Tπ , S6Tπ

EQd 0 0.2265 0.5137 0.6235 0.0 13 (7) S2Tπ/4, S6Tπ/4

TWa 0.01976 0.08861 0.6975 0.06828 0.3545 4 (0) 0
TW b 0.00092 0.07059 0.5482 0.5002 0.0 2 (2) S4

gain, now using

G(t ) = min(Gmax, κ (t − Tstart )
2) (23)

instead of (17). This has a slightly smoother profile, enabling Gmax to be reached more quickly
without undesirable long-lived invasive behavior. It should be said that this is a minor improvement
and many of the results presented would be reproduced using (17). A hyperbolic tangent or sigmoid
function would arguably be smoother still but as this quadratic works satisfactorily we leave trials
of other profiles for future work.

We will consider Re = 40, Gmax = 20, κ = 0.2 and γ = 0.05. The result is 80 simulations
in which 41 resulted in successful stabilization, finding four equilibria and two traveling waves,
including TWa as described in the previous section, and summarized in Table I. In all cases the
solution is confirmed via convergence with NGh in the absence of TDF. Surprisingly only two of
these other solutions have previously been reported in the literature; EQa is the E1 solution reported
in [47], and EQb is the solution emanating from the primary bifurcation, discussed in [48] and
equivalent to the α = 1 kink-antikink solution reported in [49] in large domains. We discover quite
a variety of flow structures in these stabilized ECSs as shown in the vorticity plots in Fig. 8.

There is also some slight subtlety regarding the effect that continuous translations have on the
TDF outcomes. In the event of stabilizing a traveling wave, the translation must satisfy the s =
cT condition; however, here are two further effects at play in general which depend on the flow
structures and other symmetries involved. The first is, for equilibria, a pinning of the flow structures
relative to the axis of reflection/rotation when they appear in combination. For example, EQb is
repeatedly stabilized for various translations when S3 or S7 is applied. These cases simply arrive
at different “copies” of EQb with the kink-antikink structure pinned at the x position given by
s, respecting the shift-and-reflect (figures are found in the Supplemental Material [42]). This is
the reason why we see such a large number of repeated stabilizations of the same solution when
changing s in the presence of either an odd shift-and-reflect or rotation. Alternatively with no reflect
or rotation the translation can produce ECSs with repeated flow structures within the domain; for
example, EQc has a clear mode 2 pattern due to the s = π translation imposed, likewise EQd has
an unusual diagonal array of vortices which respect the S2 or S6 shift in y (so no net reflection) and
s = π

4 in x.
We also need to take some care in monitoring the outcomes of applying TDF; of the 39 we

classify as unsuccessful we find 27 of these tend to a steady state, but Q does not vanish meaning
TDF is invasive and the steady solution is not a solution of the Navier-Stokes equations. A secondary
way to identify such cases is that I 	= D meaning that the perturbing force is playing a role in the
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FIG. 8. Snapshots of equilibrium solutions (a)–(d) and traveling-wave solutions (e), (f) stabilized with TDF
(see Table I). (a) EQa, (b) EQb, (c) EQc, (d) EQd, (e) TWa, (f) TWb.

energetic balance. The other 12 cases are unsteady, either periodic, quasiperiodic, or fully chaotic.
More details can be found in the Supplemental Material [42]. In Fig. 9 we show the time-series plots
of the energy E (t ), the “residual” Q(t ) and the relative error |I − D|/|I| for four cases; Tπ where the
evolution remains chaotic; ST π where the flow becomes steady but the TDF term does not vanish
and I 	= D; S4 which stabilizes TW b and S5 which stabilizes EQb. It can be seen that the traveling
wave stabilization takes longer for Q to vanish as it requires the additional condition that s = cT to
be satisfied through the solution of (19).

Figure 10 shows the projection of the dynamics on the plane (I/Dlam, D/Dlam ), the left panel
showing a failed stabilization and invasive steady state when applying STπ , right panel showing the
stabilization of EQb when applying S5. This figure demonstrates the quite different dynamics in
each case, at least on this projection, and that the stabilized state can be quite far from the location
in phase space at Tstart (magenta triangle in the figure) suggesting that the basin of attraction in this
case is large.

