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Gravitational drainage on a vertical substrate of a narrow width
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The effect of a single, vertical edge on a draining liquid film was studied recently
[Phys. Rev. Lett. 125, 064502 (2020)]. In this experimental study, we characterize the
structure of a liquid film, draining due to gravity, on a vertical, narrow substrate. We
show that surface tension affects the draining film at the two vertical edges. The edge
effects propagate into the film to eventually influence the shape over the entire width.
Interferometry is performed to measure the film thickness profile. A motorized stage is
used to vertically translate the thin film and the substrate, which extends the range of
the measurements. Our experiments show that the thickness of the liquid film scales with
the well-known Jeffreys’ solution, which is the thickness of a draining film on a vertical
substrate of infinite width. However, due to the existence of the two vertical edges, near
the top contact line, the film thickness changes sharply near the edges and is flat near
the middle of the substrate. In contrast, away from the top contact line, the edge effects
propagate towards the middle, and the overall horizontal film shape eventually becomes
approximately quartic. Further, we identify characteristic length scales in the vertical direc-
tion, which combine the effects of the surface tension, viscosity, and gravitational drainage.
These length scales, respectively, highlight the effects from the vertical edges and the top
contact line, and the experimental results are in agreement with the scaling arguments.

DOI: 10.1103/PhysRevFluids.7.014001

I. INTRODUCTION

A liquid film on a planar substrate naturally drains and flows under the action of gravity. Usually
there are two typical modes of a gravitational flow that spreads on a substrate:

(1) Draining and spreading due to the variation of the film thickness. Examples are the gravita-
tional spreading of a liquid on a horizontal surface, such as flooding by the breaking of a dam [1],
industrial wastewater slumping into a river [2], and fluid injection into porous rocks [3].

(2) Draining and spreading due, at least in part, to the inclination of the substrate. Examples
are the gravitational spreading of a liquid on a steep slope [4–6], and related situations such as
chocolate coating on a sphere [7] and lava flows from a volcano [8]. In these scenarios, instabilities
are usually observed associated with the effect of surface tension. For example, on an incline, the
fingering instability occurs at the moving contact line of a spreading liquid film [9–12]. On the other
hand, dripping, i.e., the Rayleigh-Taylor instability, occurs on a liquid film under an inclined plate
[13–15]. These instabilities may guide pattern formations in soft materials [16].

From the perspective of modeling, for the case that viscous effects dominate inertial effects, the
thickness profile h of a thin film on a planar substrate satisfies [17–20]

3μ
∂h

∂t
= −∇ · [h3∇(γ∇2h)] + ∇ · [h3∇(ρghcosα)] − 3ρgh2 ∂h

∂x
sinα, (1)
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where μ is the dynamic viscosity of the liquid, t is the time that the liquid drains, γ is the surface
tension of the liquid, ρ is the density of the liquid, α is the inclination angle of the substrate from
the horizontal direction, and x is the position along the inclined substrate. The four terms in Eq. (1)
are, respectively, the viscous, surface tension, and two gravitational drainage contributions. The two
gravitational terms highlight the two modes of gravitational flows described above, respectively.

Certainly, both of the gravitational terms in Eq. (1) drive the drainage of a thin film for α �= 0 and
90 degrees [5,19]. In this study, we are interested in a draining liquid film on a vertical substrate,
i.e., α = 90 degrees, and the substrate is of finite width. We focus on the film that is away from
the bottom bath, where the film connects to a macroscopic meniscus [21,22]. Also, we consider no
external influx into the film during the gravitational drainage. If we focus on the center of the film
without the effects of the edges, then by balancing the viscous term and the gravitational term (the
fourth term) in Eq. (1), the film thickness profile is

hJ (x, t ) =
(

μx

ρgt

)1/2

, (2)

where x is the vertical position of the liquid film and is in the direction of gravity. Equation (2) is
Jeffreys’ solution [23], which is a self-similar solution for the thickness profile of a draining film on
a two-dimensional vertical plate, i.e., the plate is infinitely wide in the horizontal direction. Jeffreys’
solution is robust and reproducible and has even been used to design a viscometer [24,25].

