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Percolating and nonpercolating liquid phase continuum model of drying
in capillary porous media with application to solute transport

in the very low Péclet number limit
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A three equation continuum model of drying is presented. The model explicitly consid-
ers the liquid phase as formed by a percolating liquid phase and a nonpercolating liquid
phase. The model is tested against pore network simulations. A quite good agreement is
obtained between the predictions of the continuum model and data obtained by volume
averaging the pore network simulation results. Then, the model is extended to the case
where a solute is present in the liquid phase. This leads to the consideration of a five equa-
tion continuum model as opposed to the classically considered two equation model. The
model is tested when diffusion is the solute dominant transport mechanism. In agreement
with the pore network simulations, the five equation continuum model predicts that the
solute concentration in the percolating liquid phase is greater than in the nonpercolating
liquid phase in the considered situation. The work illustrates the key role of the liquid
fragmentation process occurring during drying on the solute dynamics. Counterintuitively,
although diffusion is dominant, it is shown that the solution concentration varies over the
liquid phase as the result of the liquid phase fragmentation process.
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I. INTRODUCTION

Drying in porous media is a topic a great interest with applications in chemical engineering [1],
process engineering [2], food processing [3], civil engineering [4], and soil sciences [5], to name
only a few. Its modeling and numerical simulation has a long history as reviewed in [6] or [7]. As
presented in [6] and [7], the drying process in capillary porous media, defined as porous media with
pores greater than about 1 μm in equivalent diameter, is commonly modeled within the framework
of the continuum approach to porous media using a strongly nonlinear diffusion equation governing
the evolution of the saturation in the medium [8]. However, this approach does not explicitly take
into account an important feature of the drying process, namely the fact, sketched in Fig. 1, that
the gradual replacement of the liquid by the gas phase in the pores resulting from the evaporation
process leads to the fragmentation of the liquid phase into liquid clusters [9].

The fragmentation mechanism is inherent to the invasion percolation process [10] at the core of
the drying process, e.g. [11]. One can refer to [12] for an illustration of the fragmentation process,
i.e., the formation of a new cluster from an existing cluster as the result of a pore invasion. As
discussed for instance in [9], one can distinguish a first period in the drying process, referred to
as stage 1, where the liquid phase is distributed between the largest liquid cluster spanning the
porous medium and a number of smaller clusters. The largest cluster is referred to as the main
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FIG. 1. Schematic of liquid phase fragmentation process during drying with main cluster (percolating
liquid phase) and isolated clusters (nonpercolating liquid phase).

cluster whereas the smaller clusters are referred to as the isolated clusters. As shown in [13],
this structuration of the liquid phase has an impact on the evolution of the spatial and temporal
distribution of a dissolved species during drying. In other words, the question arises as to whether the
liquid phase fragmentation process can be taken into account in the continuum approach to porous
media so as to develop better models of the transport of a solute during drying. This holds true as
well for other drying situations where particles are present in the liquid phase, e.g. [2,14]. To this
end, we present in the current paper a three equation continuum model whose main variables are the
vapor partial pressure, the main cluster saturation and the isolated clusters saturation. Regarding the
liquid phase evolution, the three equation continuum model is based on the theory of biphasic flow
in porous media presented in [15–18] proposing to treat microscopically percolating fluid regions
differently from microscopically nonpercolating regions. With our definitions, the microscopically
percolating liquid region corresponds to the main cluster whereas the isolated clusters correspond to
the microscopically nonpercolating regions. As in a series of previous works [13,19–21], the method
to discuss the relevance of the continuum model is to proceed via comparisons with simulations with
a pore network model (PNM) of drying. However, since PNMs have been developed and a PNM
is used here as a reference, one can wonder why continuum models are still worthy of interest.
Due to computational issues, PNM simulations are actually limited to small networks. The largest
network considered so far in drying PNM simulations is 80 × 80 × 80 [22]. As reported in [22], the
simulation of the full drying for a single realization required approximately 18 h on an Intel Xeon
3.6 GHz workstation. Simulations on larger networks require significantly more time (e.g., 100 ×
100 × 100 pore networks would require several days per realization [22]). As an example, consider
a mean distance between pores of 10 μm. Then, a 100 × 100 × 100 pore network would correspond
to 1 mm3 of porous medium. It is clear that in most applications the computational domain of interest
is much larger. In other words, continuum models are usually the only option to deal with a drying
situation of interest in the applications because of their much greater computational efficiency. As
an illustration of this major difference in terms of computational efficiency between continuum
models and PNM simulations, the continuum model solutions presented later in the paper are
obtained from an Excel sheet in less than one second whereas the corresponding PNM simulations
take a few days because the PNM results are averaged over several network realizations. Even
when the spatial domain of interest is not very large, like in fuel cells for instance, e.g. [23,24], a
full PNM approach is not possible due to the high pore size contrast between the various porous
layers in the cell. Relying on continuum models is then again necessary either according to a full
continuum approach, e.g. [25], or hybrid approaches combining PNM and continuum modeling,
e.g. [23,24]. In brief, developing better continuum models is more than ever highly desirable due to
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FIG. 2. (a) Basic drying situation referred to as macroscopically 1D drying. (b) Sketch of pore network
representation with external diffusive layer on top.

their high computational efficiency and extending their capabilities is also highly desirable to deal
with complex drying situations involving dissolved species and/or particles.

In the present paper, we consider the archetypical situation sketched in Fig. 2 where only the sam-
ple top surface is in contact with the external air. As an additional illustration of the computational
efficiency issue between PNM and continuum model simulations, it can be noted that the continuum
model formulation for the situation sketched in Fig. 2 is one dimensinal (1D) whereas the pore
network simulations are 3D. We focus on the situations where the evaporation rate is sufficiently
low for the temperature variations to be negligible. This situation is frequently encountered in the
laboratory experiments with water at room temperature and referred to as “isothermal” drying. The
corresponding drying process is often described in three main periods [26]: the constant rate period
(CRP), the falling rate period (FRP), and the receding front period (RFP), but it is also usual to
rather consider drying as a two stage process [27], with stage 1 corresponding to the CRP and stage
2 to the combination of the FPR and RFP. As in [13], we mainly focus on the period where the main
cluster spans the porous sample, i.e., stage 1.