Table I also reports the stability of the ECSs, in particular noting the largest unstable eigenvalue,
the dimension of the unstable manifold and the number of those directions which do not oscillate.
We find all solutions, except TWa, have multiple directions violating the odd-number limitation,
demonstrating that the use of symmetries has overcome this issue. We have also confirmed that
projection into the symmetric subspace will remove the real unstable eigenvalues for these solutions.
Note that this means that EQb and TW b are stable in their respective subspaces, having only purely
real unstable eigenvalues.

B. The limit T → 0

In Sec. III it was noted that, when using additional symmetry operations embedded in the TDF
term, the principle effect of TDF on the eigenvalue spectrum can persist as T → 0. While this
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FIG. 9. Plots of time series of four simulations with different symmetries applied: Tπ (gray line, chaotic
dynamics), STπ (blue, steady-state invasive TDF), S4 (red, stabilization of TWb), S5 (black, stabilization of
EQb). Top E (t )/Elam, middle |I (t ) − D(t )|/|I (t )|, bottom Q(t ). Here Tstart is the starting time of time-delayed
feedback control.

limit is irrelevant for traveling wave solutions, as the c = s/T combination must be satisfied in this
formulation, it remains to be confirmed if the stabilization of equilibria reported in Table I remains in
this limit. The left panel of Fig. 11 shows the effect of varying T when stabilizing EQb by including
the S symmetry in TDF [ j = 0, m = 1, s = 0 in Eq, (20)]. The rate of stabilization increases as T
decreases; finite T slows the stabilization and the solution can be stabilized with no delay. This is
consistent with the interpretation made in Sec. III that the contribution involving T (for small T ) will
scale the spectrum toward the origin; when the whole spectrum is to the left of the imaginary axis
this means that the least unstable mode becomes smaller in absolute terms (less negative), resulting
in a slower decay as T increases.

However, introducing the rotational symmetry and attempting to stabilize EQa with RS2 (right
panel Fig. 11) we find the stabilization does not persist in this limit. In this case the rotation in
physical space will introduce antidiagonal entries in both the matrices A and B [(16) and (15)]
making the interpretation of the TDF effect much less trivial. In this case we find that small
T is unable to stabilize the solution (with Gmax = 20) and likewise large T introduces unsteady
oscillations, therefore there is an optimal T at these parameters of T ≈ 0.2.

The reason for this difference can be found when examining the eigenvalue spectrum for these
solutions following projection into the respective symmetric subspaces. Note that EQb has a purely
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FIG. 10. Plots of the (D, I ) projection for the TDF cases with symmetries STπ (left) showing the trajectory
tending towards an “invasive” steady state where D 	= I and S5 (right) showing successful stabilization of
EQb. t < Tstart is shown in cyan, Tstart + 10 > t > Tstart magenta, and t > Tstart + 10 blue. States from Table I
are shown as yellow squares and states in [47] as red circles.

real unstable spectrum. Following projection into the S subspace, this solution is stable. This means
that actually TDF is doing nothing other than drive the solution into the subspace and the time
delay is redundant. On the other hand EQa is not stable in the RS2 subspace, having four complex
unstable eigenvalues. This means the time delay is required to complete the stabilization of this
solution.

FIG. 11. Plot of Q(t ) for TDF at Re = 40, Gmax = 20 using the symmetry S, stabilizing the equilibrium
EQb (left) and RS2 stabilizing EQa (right) for different values of the time delay T . We see that smaller delay
periods result in faster attraction to the EQa and that no delay T = 0 is most effective. However, when applying
RS2 EQa is stabilized only for intermediate values of T .
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TABLE II. Additional solutions stabilized with two TDF terms, one with S4 and the other with symmetry
2 shown. All solutions have been confirmed by convergence with NGh and their unstable directions computed
via Arnoldi iteration. The leading unstable eigenvalue of the solutions is λ = λR + iλI . Here N is the number
of unstable eigenvalues (dimension of the unstable manifold) and the value in parentheses denotes the number
of purely real unstable eigenvalues.

c I = D E λR λI N Symmetry 2

EQe 0 0.0843 0.573 0.595 0 4 (4) RTπ , R
TW c 0.0183 0.1344 0.380 0.493 0 10 (3) Tπ