Jeffreys’ solution predicts the film thickness profile in the limit of a wide substrate. However,
as implied in Eq. (1), when the width of the film is relatively narrow, surface tension plays a role
in the draining film where there is a variation of the film thickness in the horizontal direction. For
example, a thin, slender rivulet on an inclined substrate drains under the action of gravity, and the
horizontal shape of the rivulet is modified by surface tension [17,20]. The contact line of the rivulet
moves during the drainage. From the perspective of modeling and according to our experience with
the experiments, the moving contact line is associated with the wetting property, e.g., contact angle
hysteresis, of the liquid on the substrate and thus is a complex question that is beyond the scope of
this paper.

In contrast, the draining film on a vertical substrate near a vertical edge provides a simple
geometry to quantify and validate the effect of surface tension on the film shape [26]. In this
geometry, the contact line is pinned at the vertical edge. In our previous work, we showed that
the film thickness profile near the vertical edge is self-similar in the limit that the substrate is wide
and the surface tension only affects a local region near the edge. Based on Jeffreys’ solution, a
self-similar solution was constructed to analyze the thickness profile of the draining film near the
edge (this solution was also indicated in Ref. [20]). Moreover, this self-similar solution converts
three independent variables in the nonlinear partial differential equation into one independent
variable for an ordinary differential equation, which is a unique feature of this problem and might
inspire modeling in other systems.

The self-similar solution in our previous work predicts the thickness profile of a draining film
near a vertical edge. However, in reality, there are always two edges on a vertical substrate. When
the two edges are relatively close, i.e., the substrate is narrow, the overall thickness profile of the
draining film might be affected by both of the edges, which, to the best of our knowledge, has not
been studied. For example, it is not known what is the thin-film shape and even whether the thin-film
thickness profile scales with Jeffreys’ solution. Also, it is of practical interest, e.g., for coating, to
provide a guideline on how wide a substrate needs to be to maintain a uniform coating thickness in
the middle. This threshold of width is certainly a function of the vertical length of the substrate. In
this article, we attempt to show experimentally the answers and further give some analysis to these
questions.

In this work, we show the effects of surface tension when a thin liquid (silicone oil) film drains on
a vertical, narrow substrate. Interferometry is performed to demonstrate and measure the thickness
profile of the liquid film. The substrate is fixed on a motorized stage, which translates vertically and
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enables scanning and the measurements of the liquid film thickness profile over an extended range
of O(102) mm in the vertical direction. The setup is shown in Sec. II. The results of interferometry
in Secs. III A and III B show that, as the vertical position increases in the flow direction, the
boundary, where surface tension introduces an edge effect, propagates from the edge to the middle
of the substrate: near the top contact line, the vertical edges affect the film only locally, and the
film thickness profile near the middle of the substrate is horizontally uniform, following Jeffreys’
solution, except for a small region, of several millimeters, at the top contact line where surface
tension matters; away from the top contact line, the vertical edges affect the film shape over at
least some of the horizontal direction. The horizontal film shape eventually becomes approximately
quartic, but the thickness of the film at the centerline still scales with Jeffreys’ solution. In detail,
the film thickness profile at the apex of the approximately quartic shape is approximately 20%
higher than Jeffreys’ solution. Further, in Sec. III C a length scale is identified in the vertical
direction, which compares and balances viscous, surface tension, and gravitational effects, in the
region away from the top contact line. In Sec. III D another vertical length scale is proposed to
characterize the edge effects localized near the top contact line. As part of our investigation, we
change the viscosities of the silicone oils, the time that the thin film drains, and the widths of the
glass substrates. As a result, in Sec. III E, we show that all the experimental results agree with our
scaling arguments.

II. EXPERIMENTAL SETUPS

To highlight the effect of the surface tension acting at the edges of the substrate, we used narrow
glass substrates in the experiments. The substrates were usually several millimeters in width w,
with length l = 114 mm, so that w � l . The glass substrates were originally 95×114 mm (Ted
Pella Inc.) and were cut by a glass cutter to the desired width w. The resulting narrow substrates
were approximately uniform in width. To confirm the uniformity of the substrates, we measured the
width at the top (wtop) and bottom ends (wbot) with calipers. The mean width was then calculated by
w = (wtop + wbot )/2 and was reported as the width of the glass substrate. In the experiments, the
width of the substrate varied approximately from 2 to 50 mm. Typically the relative variation of the
width |wtop − wbot|/w < 5%. A summary of all of the glass substrates used in the experiments and
the corresponding measurements of the widths is given in Table I in Appendix A.