The paper is organized as follows: In Sec. II, the NLE two equation model is briefly recalled
and the three equations continuum model is described. The drying PNM is summarized in Sec. III.
Results of PNM simulations are presented in Sec. IV. A comparison between PNM results and the
three equation continuum model solution is presented in Sec. V. The model is extended so as to
consider the presence of a solute in Sec. VI where comparisons between the continuum model and
PNM simulations are also presented. This is followed by Sec. VII which proposes a discussion.
Section VIII consists of the main conclusions of the study.

II. CONTINUUM MODEL

A. NLE two equation continuum model

The nonlocal equilibrium (NLE) two-equation model is first recalled. As discussed in some detail
in [19], the NLE two-equation model is preferred to the conventional approach, i.e. [8], for the
following reason. The conventional approach is based on the use of the equilibrium desorption
isotherm to relate the vapor partial pressure and the saturation whereas the impact of adsorption
phenomena is presumably negligible in the relatively big pores of capillary porous media. This
questionable aspect is circumvented by the NLE two equation model whose main variables are the
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saturation and the vapor partial pressure and which does not rely on the desorption isotherm. As
described in [21], the nonlocal equilibrium (NLE) two-equation model can be expressed as

ερl
∂S

∂t
+ ∇ · (ρlUl ) = −ṁ (1)

∇ ·
(
ε(1 − S)Deff

Mv

RT
∇Pv

)
+ ṁ = 0, (2)

where ε, t , Deff , S, ρl , and Pv denote the porosity, time, effective vapor diffusivity, liquid saturation,
water density, and water vapor partial pressure, respectively. Mv , R, and T represent the molar mass
of water, universal gas constant, and temperature; ṁ is the liquid-vapor phase change rate. The
latter is also referred to as the NLE phase change term. As shown in [21], ṁ can be expressed as

ṁ ≈ −agl
Mv

RT
β(Pvs − Pv ), (3)

where agl is the specific interfacial area and β is a coefficient; Pvs is the saturation vapor pressure
since adsorption phenomena are not considered.

B. Three equation continuum model

The main difference with the three equation model is to explicitly consider that the liquid
phase can be split in the percolating liquid phase, also referred to as the main cluster, and the
nonpercolating liquid phase. In the three equation model, the liquid saturation is thus expressed as

S = S1 + S2, (4)

where the subscript 1 is for the percolating liquid phase, i.e., the main cluster, and the subscript 2
is for the nonpercolating liquid phase, i.e., the isolated clusters. Subscript 3 refers to the vapor (the
gas phase is a binary gas formed by air and the vapor of the evaporating species).

Assuming a homogeneous porous medium, mass balance equations for the percolating and
nonpercolating liquid phases are expressed as

ερl
∂S1

∂t
+ ∇ · (ρlUl1) = −ṁ12 − ṁ13, (5)

ερl
∂S2

∂t
+ ∇ · (ρlUl2) = −ṁ21 − ṁ23, (6)

where ε is the porous medium porosity, ρl is the liquid density, Ul1 is the filtration velocity in
the percolating liquid phase, Ul2 is the filtration velocity in the nonpercolating liquid phase, ṁ12 is
the mass transfer rate between phase 1 and phase 2, ṁ13 is the evaporation rate of phase 1 per unit
volume of porous medium, ṁ21 is the mass transfer rate between phase 2 and phase 1, and ṁ23 is the
evaporation rate of phase 2 per unit volume of porous medium. Since a new isolated cluster actually
forms as the result of the fragmentation of the main cluster, we also have

ṁ12 = − ṁ21. (7)

It can be noted that in isothermal drying an isolated cluster cannot reconnect to the main cluster,
hence ṁ12 > 0.

The gas phase forms a single cluster in the drying process. The mass conservation of the vapor
is expressed as for the NLE two equation continuum model, i.e., Eq. (2),

∇ ·
(
ε(1 − S)Deff

Mv

RT
∇Pv

)
+ ṁ = 0, (8)
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where

ṁ = ṁ13 + ṁ23. (9)

The phase change rate is expressed as for the NLE two equation continuum model as

ṁ = algβ
Mv

RT
(Pvs − Pv ) (10)

with

ṁ13 = al1gβ
Mv

RT
(Pvs − Pv ), (11)

ṁ23 = al2gβ
Mv

RT
(Pvs − Pv ), (12)

where al1g (al2g respectively) is the specific interfacial area between phase 1 (phase 2 respectively)
and the gas phase. It can be noted that alg = al1g + al2g.

Following [18], the mass transfer rate ṁ12 between the percolating and nonpercolating liquid
phases is expressed as

−ṁ12 = ηερl

(
S2 − Sirr

Sirr − S

)
∂S

∂t
, (13)

where η is a numerical factor, Sirr is the irreducible saturation. Equation (13) represents the contin-
uum modeling of the fragmentation process. It expresses that the occurrence of new clusters from the
main cluster is proportional to the liquid phase saturation variation rate whereas the factor ( S2−Sirr

Sirr−S )
is qualitatively consistent with the fact that the closer the system is to the irreducible saturation, the
greater is the probability to form a new cluster from the main cluster since the main cluster structure
becomes increasingly ramified as the irreducible saturation is approached [10]. This functional form
is qualitatively consistent with the nonlinear increasing variation of the number of clusters during
the drying process [9] (also illustrated in Fig. 4 below from PNM simulations). As we shall see, it
also leads to quantitatively consistent results.