C. Multiple delays

With the successes reported above we are motivated to consider further generalizations of the
method in order to stabilize more solutions and, moreover, avoid repeatedly stabilizing the same
ECSs reported in Table I. An obvious generalization for steady or traveling wave solutions with
symmetries is to include more than one delay term with differing symmetry properties. In its most
general form this would read

f =
∑

i

Gi(t )[ψ (x, t ) − R jiSmiTsiψ (x, t − Ti )],

with different combinations of ji, mi, si and the possibility for different delays Ti and gains Gi on
each term. Clearly we can anticipate diminishing returns as more terms are included in this sum;
solutions with more symmetries will typically be lower amplitude, in the sense of being closer to
ωlam, and less likely to be embedded in the chaotic set. However, given the symmetries displayed
by solutions reported in the literature [9,47], and the number of repeated stabilizations in Table I,
it is quite common for steady solutions to retain more than one distinct symmetry. Adding these
additional terms can permit further modification of the unstable manifolds, or symmetry constraints
of the solutions albeit at the expense of extending an already high-dimensional parameter space
even further. As such we show only a preliminary test with two such terms here.

Motivated by the figures shown in [47] where many of the ECSs have an S4 symmetry, we will
consider a set of three further calculations with two TDF terms such that max(G1) = max(G2) = 10
and T1 = T2 = 0.2 to be comparable with Sec. V A [using (23) and κ = 0.2]. All cases will have one
term with j1 = 0, s1 = 0, m1 = 4, the second term varying with the first case having j2 = 1, s2 =
0, m2 = 0, the second case j2 = 0, s2 = π, m2 = 0, and the third case j2 = 1, s2 = π, m2 = 0. In
other words, the first TDF term has S4 and the second term considers combinations of translation,
Tπ , and rotation, R, leaving the shift-and-reflect zero. Note in the cases with Tπ we include this
operator in addition to the dynamically adjusted translation described in Sec. IV, which is applied
to both terms in order to allow for traveling waves within the invariant subspaces.

This results in two further ECSs being stabilized, one equilibrium and one traveling wave, the
equilibrium being E4 and the traveling wave being T3 from [47]. These solutions are summarized
in Table II and Fig. 12. Remarkably these solutions are different to either solution (TW b or EQa)
found when applying S4 together with rotation and/or translation, demonstrating that there is scope
for obtaining a range of solutions with similar or the same symmetries.

Using projection into the relevant combined symmetric subspace gives some additional interest-
ing insight. Solution TW c has its real eigenvalues filtered out by projection into the S4 subspace
alone; the Tπ subspace does not dramatically alter the solution’s stability. This demonstrates that
TW c is, in fact, an attractor in the TDF S4 system along with TW b. We conjecture that TW b has
the larger basin of attraction and that the Tπ symmetry is acting as a constraint to enable us to find
TW c in this case. It should be possible to find TW c without the Tπ TDF term but with a suitable
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FIG. 12. Plots of the further ECSs obtained using two terms of TDF as described in the text and outlined in
Table II. Left: The vorticity for EQe (top) and TW c (bottom) with (right) the time series of Q(t ) (top) and E (t )
(bottom) for the three symmetries on the second TDF term, R and RTπ stabilizing EQe and Tπ stabilizing
TW c.

initial condition using S4 alone. This observation opens up a number of interesting questions about
dealing with multiple attractors when using TDF.

VI. SUMMARY AND DISCUSSION

This study has shown several useful and original results applying time-delayed feedback control
in two-dimensional turbulence. First is stabilization of the laminar solution. Despite the laminar
state violating the so-called odd-number limitation, we have taken advantage of the continuous
symmetry of the solution to manipulate the linear operator and find stabilization for certain choices
of translation s and gain G. The DNS shows good agreement with the linear analysis. We have also
shown that by applying TDF in conjunction with an adaptive method for the translation s, we are
able to completely stabilize the TWa traveling wave solution. This breaks down at high Re where
the solution gains a purely real unstable eigenvalue; however, by once again using the symmetries
of the solution we can avoid this odd-number limitation and stabilize the traveling wave up to
Re = 200. We discover that on projection into the symmetric subspace where this solution resides,
the offending real eigenvalue is filtered out thereby enabling TDF to succeed again. It should be
emphasized at this Reynolds number the traveling wave has 36 unstable eigenvalues, and we obtain
it simply by time stepping the equations.