After cutting, the glass substrate was cleaned with isopropanol and then fixed vertically on a
motorized stage. The substrate was carefully aligned within 0.5 degree in the direction of gravity. To
create a viscous liquid film, a pipette was moved horizontally along the substrate and deposited the
silicone oil (Sigma-Aldrich). Below the top horizontal contact line, the silicone oil spread over the
substrate until it reached the two vertical edges. Five silicone oils, which are Newtonian fluids and
completely wet the glass substrates, were used to achieve a range of viscosities for the experiments;
the silicone oils used were the same as these used in our previous study [26]. The viscosities of
the silicone oils in the experiments were, respectively, μ = 20.8, 51.5, 102, 540, and 1081 mPa s,
as measured with a rheometer (CP50-1, MCR 301, Anton Paar; the shear rate γ̇ ranged from 1 to
100 s−1). The surface tensions of the silicone oils were, correspondingly, γ = 21, 21, 21, 22, and
22 mN/m, and the densities were ρ = 0.95, 0.96, 0.96, 0.97, and 0.97×103 kg/m3, respectively.
We note that the material properties of the silicone oils remained nearly constant for years. For
example, the viscosities of the silicone oils changed less than 2% in 2 yr.

The thin liquid films drained on the glass substrate due to the action of gravity and were
typically tens of micrometers in thickness. Interferometry was performed to visualize and measure
the thickness profile of the thin film. A sketch of the interferometric setup is shown in Fig. 1(a),
and a demonstration of the draining liquid film is provided in Fig. 1(b). A He-Ne laser (wavelength
λ = 633 nm, Thorlabs) illuminated the draining thin film, and the reflected rays were collected
with a high-speed camera (Phantom v7.3). The collected rays in the camera were mainly reflected
from the air-oil and glass-air interfaces, which create constructive and destructive interferometric
patterns and indicate the thickness profile of the thin film. Figures 2(a)–2(d) show the typical
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FIG. 1. Schematics of the experimental setup and a draining liquid film on a vertical glass substrate. (a) A
sketch of the interferometric setup for measuring the thickness of the liquid film on a transparent substrate of
width w. A pipette moved horizontally along the substrate and injected the silicone oil to create a draining liquid
film. The beam from a He-Ne laser (wavelength λ = 633 nm) passed through a beam splitter and illuminated
the liquid film, and the reflected rays were collected with a high-speed camera. The reflected rays on the
air-oil and glass-air interfaces created the constructive and destructive fringes in the interferometric pattern. A
glass slide was fixed to a motorized stage, which translated upwards. Due to this translation, the interferometric
patterns of the draining liquid film were captured along an extended range of vertical positions. (b) A schematic
of the gravitationally draining liquid film on a glass slide of width w. This schematic is constructed from the
ODE solution [Eq. (6) with the boundary conditions in Eq. (8)], which is an approximation to the shape of the
draining film. The top contact line, where x = 0, is pinned throughout the experiment. The solid black lines at
the interface of the liquid film labeled e–i, respectively, represent the film thickness profiles in the horizontal
direction y, which are also displayed as the solid black lines in Figs. 2(e)–2(i). The thickness of the draining
film along the centerline (dashed black line) of the substrate, hm(x, t ), is the focus of the measurements in the
experiments.

interferometric patterns produced in the experiments. The neighboring fringes, i.e., the black-to-
black or white-to-white fringes, indicated a difference in the film thickness of λ/(2n), where n = 1.4
is the refractive index of the silicone oil. We note that the information of the thickness variation of
the glass substrate was also included in the interferometric patterns, which was discussed in our
previous studies [26,27]. Here the glass substrates were 0.19–0.25 mm thick. According to our
interferometric imaging, the thickness variation of the glass substrates was much smaller than the
thickness variation of the thin film. Also, the gradient of the thickness variation along the substrate
was in the horizontal direction, i.e., the thickness of the substrates mostly varied in the horizontal
direction and was uniform vertically. In this study we focus on the vertical film thickness profile
along the centerline in the systematic measurements, and thus the variations associated with the
thickness of the glass substrate were negligible.

Typically, the imaging and measurements with interferometry are restricted by the field of view
of imaging, which is affected by the components of the optical setup, such as the lens and the size of
the sensor and beam splitter. For example, in our setup, the field of view of high-speed imaging was
3.8 (width)×2.9 (height) mm (800×600 pixels). In the experiments, the thin film on the substrate
translated upwards with the motorized stage. The interferometric patterns were recorded during the
vertical translation. Therefore, we were able to construct the film thickness profile over an extended
range of vertical positions by transferring the temporal imaging intensities, i.e., the interferometric
patterns during the translation, as a function of time t , to the spatial film thickness profile, as a
function of the vertical position x.