The above model is simplified by introducing additional assumptions. The flow in the percolating
phase is modeled using the generalized Darcy’s law,

Ul1 = −kkr1

μ
∇Pl1, (14)

where Ul1 is the percolating liquid phase filtration velocity, Pl1 is the pressure in the percolating
liquid phase, k is the medium permeability, kr1 is the percolating phase relative permeability, and μ

is the liquid viscosity. By introducing the capillary pressure curve Pc1(S1), where Pc1(S1) is the local
pressure difference between the gas phase and the percolating liquid phase, Eq. (5) can be expressed
as

ερl
∂S1

∂t
+ ∇ · (ρlDl1(S1)∇S1) = −ṁ12 − ṁ13, (15)

where

Dl1(S1) = −kkr1

μ

dPc1

ds1
. (16)

The nonpercolating liquid phase is assumed immobile. Equation (6) is thus simplified as

ερl
∂S2

∂t
= −ṁ21 − ṁ23. (17)
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C. Boundary conditions

For the 1D case sketched in Fig. 2(a), the boundary conditions at the bottom read

−ρl Dl1(S1)∇S1 · n = 0 (18)

and

−ε(1 − S)Deff
Mv

RT
∇Pv · n = 0, (19)

where n is a unit normal vector to the considered surface.
The definition of the boundary conditions at the top surface is still a debated question in

the drying theory [21,28–30]. In other words, the coupling at the surface between the transport
phenomena in the porous medium and in the external air in contact with the porous medium surface
is not yet sufficiently well understood and modeled. In the case of the three equation continuum
model, the detailed modeling of the mass transfer at the top surface is particularly challenging since
one has to consider that the vapor leaves the porous medium surface from three categories of pores:
(i) by evaporation from liquid filled pores belonging to the main cluster (percolating liquid phase),
(ii) by evaporation from liquid filled pores belonging to isolated clusters connected to the surface
(nonpercolating liquid phase), and (iii) gaseous pores. However, this challenging modeling issue is
left for a future work. In the present study, the focus is on the modeling of the liquid phase internal
fragmentation. A simplified approach is therefore adopted. As explained in more detail later in the
paper, this simplified approach consists in assuming that the overall evaporation rate is input data
for the model and not an outcome.

D. Macroscopic parameters

As can be seen from the above, the use of the three equation continuum model implies in general
to specify several parameters, most of them being nonlinear functions of saturation. However, the
focus in this paper is on the liquid phase fragmentation process, which is taken into account in
the three equation continuum model via Eq. (13). For this reason, a particular drying regime is
considered (as explained in the next section). The consideration of this particular regime allows
focusing on ṁ12 [Eq. (13)] without the need to determine the many other parameters of the
three-equation continuum model. Nevertheless, the complete model was presented for the readers
interested in more complex situations requiring the consideration of the full set of equations.

III. PORE NETWORK MODEL

As in [9], a simple cubic network is considered [Fig. 2(b)]. The distance between two adjacent
nodes in the network is the lattice spacing, denoted by a. In this model, the pore bodies located
at the nodes of the cubic grid are cubes of size dp with dp varying in the range [0.675, 0.725]
according to a uniform probability distribution function, noting that the lengths in the PNM are
made dimensionless using the lattice spacing a as reference length. The pore throats are channels
connecting the pore bodies. The throat size dt is distributed in the range [0.075, 0.125] according
to a uniform distribution law. The drying algorithm is the one presented in [11]. As discussed in
[31,32] or [33] this algorithm applies to the isothermal drying situation where capillary effects
are dominant and corner film flows [34,35] can be neglected. The interested readers can refer to the
afore-mentioned articles for details on the algorithm and additional information on the pore network
modeling of the drying process.

It must be recalled that that the viscous effects are not explicitly considered in the liquid phase
in the version of the algorithm considered in the present paper. As discussed in [31], various drying
regimes can be actually distinguished depending on the competition between the capillary forces, the
gravity, and the viscous forces. Here, the capillarity dominant regime is considered. Both the effects
of gravity and the viscous forces are assumed to be negligible compared to the capillarity. This
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FIG. 3. Evolution of (a) the evaporation rate (drying curve); the vertical dashed line indicates the end of
stage 1, (b) the overall network liquid saturation Snet in the range [0.31–1]. The reference time is the time when
Snet = 0.31, which corresponds to the end of stage 1. The vertical line corresponds to Snet = 0.7, which is the
maximum saturation considered for the comparison with the continuum model (see text).

regime is referred to as the capillary regime. As a matter of fact, the special case when the viscous
effects can be neglected compared to the capillary effects even when the main cluster becomes very
ramified as the irreducible saturation is approached is considered. For this reason, this regime is
referred to as the “asymptotic” capillary regime. Additional details on this regime are given later in
the paper.

IV. PORE NETWORK SIMULATIONS

PNM simulations of the drying process were performed with a N × N × N cubic network, where
N is the number of nodes in the network along each direction of a 3D Cartesian coordinate system
[N = 4 for the network sketched in Fig. 2(b)]. The results presented in what follows were obtained
for N = 30. The external boundary layer thickness [denoted by H in Fig. 2(b)] was 10.

Figure 3(a) shows the variation of the computed evaporation rate (normalized by the evaporation
rate at t = 0) as a function of Snet, i.e., the overall network liquid saturation. Note that these data as
well as the other PNM data presented in the paper are averages over 15 realizations of the network
unless otherwise mentioned. The classical evolution [26,27] is retrieved with a first period, referred
to as stage 1, in which the evaporation rate varies weakly over a significant range of saturations
(corresponding to Snet varying between about 0.8 and 0.31). This period is referred to as stage 1.
As can be seen in Fig. 3(a), stage 1 ends when Snet is about equal to 0.31, which corresponds to
the vertical dashed line in Fig. 3(a). Then the evaporation rate drops. This corresponds to stage 2.
However, contrary to the classical experimental results [26], an initial period where the evaporation
rate drops can be observed before the quasiconstant rate period starts in stage 1 [this approximately
corresponds to Snet in the range [0.9–1] in Fig. 3(a)]. This period is discussed below with the results
on the saturation profiles. Figure 3(b) shows the evolution of Snet as a function of time. The reference
time is the time when Snet = 0.31 (tref . = tSnet=0.31). Since the focus on what follows is stage 1, the
evolution of Snet in Fig. 3(b) is shown down to Snet = 0.31. Consistently with the variation of the
evaporation rate in Fig. 3(a), the evolution of Snet shows an initial period where Snet decreases faster
compared with the longer period that follows where the slope of the curve in Fig. 3(b) is smaller
and varies weakly.