Having found that TDF, augmented with symmetries, can successfully manipulate the unstable
spectrum of ECSs, a systematic effort applying TDF with various symmetry combinations yielded
five additional solutions at a single set of parameter values (Re = 40, Gmax = 20, γ = 0.05). While
the success rate for the method, when making trials of all possible symmetries, was not high
(∼50%), it should be said that we performed a systematic study to show the effect of applying all
4n discrete symmetries and five possible (starting) translations. In practice one would be unlikely to
attempt this, recognizing that typical flow structures, or alternatively the chaotic set, will be some
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distance from certain symmetric subspaces. For example, the inverse cascade of two-dimensional
turbulence creates a large scale coherent structure in the form of a vortex dipole; such a structure is
unable to be invariant under, e.g., RS or RS3 (likewise for the kink-antikink structures exhibited in
EQb). More selective choice of the symmetries to target relevant flow structures would improve the
efficiency.

By computing the unstable directions of these solutions in the pertinent symmetric subspaces
we find that the symmetry constraints serve to filter out the purely real unstable eigenvalues in
the successful cases. Where the solutions have only real unstable eigenvalues this indicates that
TDF is effectively constraining the dynamics into the symmetric subspace and this is sufficient
for stabilization. This is corroborated by the observation that, in such cases, the time delay is not
necessary for stabilization. We therefore suggest that in future investigations where symmetric
solutions are sought from scratch (i.e., not knowing their existence in advance) TDF offers a
more general approach than projection alone. TDF will give any solutions stable in the symmetric
subspace, but it will also give unstable solutions with complex eigenvalues (in the subspace). We
hope that other methods known to avoid the odd-number limitation may offer further improvements
[36,37,50].

A demonstration of generalizing this approach by adding additional TDF terms showed that two
more solutions can be stabilized at similar parameter values when making trials of only three more
carefully chosen symmetry combinations. This generalized TDF is similar in spirit to the extended
TDF of [51,52] and may prove to be useful at higher Reynolds numbers where dimensions increase
and a broader range of spatiotemporal scales are active. We note that one finding of these results
was that with TDF and the S4 symmetry both TW b and TW c are stabilized. TW c also has a Tπ

symmetry which does not help with the stabilization in TDF but does constrain the flow structures to
avoid restabilizing TW b. This shows another utility of using symmetries with TDF, in the future we
should consider alternative ways of dealing with multiple attractors when stabilizing solutions with
TDF; it is clear from known solutions in the literature [47] that many ECSs lie in the S4 subspace.

It should be emphasized that the success of stabilizing solutions using their symmetries consti-
tutes a work-around of the odd-number limitation discussed in the introduction. This is an important
observation as it is possible the method has been neglected in the fluid mechanics community due
to a presumption that this issue would be too restrictive. The effect we find here has some similarity
to other examples of avoiding this issue where a complex gain is used to modify the phase of the
delay terms [53]. Having shown one resolution to this issue there is now reasonable motivation for
attempting the method in other flows with different symmetry and bifurcation properties.

There are numerous other avenues for future work on this method. For example, we have paid
little attention to the choice of G(x, y, t ); it is clear that too small a value will fail to stabilize, but also
too large a value can cause invasive behavior for long times, even if there is an ECS to be stabilized.
Our results are the result of a small amount of trial and error to set a Gmax which was practical in
this case. However, in more onerous cases, with larger system sizes, we are likely going to require
an automatic way to obtain G, in a similar way to that shown for s. Several promising approaches
are documented in the literature for this [54,55], and we are hopeful one will be beneficial for the
fluid problem.

TDF has primarily been developed as a means to stabilize periodic orbits. While we have
concentrated on steady and traveling wave solutions here, it is an obvious next step to consider
UPOs. Preliminary results in this direction indicate that particular attention needs to be given to
obtaining a highly accurate period in order for the method to be successful, as well as taking care of
underlying symmetries and initial condition. We hope to report progress on this in due course.

One very appealing feature of this work is the simplicity of the method and the ease with which
it may be implemented. Any DNS code can be quite easily adapted to include the feedback term;
the memory overhead associated with storing the history is not significant and is only slightly
more onerous than required for the recurrent flow analysis. The nature of the method also makes it
attractive as a way to “target” particular types of solution, particularly orbits which may be missed
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by recurrent flow analysis. This may lead to improved periodic orbit theory predictions when using
the UPOs as a basis to recreate turbulent statistics [9,10].

A direct comparison between TDF and recurrent flow analysis is not currently justifiable. While
NGh clearly remains the best choice for computing UPOs, TDF has been shown, not only to effec-
tively find traveling waves and equilibria, but importantly do so within a very simple framework.
There is wide scope for TDF to become a powerful tool for studying nonlinear dynamics in fluid
mechanics particularly given the extensive literature of extensions which may improve the method’s
efficiency further [36,37,50,55,56].
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