We started the vertical translation of the motorized stage at t0, where t0 is the period from the end
of the liquid deposition to the start of the translation. We denote t0 as the initial time throughout this
article. Initially, the top contact line was right at the bottom of the field of view. At the initial time
t0, the motorized stage starts to translate upwards with a constant speed v = 1 mm/s (calibrated),
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FIG. 2. Interferometric patterns and measurements of a draining liquid film. The viscosity of the liquid
is μ = 102 mPa s, the initial time is t0 = 8 min, and the width of the glass slide is w = 4.03 mm. (a)–(d)
The interferometric patterns of the draining liquid film with ranges of the vertical position (a) x = 0–0.9, (b)
0.9–1.8, (c) 1.8–2.7, and (d) 2.7–3.6 cm, respectively. The dashed red lines represent the centerline of the liquid
film where y = 0. (e)–(i) The horizontal thickness profile of the liquid film normalized by Jeffreys’ solution,
h/hJ , as a function of the normalized horizontal position y/w, at the vertical positions (e) x = 0.25, (f) 0.5,
(g) 1, (h) 2, and (i) 3 cm. These vertical positions are also marked as horizontal dashed yellow lines in the
interferometric patterns (a)–(d). The blue circles denote the film thickness profile measured by interferometry,
and the solid black lines denote the model predictions based on the ODE (6) with the boundary conditions
(8). At small vertical positions x, the experimental measurements slightly deviate from the model predictions.
This difference is due to (1) the fact that the top contact line is not perfectly flat in the experiments and (2) the
surface tension effect from the top contact line that will be discussed in Sec. III D but is not considered in the
model here.

where the stage accelerated to this constant speed v within 0.1 s; the acceleration did not affect
the draining of the thin film since the acceleration of the motorized stage was still much less than
the gravitational acceleration. While the liquid film was translated upwards, interferometric image
sequences were captured by the high-speed camera with a frame rate of 100 frames per second
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(fps). To construct the interferometric patterns of the liquid film, we focus on recording the intensity
profile on a fixed horizontal line in the field of view. Specifically, this horizontal line was 25 pixels
higher than the bottom line of the field of view; see the gray line in Supplemental Movie 1 [28].
While the liquid film was translating upwards, the horizontal line was scanned vertically through the
draining film. In the data processing, the temporal intensity profile on the line as a function of time
t was converted to the spatial interferometric patterns of the thin film as a function of the vertical
position x. The vertical position x was linear with the time t since the speed of the translation v was
constant.

Typical interferometric patterns recorded using the above procedures are shown in Figs. 2(a)–2(d)
and 6(a)–6(d) (in Appendix B); Supplemental Movie 1 [28] is an example of the recorded field of
view while the motorized stage translated upwards. With this translation, we were able to capture the
features of the draining film on the glass substrates over an extended range in the vertical direction,
e.g., up to O(102) mm in our setup, compared to 3 mm, which is the height of the field of view.
We note that the film drained continuously during the vertical translation, and the interferometric
patterns produced throughout the vertical scanning indicated the film thickness profile h(x, y, t ),
which is then presented and compared with Jeffreys’ solution hJ (x, t ) in Sec. III.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

In Secs. III A and III B, we focus on experimentally estimating the thickness profile of the drain-
ing liquid film on a narrow, vertical substrate in the horizontal and vertical directions, respectively.
In Secs. III C and III D, we focus on modeling the surface tension effects on the draining film from
the vertical edges and top contact line, respectively. Finally, in Sec. III E we present the experimental
results by spanning a large parameter space and show the agreement between our measurements and
scaling arguments.

A. Horizontal thickness profile of the draining film

A schematic of the thin film configuration is shown in Fig. 1(b). The liquid film rests on a
vertical glass slide of width w. The top contact line of the liquid film is horizontal and is pinned
throughout the experiment. We denote x as the vertical position in the direction of gravity, while
x = 0 is the position of the top contact line. Also, we denote y as the horizontal position, where
y = 0 represents the vertical centerline of the liquid film and y = ±w/2 represent the two vertical
edges of a substrate. In this section we document the horizontal thickness profile of the liquid film
at a constant x, e.g., the solid black lines at the interface of the liquid film in Fig. 1(b).