Figure 4 illustrates the liquid phase fragmentation process occurring during the drying process.
As can be seen, the number of liquid clusters increases during stage 1. The liquid phase is actually
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FIG. 4. Number of liquid clusters in the network as a function of time up to the end of stage 1. The vertical
line corresponds to Snet = 0.7.

formed during stage 1 by a main or percolating cluster and an increasing number of isolated or
nonpercolating clusters.

Saturation profiles during the drying process up to the end of stage 1 are depicted in Fig. 5.
These profiles are averages over horizontal slices, i.e., transverse to the z direction, according to a
procedure similar to the one used in previous works [19,20,21]. The slices are ten lattice spacing
thick in the present work.

This choice is motivated by the fact that the computations of macroscopic parameters from
PNM simulations, such as for instance the local porosity as illustrated in Fig. 6, indicate that an
averaging volume of size 10a can be considered as a reasonable representative elementary volume
(REV). Thus a running averaging procedure is used considering slices of size N × N ×10. The
computed values are affected to the center of the slices. It can be also noted that slice saturations are
actually typically considered in the experiments [36,37]. The selected slice thickness explains why
the profiles start at z = 5 (in lattice spacing unit) and ends at z = 25 in Fig. 5. The slice averaged
saturations are denoted by Ssl, S1sl, and S2sl, respectively.

FIG. 5. Liquid phase saturation profiles (Ssl ), percolating liquid phase (S1sl ), and nonpercolating liquid
phase (S2sl ) saturation profiles (corresponding to Snet = 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3); z = 0 corresponds to
the network top surface [Fig. 2(b)] whereas z = 30 to the network bottom limiting surface.
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FIG. 6. Porosity variation as a function of averaging volume size obtained by computing the porosity over
a cubic volume of increasing size located within the network.

The liquid phase saturation profiles in Fig. 5 present several differences compared to the profiles
typically obtained in the experiments. For the capillary regime considered in the present paper, the
latter are typically flat, e.g., [36,37]. By contrast, edge effects are noticeable at both ends of each
profile in Fig. 5. The profiles are flat only in the region away from the edges. Also, they become
flat in this region only when Snet is sufficiently low, i.e., when Snet ∼ 0.6–0.7. These differences
with the experimental profiles are discussed in detail in [30]. The initial period where the profiles
are not flat in the central region is associated with a finite size effect and corresponds to the period
where Snet varies from 1 to SBT, where SBT is the saturation at breakthrough. Since the saturation at
breakthrough, i.e., when the gas phase reaches for the first time the network bottom, scales as 1 −
SBT ∝ N−α where α = 0.48 in three dimensions according to the percolation theory [10,38], this
initial period becomes negligible for a sufficiently large network, and thus cannot be seen typically
in the experiments. By contrast, the edge effect size is found to be independent of the network size
and on the order of a few lattice spacing [30].

As a result, the corresponding variations of the saturation in the edge regions is indiscernible
in the experiments since the size of the edge effect regions is typically very small compared to
the sample size in the experiments. For these reasons, the main objective of continuum models as
regards the saturation profiles should be to predict the flat profile evolutions since the finite size
effect impacted period is negligible in most experiments as well as the relative extension of the edge
effect regions. For the sake of comparison with the continuum model, we therefore consider as main
targets Sbulk, S1 bulk, and S2 bulk where Sbulk, S1 bulk, and S2 bulk are the values of Ssl, S1sl, and S2sl in the
middle of the network, i.e., at z = 16 in Fig. 5.

The variations of Sbulk, S1 bulk, and S2 bulk are depicted in Fig. 7. The variations are shown over the
period corresponding to Snet in the range [0.3, 0.7] which is defined as the period of interest. From
the above data, the period of interest in what follows is defined as the period of stage 1 not affected
by the finite size effect. It approximately corresponds to the range of overall saturation [0.3–0.7] for
the considered network. As illustrated in Fig. 5, the saturation profiles in the bulk are reasonably flat
for Snet < 0.7.
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FIG. 7. Variation of Sbulk, S1 bulk, and S2 bulk as a function of time during stage 1. Comparison between the
PNM data and the results from the three equation continuum model. The comparison is performed for overall
saturations lower than 0.7 for the comparison to not be hampered by the initial significant finite size effect (see
text). The overall saturation 0.7 corresponds to the vertical dashed line in the figure.

As can be seen, the percolating phase saturation decreases over stage 1 whereas the nonperco-
lating liquid phase saturation increases. The variations of both saturation are much faster and more
important as the end of stage 1 is approached. As discussed in [9], the end of stage 1 corresponds
to the situation when the percolating liquid phase is about to cease percolating. In the considered
asymptotic capillary regime, this corresponds to the situation when the irreducible saturation is
about to be reached. From Fig. 3(a), it can therefore be considered that Sirr ≈ 0.31.