Typical interferometric patterns of a draining thin film on a vertical, narrow glass slide are
presented in Figs. 2(a)–2(d); see the movie of the field of view during the vertical translation in
Supplemental Movie 1 [28]. The two vertical edges of the glass slide are approximately at the
left and right sides of the image. The interferometric patterns show the variation of the horizontal
thickness profile of the liquid film as the vertical position x increases. Near the top contact line
[Fig. 2(a), x = 0 to 0.25 cm], the interferometric fringes near the middle are mostly straight
horizontal lines, which indicates that the liquid film is uniform horizontally away from the vertical
edges and the film thickness increases with x. Away from the top contact line (increasing x), the
fringes are no longer straight horizontal lines, which indicates that the film thickness near the middle
of the liquid film varies horizontally, because of surface tension, as a consequence of the existence
of the two vertical edges; the thickness of the film changes rapidly near the edges. Over much of the
film, the fringes are dense and approximately vertical near the vertical edges, which indicates that
the gradient of the film thickness is large and primarily in the horizontal direction. With increasing x,
the vertical fringes are observed to be denser, and the region of the vertical fringes expands towards
the centerline of the thin film, which also indicates that the influence of the two edges is more
significant at large vertical positions.
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To further analyze the structure of the liquid film, the interferometric patterns are processed to
determine the film thickness profile. The film thickness h = 0 at the top contact line. The absolute
film thickness profile is constructed by processing the interferometric patterns from the contact line,
e.g., counting the number of fringes. The constructed thickness profile h in the horizontal direction
(as a function of y) for different vertical positions x is shown in Figs. 2(e)–2(i). The thickness profile
is normalized by Jeffreys’ solution [Eq. (2)], which is the thickness of the draining film on a vertical
plate with infinite width (at the same time t and the same vertical position x as the measurement).
We observe that the gradient of the film thickness is large near the edges. Close to the top contact
line, the horizontal thickness profile shows two peaks [Fig. 2(e)]. From the edge to the centerline of
the film, the thickness increases and then decreases to Jeffreys’ solution hJ , which is very similar
to the feature of the draining film near a single, vertical edge, reported in our previous study [26].
The measurement shows that for small x, the effect from the other edge is negligible. In contrast,
away from the top contact line, the two peaks merge in the middle, and the thickness profile has a
plateau-like shape [Fig. 2(f)]. For further increasing x, the plateau-like shape narrows [Fig. 2(g)],
and then the thickness profile becomes approximately quartic [Figs. 2(g) and 2(h)]. At large vertical
position x, the thickness profile remains approximately quartic until the motorized stage reaches the
end and stops; see Fig. 6 in Appendix B. In Appendix C we discuss the quartic function that can
approximate the film shape.

Away from the top contact line, the horizontal thin film shape transits from a plateau-like shape
with two visible peaks [Fig. 2(e)] to an approximately quartic shape [Fig. 2(i)]. This change of
the shapes along the direction of drainage highlights the propagation of the boundary of the edge-
affected region towards the centerline. The transition of the film shape as a function of the vertical
position x also brings to mind capillary leveling of a rectangular trench in a viscous film as a function
of time [29], though the governing equations are different.

B. Vertical thickness profile of the draining film

The horizontal film thickness profile is complex but symmetric about the centerline; e.g., see
the vertical dashed red lines marked in Figs. 2(a)–2(d). The thickness at the centerline of the liquid
film, hm(x, t ), is a significant parameter that describes the structure of the draining film with the two
vertical edges. We denote hm as the film center thickness. In Secs. III B and III E, we focus on the
measurements and discussion of hm.

Interferometric patterns are processed to construct the film thickness profile at the centerline
of the film, hm(x, t ). In particular, hm = 0 at the top contact line (x = 0), and hm(x, t ) during the
vertical translation is measured by counting the interferometric fringes. The vertical translation, v =
1 mm/s, starts at the initial time t = t0, when the field of view is at the top contact line, x = 0. Thus,
when the field of view is at x, the local drainage time t = x/v + t0. Therefore, our measurement of
the draining film during the vertical translation indicates hm(x, t ) = hm(x, x/v + t0).

A typical measurement of hm(x, t ) is presented as the blue circles in Fig. 3(a). Indeed, hm

increases with the vertical position x. To compare with hm, we use Jeffreys’ solution hJ [Eq. (2)],
the thickness of a draining film where there is no edge effect, i.e., the plate is infinitely wide; see the
dashed line in Fig. 3(a). Note that to compare with the measurements by interferometry, Jeffreys’
solution hJ (x, t ) in Fig. 3(a) is presented with the same drainage time t and vertical position x
as hm(x, t ). In particular, hJ (x, t = x/v + t0) = [ μx

ρg(x/v+t0 ) ]
1/2. As a result of the comparison, near

the top contact line, the film center thickness is close to Jeffreys’ solution [Fig. 3(a), x � 1 cm].
However, away from the top contact line, the film center thickness hm deviates from and is larger
than the prediction based on Jeffreys’ solution [Fig. 3(a), x � 1 cm]. This deviation is due to the
surface tension effects from the vertical edges: while x increases, the boundary of the edge-affected
region propagates towards the centerline. The horizontal film shape transits from a flat plateau-like
shape to an approximately quartic shape [the insets in Fig. 3(b)], and the measurements of hm

deviate from Jeffreys’ solution. In Sec. III C we will focus on analyzing the vertical length scale
that describes the propagation of the edge effects towards the centerline.
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FIG. 3. The film thickness profile at the centerline of the liquid film. The experiment is the same as
displayed in Fig. 2. (a) The film thickness at the centerline, hm, as a function of the vertical position x.
The markers labeled e–i denote the vertical positions where the film shapes are displayed in Figs. 2(e)–2(i).
(b) The film thickness at the centerline normalized by Jeffrey’s solution, hm/hJ , as a function of the normalized
vertical position x/x0, where x0 is the vertical length scale that describes the surface tension effects, given by
Eq. (7). The solid blue lines with circles, the dashed lines, and the solid gray lines represent, respectively, the
interferometric measurements, Jeffreys’ solution, and the prediction based on the ODE solution [Eq. (6) with
the boundary conditions in Eq. (8)]. The insets in (b) show the horizontal film thickness profile, h/hJ as a
function of y/w, according to the solution of the ODE (6) with the boundary conditions in Eq. (8).

C. Modeling and approximation by the self-similarity scaling argument

In this section we focus on developing a scaling argument for the draining liquid film on a vertical
substrate of width w. The schematic of the model is shown in Fig. 1(b). We start with standard
thin-film analysis. We are interested in the regime where the vertical edges affect the thickness
profile of the thin film. In this regime, the gradient of the film thickness profile is mostly in the
horizontal direction, i.e., |∂/∂y| � |∂/∂x|. The thickness profile of the liquid film h(x, y, t ) satisfies
[17–20,26]

3μ
∂h

∂t
= −γ

∂

∂y

(
h3 ∂3h

∂y3

)
− 3ρgh2 ∂h

∂x
. (3)

The three terms in Eq. (3) are, respectively, the viscous, surface tension, and gravitational drainage
contributions. We note that we are interested in the late-time behavior of the liquid film, when
the effect of the initial film thickness profile is negligible [11]. In our previous study [26] (also
suggested in Ref. [20]), a similarity solution was proposed based on Jeffreys’ solution, so that (in
this case y = 0 denotes the single vertical edge)

h(x, y, t ) = hJ (x, t )F (η) = (μx/ρgt )1/2F (η), (4)

where

η = (ρg)3/8t1/8y

γ 1/4μ1/8x3/8
. (5)

The exponents in Eq. (5) are fixed by the three terms in the partial differential equation (PDE) (3),
and the form of the self-similar solution in Eq. (4) utilizes the assumption that the film is described
by Jeffreys’ solution far from the edge. Boundary conditions accounting for the finite width of the
geometry would typically be expected to disallow a simple similarity solution. However, we will
show in this article that, though the boundary conditions are not perfectly satisfied, the self-similar
solution still provides a reasonable approximation that agrees with our experiments.
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Substituting Eqs. (4) and (5) into Eq. (3), the PDE becomes an ordinary differential equation
(ODE) with the form [20,26]

−F + 1

4
ηF ′ + 2

3
(F 3F ′′′)′ + F 3 − 3

4
ηF 2F ′ = 0. (6)

The similarity variable given by Eq. (5) converts the three independent variables, i.e., the vertical
position x, the horizontal position y, and the time that the film drains t , into a single variable η. The
PDE with three independent variables [Eq. (3)] is also converted to an ODE [Eq. (6)]. Equation (5)
balances the surface tension, viscous, and gravitational drainage terms, and characterizes the scale
of the boundary-layer region where the liquid film is affected by the vertical edges. We note again
that Eq. (6) does not guarantee an exact solution of the film thickness profile since the boundary
conditions of the geometry also need to specifically satisfy the self-similarity by Eq. (5), i.e., the
boundary conditions of η need to be independent of x, y, and t . In this article, in the geometry of
a vertical substrate of a narrow width, the scaling argument represented by Eq. (5) will be used to
analyze the propagation of the boundary of the edge-affected region towards the centerline.