V. CONTINUUM MODEL SOLUTION

In order to solve the three equation continuum model, Eqs. (4)–(17), the following parameters
must be in principle determined: ε, Deff (S), al1g, al2g, β, η, Sirr , k, kr1, Pc1(S1) noting that
the parameters Deff , al1g, al2g, kr1, Pc1 are nonlinear functions of the saturation. As exemplified
in [19,21,39], these parameters can be determined from PNM simulations. Also, because of the
nonlinearity, Eqs. (4)–(17) must be generally solved using a numerical method. However, it can
be observed from Fig. 5 that the profiles are spatially uniform (when as discussed before the edge
effects are not taken into consideration and the initial period affected by the finite size effect is
discarded). Under these circumstances, the numerical solution can be greatly simplified and the
determination of most of the three equation continuum model parameters from specific PNM
numerical simulations can be avoided. In [30], it is shown that Sbulk can be determined from the
following equation:

ερl Hpm
∂Sbulk

∂t
= − j, (20)

where j is the evaporation flux and Hpm is the porous medium height (Fig. 2).
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FIG. 8. Variation of evaporation rate from percolating cluster (J1) and nonpercolating clusters (J2) in the
slices as a function of z for various network saturations (the colors in the inset corresponds to the same overall
saturations as in the main figure).

Since Sbulk = S1 bulk + S2 bulk, one obtains from Eq. (20)

ερlHpm
∂S1 bulk

∂t
= − j − ερl Hpm

∂S2 bulk

∂t
. (21)

The governing equation for S2, namely Eq. (17), can be simplified in the bulk as

ερl
∂S2 bulk

∂t
= −ṁ21 (22)

because, as illustrated in Fig. 8, the liquid-vapor phase change is negligible in the network outside
the top edge effect region. This leads to expressing Eq. (21) as

ερl
∂S1 bulk

∂t
= − j

Hpm
+ ṁ21, (23)

where, as mentioned before, it is proposed to express ṁ21 as

ṁ21 = −ṁ12 = ηερl

(
S2 bulk − Sirr

Sirr − S bulk

)
∂S bulk

∂t
. (24)

We have tested Eqs. (22)–(24) from the PNM data. Equations (22) and (23) together with Eq. (24)
were solved using a first order finite difference scheme to express the derivatives with respect to
time, i.e., expressions of the form ∂S2 bulk

∂t = S2 bulk (t+δt )−S2 bulk (t )
δt . The method was explicit, i.e., the

values of the saturations involved in the expression of the source term ṁ12 were taken at the previous
time step. The saturation Sbulk was obtained from Sbulk = S1 bulk + S2 bulk. Since the initial period
affected by the finite size effect is not considered, the simulations started with the following initial
conditions imported from the PNM simulations: Sbulk = 0.6833, S1 bulk = 0.678, S2 bulk = 0.005 11.
Since the focus is on the evolution of the percolating and nonpercolating phases, the evaporation rate
was considered as input data. Thus, the evaporation flux j computed from the PNM simulations was
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used. This led to the results depicted in Fig. 7, which were obtained with η = 0.1 and Sirr = 0.3138.
As can be seen, the three equation continuum model leads to a quite reasonable agreement with
the PNM data. This is an interesting confirmation in the context of drying of the approach proposed
in [18].

VI. SOLUTE CONCENTRATION EVOLUTION IN THE HYPERDIFFUSIVE LIMIT

As pointed out in [13] or in [40], the evolution of the concentration of a solute in a drying porous
medium generally results from two main effects: (i) the solute convective transport in the percolating
liquid phase which leads to the accumulation of solute in the porous medium top surface region (for
the configuration depicted in Fig. 2), (ii) the fact that the volume occupied by the liquid phase shrinks
during drying whereas the total amount of solute in this volume does not change (precipitation
or wall deposit phenomena being assumed negligible). It was shown in [13] that the commonly
used continuum model of solute transport [41–43] did not lead to a good agreement with PNM
simulations. This was attributed to the fact that the classical approach does not distinguish between
the percolating liquid phase and the nonpercolating liquid phase. The objective in what follows is to
explore whether the three equation continuum model can help alleviate the discrepancies between
the PNM simulations and the continuum approach. To this end, we focus on the second mechanism
as regards the variation of the solute concentration. This mechanism is referred to as the liquid
phase shrinking effect since the increase in the concentration due to this mechanism results from
the decrease in the volume occupied by the liquid phase in the porous medium. We only consider
the limiting situation where convective effect on the solute transport can be neglected, i.e., the
very low Péclet number case [41]. This corresponds for instance to a very low evaporation rate.
This limiting situation is referred to as the hyperdiffusive limit since the solute concentration is
consistently assumed to be spatially uniform in each liquid cluster. Therefore, in this limit, there is
no need to compute the velocity field in the liquid phase. The solution is dilute so that impact of the
solute on the surface tension, the liquid density, or the equilibrium vapor pressure at the menisci can
be neglected.

A. PNM computations

Initially, the concentration is uniform in the liquid phase and denoted by C0. Then the concentra-
tion is updated in each cluster according to the mass conservation equation,

Ci(t + δt )Vi(t + δt ) = Ci(t )Vi(t ), (25)

where Ci is the concentration in cluster i and Vi is the volume of liquid cluster i. The time step δt
in Eq. (25) is the time step of the PNM drying algorithm. Equation (25) is for a shrinking cluster. A
cluster can also split into two smaller clusters as the result of the invasion of a pore by the gas phase.
In this case, the concentration Ci1 = Ci2 = Ci1/i2 in the newly formed cluster i1 and i2 is computed
from the equation

Ci1/i2(t + δt )[Vi1(t + δt ) + Vi2(t + δt )] = Ci(t )Vi(t ), (26)

where Vi1, Vi2, and Vi are the volumes of cluster i1, i2, and i respectively.
Then the slice averaged concentrations are computed by volume averaging the concentration in

each slice,

Csl(t, z) =
∑i=n

i=1 Ci(t )Visl(t )∑i=n
i=1 Visl(t )

=
∑i=n

i=1 Ci(t )Visl(t )

εSslAh
, (27)

C2sl(t, z) =
∑i=n

i=2 C2i(t )Visl(t )∑i=n
i=2 Visl(t )

=
∑i=n

i=2 C2i(t )Visl(t )

εS2slAh
, (28)
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FIG. 9. Profiles of Csl, C1sl, and C2sl in the network corresponding to Snet = 0.9, 0.8, 0.7, 0.6, 0.5, 0.4,
0.3; z = 0 corresponds to the network top surface (Fig. 2) whereas z = 30 corresponds to the network bottom
limiting surface.

where Visl is the volume of cluster i present in the considered slice, h = 10 a is the slice thickness.
It is recalled that label 1 is for the percolating cluster. The concentration in the latter is spatially
uniform over the whole network. Since C1 is uniform of the network, it is obvious that the slice
averaged concentration C1sl is spatially uniform and equal to C1net.

The evolution of the three slice average concentration profiles, namely Csl, C1sl, and C2sl, during
stage 1 is depicted in Fig. 9. As expected the concentration increases during stage 1 because of the
liquid cluster dynamics, i.e., the fact that clusters split and shrink. However, it can be noticed that the
fragmentation process occurs essentially in the main cluster, i.e., the cluster forming the percolating
liquid phase, when only the bulk region is considered since the evaporation rate of the isolated
clusters located within the bulk region is quite small (Fig. 8). Interestingly, the concentration profiles
are flat. This was of course expected for C1sl since the concentration is uniform in the percolating
liquid phase but somewhat less obvious as regards the nonpercolating liquid phase slice averaged
concentration, i.e., C2sl. This point is discussed further below and explained in the discussion section
(Sec. VII).

Also, the results shown in Fig. 9 indicate that the concentration is greater in the percolating
liquid phase than in the nonpercolating liquid phase and thus greater than the average concentration
in the liquid phase. This is better illustrated in Fig. 10 showing the variations of Cbulk, C1 bulk, and
C2 bulk. As for the saturations Sbulk, S1 bulk, and S2 bulk, Cbulk, C1 bulk, and C2 bulk are the averaged
concentrations over the slice located at z = 16. Cbulk is computed as

Cbulk (t ) =
∑i=n

i=1 Ci(t )Visl(t )∑i=n
i=1 Visl(t )

, (29)

where i = 1 is for the percolating cluster and n is the number of liquid clusters present in the con-
sidered slice. Similarly, the average solute concentration in the nonpercolating clusters is computed
as

C2 bulk =
∑i=n

i=2 Ci(t )Visl(t )∑i=n
i=2 Visl(t )

. (30)

Note again that the concentration is uniform over the percolating cluster and therefore the slice
concentration C1 bulk is equal to the concentration over the whole percolation cluster.

Figure 10 clearly illustrates why it is important to distinguish the percolating and nonpercolating
liquid phases. Not making this distinction, as in the commonly used approach, i.e., [41–43], leads to
underestimate the concentration and thus for instance to overestimate the time corresponding to the
onset of crystallization when C corresponds to a dissolved salt concentration [44]. Then the question
arises as to whether the evolution depicted in Fig. 10 can be captured by an extended version of the
three equation continuum model considering also the presence of the solute. This is studied in the
section that follows.
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FIG. 10. Variation of Cbulk, C1 bulk, and C2 bulk in the network as a function of time during stage 1. The
reference time is the time at the end of stage 1 defined as the time when Snet = 0.31. The vertical dashed line
indicates the beginning of the period of interest for the comparison with the three equation continuum model
(see text).

B. Continuum approach

Within the framework of the three equation continuum model, the solute transport equation in
the percolating liquid phase is expressed as

ε
∂S1C1

∂t
= ∇ · (εS1D∗

s1∇C1) − ṁ12s, (31)

where ṁ12s (kg/m3/s) is the solute mass exchange term between the percolating liquid phase and the
nonpercolating liquid phase. Equation (31) is similar to the solute transport equation in the classical
approach [41–43]. The difference lies in the fact that the considered liquid phase is the percolating
liquid phase and not the whole liquid phase.

For the nonpercolating liquid phase, the solute conservation equation is simply expressed as

ε
∂S2C2

∂t
= ṁ12s (32)

since the convective transport is assumed negligible in the isolated clusters.
Integrating Eqs. (31) and (32) over the porous medium height leads to

εHpm
∂S1C1

∂t
= −

∫ Hpm

0
ṁ12sdz, (33)

εHpm
∂S2C2

∂t
=

∫ Hpm

0
ṁ12sdz. (34)
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Since the profiles are approximately spatially uniform in the bulk (as shown in Figs. 5 and 9),
Eqs. (33) and (34) can be expressed as

ε
∂S1 bulkC1 bulk

∂t
= −ṁ12s, (35)

ε
∂S2 bulkC2 bulk

∂t
= ṁ12s. (36)

The exchange term ṁ12s in Eqs. (35) and (36) is modeled using an expression similar to the one
for ṁ12 since the solute mass transfer between the percolating liquid phase and the nonpercolating
liquid phase is due to clusters separating from the main cluster. Furthermore, since the solute
concentration in the main cluster is C1 it is reasonable to consider that ṁ12s should be proportional
to C1. This finally leads us to express ṁ12s as

−ṁ12s = ηεC1 bulk

(
S2 bulk − Sirr

Sirr − Sbulk

)
∂Sbulk

∂t
. (37)

Equations (35) and (36) combined with Eq. (37) were solved using a method similar to the one
used for solving Eqs. (22) and (23) with, as for the saturation problem , η = 0.1 and Sirr = 0.3138.
A first order finite difference scheme to express the derivatives with respect to time was used, i.e.,
expressions of the form ∂S1 bulkC1 bulk

∂t = (S1 bulkC1 bulk )(t+δt )−(S1 bulkC1 bulk )(t )
δt . The method was explicit, i.e., the

values of the saturations and the value of C1 bulk involved in the expression of the source term ṁ12s

were taken at the previous time step. Then SbulkCbulk was obtained from SbulkCbulk = S1 bulkC1 bulk +
S2 bulkC2 bulk.