In our previous work [26], we analyzed the surface tension effects on a draining film near a single,
vertical edge. In this scenario, the position of the vertical edge was denoted as y = 0 and the other
edge of the substrate was far away. In such a geometry, η as scaled in Eq. (5) can be interpreted as
a dimensionless scale in the horizontal direction. A small value of η (e.g., η � 1) indicates that the
position is close to the edge, and the film thickness profile varies sharply in the horizontal direction.
In contrast, a large value of η (e.g., η � 5) represents a position far away from the edge, and the film
thickness profile is uniform horizontally. A given value of η specifies the boundary of the region
where the film thickness is affected by the vertical edges.

In this article, we consider the draining film on a vertical, narrow substrate, and the distance
between the two vertical edges is w. To make an approximate argument for the propagation of
the edge effect from one vertical edge to the other, we set the horizontal position to be y = w in
Eq. (5). Also we set η = 1 in Eq. (5) as the threshold for the boundary of the edge-affected region.
According to Eq. (5), we get a vertical length scale x0 that

x0 = ρgt1/3w8/3

γ 2/3μ1/3
. (7)

Equation (7) combines the effects of surface tension, viscosity, and gravitational drainage in one
variable x0, which is an alternative vertical length scale that describes the propagation of the edge
effects due to surface tension towards the centerline. Note that y = w and η = 1 is selected so that
there is no prefactor in Eq. (7). A further discussion of other selections of y and η can be found
in Sec. III E. The estimate given by Eq. (7) is our main deduction and will be used to display and
compare our experimental results, e.g., in Figs. 3(b) and 5(b) and Figs. S2(b), S3(b), and S4(b) in
the Supplemental Material [28].

Besides the scaling argument of Eq. (7), it is also possible to make an approximate estimate of
the film thickness profile, h(x, y, t ), based on the ODE in Eq. (6). We now consider the coordinates
as shown in Fig. 1(b), where y = 0 denotes the centerline of the liquid film, and the boundary
conditions for our problem are h = 0 at y = ±w/2, i.e., the film thickness is zero at the two vertical
edges. The other two boundary conditions could be, e.g., the contact angles at the two edges. Our
previous work showed that setting the contact angle at the edge to zero gives a reasonable estimate
of the film thickness profile [26]. A different selection of the contact property would lead to a minor
difference in the thickness profile of the macroscopic film. For the symmetry of the configuration
we also set ∂h/∂y = 0 at y = ±w/2. The corresponding boundary conditions for the ODE [Eq. (6)]
are

F = 0 and F ′ = 0, at η = ±η0, (8)

where η0 = 1
2

(ρg)3/8t1/8w

γ 1/4μ1/8x3/8 = 1
2 ( x

x0
)−3/8 and represents the dimensionless position of the two edges;

Eq. (8) satisfies the symmetry condition at y = 0 = η.
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We note that the dimensionless position of the boundary η0 is a function of x and t and is not
a constant. Therefore, given the boundary conditions in our problem, the ODE [Eq. (6)] and the
corresponding boundary conditions [Eq. (8)] do not provide an exact self-similar solution for the
film thickness profile h(x, y, t ), since the nonconstant boundary conditions violate the self-similarity
as a horizontal length scale w is introduced into the problem. However, the solution of the ODE
[Eq. (6)] with the boundary conditions [Eq. (8)] potentially provides an approximate estimate of
the structure of the liquid film and will be used to compare with our experimental results, e.g., in
Figs. 3(b) and 5(b) and Figs. S2(b), S3(b), and S4(b) [28]. Solving the thin-film equation is not the
focus of this article, but fully solving the PDE [Eq. (3)] numerically and the examination of the film
thickness profile near the vertical edges could be interesting topics for future investigations.