This led to the results depicted in Fig. 11. As can be seen, the three equation continuum model
leads here again to a quite reasonably good agreement with the PNM data. As explained before,
only the range of saturations not significantly affected by the initial finite size effect is considered
for the comparison between the continuum model and the PNM data. This corresponds to the overall
network saturations lower than approximately Snet = 0.7. The time corresponding to Snet = 0.7 is
indicated by a vertical dashed line in Fig. 11.

As expected, the product SbulkCbulk is constant over the period of interest. This simply means that
the total mass of solute in the bulk region is conserved. The total mass of solute in the percolating
phase, i.e., S1 bulkC1 bulk, decreases. This is because the percolating liquid phase loses mass as the
result of the fragmentation process. The corresponding mass loss corresponds to the mass of solute
gained by the nonpercolating liquid phase, which therefore increases during stage 1. The latter
corresponds to S2 bulkC2 bulk in Fig. 11.

From the computation of SbulkCbulk, S1 bulkC1 bulk, and S2 bulkC2 bulk depicted in Fig. 11 and
the computation of Sbulk, S1 bulk, and S2 bulk depicted in Fig. 7, the solute concentrations Cbulk,
C1 bulk, and C2 bulk were obtained as Cbulk = SbulkCbulk

Sbulk
, C1 bulk = S1 bulkC1 bulk

S1 bulk
, and C2 bulk = S2 bulkC2 bulk

S2 bulk
.

The corresponding results are compared to the PNM simulation data in Fig. 10. As can be seen,
the three equation continuum model predicts quite well the variations of the three considered
solute concentrations. In particular, the important fact that the solute concentration is greater in
the percolating liquid phase is well captured.

VII. DISCUSSION

The classical one equation continuum model [41–43] predicts that the solute concentration is
uniform over the liquid phase in the considered very low Péclet number limit during stage 1. This
solute concentration is simply given by

C(t ) = Snet0C0

Snet (t )
, (38)
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FIG. 11. Variation of SbulkCbulk, S1 bulkC1 bulk, and S2 bulkC2 bulk in the network as a function of time during
stage 1. The reference time is the time at the end of stage 1 defined as the time when Snet = 0.31. The vertical
dashed line corresponds to the time when Snet = 0.7 (as explained in the text, only the times greater than the
time corresponding to Snet = 0.7 are considered for the comparison between the continuum model and the
PNM data).

where Snet0 and C0 are the initial saturation and solute concentration in the network respectively.
C(t ) corresponds to Cbulk in the results presented in the previous section. The results presented
in the previous section clearly show that the solute concentration predicted by this quite classical
model in the very low Péclet number limit should not be understood as the solute concentration all
over the liquid. The liquid phase is actually fragmented and the solute concentration can vary from
one liquid cluster to another. As a result, the solute concentration computed with the classical model
must be interpreted as an average concentration over the various liquid clusters, more exactly as a
weighted average concentration where the weights are the cluster volume fractions, i.e.,

〈C〉 =
∑i=n

i=1 ViCi∑i=n
i=1 Vi

=
i=n∑
i=1

(
Vi∑i=n
i=1 Vi

)
Ci, (39)

where Vi is the volume of liquid cluster i and Ci is the solute concentration in cluster i, and n is the
number of liquid clusters at the considered time.

In other words, although diffusion is the dominant transport mechanism in the very low Péclet
number limit, this does not mean that the solute concentration is spatially uniform in the liquid
phase. To illustrate this feature further, the standard deviation of the solute concentration over the
various clusters can be computed from the PNM results. Since the percolating and the nonpercolat-
ing liquid phases are distinguished with the three equation continuum model, the spatial variability
of the solute concentration is illustrated considering the nonpercolating liquid phase. The average
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FIG. 12. Variation of the standard deviation σc2 relative to the mean of the solute concentration distribution
in the nonpercolating liquid phase over the network bulk region during stage 1. The inset shows the distribution
of the concentration in the isolated clusters for Snet = 0.4.

solute concentration in the nonpercolating liquid phase is computed as

〈C〉2 =
∑i=n

i=2 ViCi∑i=n
i=2 Vi

=
i=n∑
i=2

(
Vi∑i=n
i=2 Vi

)
Ci, (40)

noting that i = 1 corresponds to the main cluster. Thus i in the range [2, n] corresponds to the
isolated clusters (n − 1 is thus the total number of isolated clusters). The standard deviation of the
solute concentration over the nonpercolating liquid phase is then computed as

σc2 =
√∑i=n

i=2 Vi(Ci − 〈C〉2)2∑i=n
i=2 Vi

. (41)

The variation of σc2 over stage 1 is shown in Fig. 12.
As can be seen, the standard deviation relative to the mean increases during most of stage 1. The

decrease toward the end of stage 1 is due to the fact that the mean increases faster than the standard
deviation because of the formation of many clusters of higher concentration toward the end of stage
1 (Fig. 4). As illustrated in the inset in Fig. 12, the variation of the solute concentration over the
nonpercolating liquid phase is significant with about a factor 2 between the concentration in the
clusters of lowest concentration and the clusters of highest concentrations.

The existence of the concentration spatial variability in the considered diffusion dominant regime
is directly due to the fact that isolated clusters form from the main cluster all along stage 1 (as
illustrated in Fig. 4). The concentration in an isolated cluster in the bulk region is the concentration
in the main cluster at the time when the isolated cluster forms. Since the concentration in the main
cluster increases during stage 1 (Fig. 11), the later an isolated cluster forms in the bulk region, the
greater its concentration is. Based on the main cluster concentration variations depicted in Fig. 11,
it can be readily inferred that the concentration over the nonpercolating phase varies at a given time
in the range [C0, C1(t )].
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FIG. 13. Evolution of saturation and concentration profiles in stage 2; z = 0 corresponds to the network
top surface (Fig. 2) whereas z = 30 corresponds to the network bottom limiting surface.

However, this spatial variability due to the historicity of the isolated clusters formation from the
main cluster does not imply a spatial variation along the network depth. As illustrated in Fig. 9, the
mean concentration profiles are flat. This is due to the fact that the probability of forming a new
cluster from the main cluster in the bulk region does not depend of the position [20].

The fragmentation of the liquid phase in isolated clusters also leads to a somewhat counterintu-
itive result after stage 1, i.e., in stage 2. As described in [9], the percolating liquid phase disappears
at the end of stage 1 in the considered “asymptotic” regime purely controlled by capillary effects.
This regime is described as asymptotic because it is rarely observed in the standard laboratory
experiments due to the viscous effects. In most experiments, the liquid phase is actually percolating
up to the receding front forming the lower edge of the dry region developing in the network during
stage 2. By contrast, in the considered asymptotic regime, the liquid phase is formed by isolated
clusters only and the development of the dry zone results from the gradual evaporation of the
isolated clusters [9]. This asymptotic regime is expected when evaporation is quite low and/or with
sufficiently thin systems. In the considered very low Péclet number limit, the concentration profiles
could be expected to be flat due to the dominant diffusion transport in the liquid phase.

However, since the isolated cluster evaporation dynamics is not spatially uniform during stage
2, the concentration profiles are actually not flat. This is illustrated in Fig. 13. The evaporation rate
at the boundary of the isolated clusters is significantly greater for the clusters in contact with the
dry zone. In other words, the cluster evaporation rate rapidly decreases with the increasing depth
in the network. Since the concentration increase is due to the clusters shrinking, the concentration
increases faster in the region where the cluster evaporation rate is greater. This leads to the remark-
ably nonlinear concentration variations depicted in Fig. 13. Interestingly, the concentration profiles
roughly tend to resemble the exponential like profiles typically resulting from the competition
between advection and diffusion effects [41]. The mechanism leading to the strongly nonlinear
shape is of course completely different here and is due to the combination of the fragmentation
of the liquid phase in isolated clusters and the screening of the evaporation at the boundary of the
clusters located deeper in the network. One can refer to [12] for more details on the screening
phenomenon. The screening phenomenon during stage 1 is illustrated in Fig. 8. A similar rapid
decrease in the evaporation flux with the distance from the interface between the dry zone and the
shrinking liquid cluster zone exists during stage 2.

Since it has been shown that the liquid films can have a strong impact in drying [34,35,45,46],
it must be clear that the results presented in this article as regards the solute distribution are for
the situations where the impact of the films on the solute distribution is negligible. For instance, it
has been shown [47] that the contact angle for an aqueous solution in the presence of a dissolved
salt can be relatively high, on the order of 40° or more. With such values of the contact angle,
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the development of corner films is significantly hampered. By contrast, for significantly lower
contact angles, when the liquid films can develop so as to maintain a hydraulic connection between
the “isolated” clusters, some solute transport can occur through the films. This should reduce the
concentration variation between clusters. In the case of a sufficiently low evaporation rate for the
solute distribution to reach a quasisteady state during drying, solute diffusion in the films might
even lead to a uniform concentration distribution all over the liquid phase. Hence, as for the drying
process in general, i.e., [45], the consideration of liquid films within the framework of the three
equation continuum model would deserve to be studied.

Although the whole set of equations of the three equation continuum model was presented,
only a rather simple situation, allowing solving the model quite easily without resorting to the
determination of the various transport parameters of the model, was considered. In this respect,
it would be interesting to extend the present work by developing a numerical procedure allowing
solving the full set of equations. This would notably permit us to simulate the full drying process
and not only stage 1 and to consider other regimes than the capillary regime and the very low Péclet
number regime.

Also, the edge regions, especially the top edge region in the considered drying configuration,
were not studied on the ground that this is the bulk region which is of primary interest for evaluating
the continuum models. However, the top region can be of special interest for predicting or analyzing
certain phenomena, such as the formation of salt efflorescence at the evaporative surface of porous
media for instance, e.g., [36,40,44,48,49]. Thus, some works should be dedicated to the modeling
of the transfers in the top edge region in the future.

It can be also noted that a structured cubic pore network was considered in the present paper
whereas realistic networks, extracted from microstructure digital images, for instance [50], are
unstructured. However, this should not affect the main results of the present paper since the
fragmentation process is a general feature inherent to the invasion percolation process at the core
of the drying process. The main impact should be on the coefficient η [Eq. (13)] since the value of
this coefficient depends on the particular porous medium considered. Considering various networks,
i.e., various microstructures, would be interesting to better characterize this coefficient.

VIII. CONCLUSION

A continuum model of drying in capillary porous media, referred to as the three equation
continuum model, was presented. Contrary to the commonly used continuum models of drying,
the present model makes an explicit distinction between the percolating and nonpercolating liquid
phases. From the consideration of the frequently encountered capillary regime, it has been shown
that the model was able to predict the variations of the saturation in both the percolating and
nonpercolating liquid phases during stage 1. Then, the model was extended so as to predict
the evolution of the concentration of a solute in both the percolating and nonpercolating liquid
phases. Comparisons with data obtained from pore network simulations were quite satisfactory.
In particular, the continuum model consistently predicts that the solute concentration is higher in
the percolating phase than in the nonpercolating phase. However, only the very low Péclet number
regime was considered.

Nevertheless, the results presented in this article also clarify the meaning of the solute concen-
tration predicted by the continuum models, which should be considered as an average concentration
over the fragmented liquid phase. Counterintuitively, it has been shown that the concentration is not
necessarily uniform over the liquid phase in the considered very low Péclet number regime. As the
result of the liquid fragmentation in numerous clusters, spatial fluctuations of the concentration are
expected even in the very low Péclet number limit.

In summary, the three equation continuum model allows significantly more accurate predictions
of the solute distribution during drying compared to the classical one equation model. In the
more general context of the macroscopic theory of biphasic flow in porous media, the present
paper presents both an extension to drying, with and without the presence of a solute, of the
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model proposed in [15–18] and an additional validation of this model, in particular as regards the
formulation of the mass exchange term between the percolating and nonpercolating liquid phases.
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