We use the MATLAB BVP (boundary value problems) solver bvp5c to solve the ODE [Eq. (6)].
Similar to our previous work [26], we set the boundary conditions as F (±η0) = 10−4 to avoid
singularities at the edges and F ′(±η0) = 0. As a detail of the setup of the numerical solver, we
restrict the maximum number of mesh points to be less than 2×105 and the relative error to be
less than 10−6. We input an initial guess solution to start the numerical solving as F = F ′ = F ′′ =
F ′′′ = 1 in the interval [−η0, η0]. We change the value of η0 to get different structures of the film
thickness [note that F (η) ≡ h/hJ ], to compare with the experimental measurements at different
vertical positions x.

Typical results of the ODE solution [Eq. (6)] are displayed as the solid black lines in
Figs. 2(e)–2(i) and 6(e)–6(i) (in Appendix B). The numerical solution agrees with our experimental
measurements of the horizontal film thickness profile. Near the top contact line, x/x0 is small so that
η0 is large. A large value of η0 indicates that the liquid film near the middle is away from the surface
tension effects from the edges. The film thickness profile resembles a plateau-like shape with two
visible peaks [Fig. 2(e)]. In contrast, away from the top contact line, x/x0 is large so that η0 is small.
A small value of η0 indicates that the liquid film is affected by the existence of the vertical edges. The
film thickness profile remains an approximately quartic shape for large x/x0 [Figs. 6(e)–6(i)]. It is
interesting to note that though the use of similarity solution in this article introduces an inconsistency
of the applied boundary conditions [Eq. (8)], the similarity approximation still agrees with the
experimental measurements. This bears some resemblance to the use of a similarity solution for
cornered drops, where the boundary conditions are not perfectly satisfied but can be complemented
with the boundary-layer-like structure near the contact line [30,31].

To compare with our experimental measurements of the film thickness profile at the vertical
centerline hm, we solve the ODE [Eq. (6)] and calculate the film thickness at the center, where
η = 0 [note that F (0) = hm/hJ ], with different input values of η0 [note that η0 = 1

2 (x/x0)−3/8]. We
then display the normalized film center thickness, hm/hJ , as a function of the normalized vertical
position, x/x0, together with our experimental results; see the solid gray lines in Fig. 3(b). hm/hJ

is the ratio of the center film thickness to the prediction based on Jeffreys’ solution, which is the
film thickness where there is no effect from the edges, e.g., the vertical substrate is infinitely wide.
This ratio hm/hJ highlights the surface tension effects from the edges. hm/hJ increases away from
the top contact line, as x/x0 increases. The ratio then remains approximately constant, hm/hJ ≈ 1.2,
for x/x0 � 0.05, while the horizontal thickness profile of the liquid film remains approximately
quartic. However, close to the top contact line, hm/hJ is observed to be less than unity and is due to
the surface tension effect from the top contact line. This edge effect from the top contact line will
be discussed next in Sec. III D.

D. Measurement of the film thickness near the top contact line

To analyze the edge effect from the top contact line of the draining film, we performed
experiments on wide glass substrates. The width of the substrates is w ≈ 47.5 mm. The corre-
sponding vertical length scale where the film center thickness is affected by the vertical edges is
x0 = O(104) mm. Therefore, near the middle of the wide substrates the film shapes are not affected
by the vertical edges. We changed the viscosities of the silicone oils μ from 20.8 to 1081 mPa s,
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FIG. 4. The normalized film thickness profile at the centerline of the liquid film, hm/hJ , while the substrates
are wide (w = 47.5 mm). The viscosities of the liquid are μ = 20.8 (squares), 51.5 (diamonds), 102 (circles),
540 (upward-pointing triangles), and 1081 (downward-pointing triangles) mPa s, respectively. The color bar
indicates the drainage time t (note the logarithmic scale). (a) hm/hJ as a function of the vertical position x.
The inset is a close-up view of hm/hJ near the top contact line (where x � 0.5 cm and is small). (b) hm/hJ as
a function of the dimensionless vertical position ξ , which represents the edge effect caused by the top contact
line. The dashed black line, the dashed gray line, and the solid gray line, respectively, represent Jeffreys’
solution [Eq. (2)], Tanner’s correction [Eq. (13)], and the ODE solution [Eq. (12)]. For the best presentation of
the result, the density of the data is diluted, i.e., the number of the data points on each line presented is reduced
by a factor of five. A full display of the data set is provided in Fig. S1 [28].

and the initial time t0 (when the vertical translation starts) from 1 to 60 min; see the list of the
experiments performed in Table I below.

Figure 4 shows the film center thickness measurements, hm(x, t ), on vertical, wide substrates. To
compare with Jeffreys’ solution hJ , we take the ratio hm/hJ and display this ratio as a function of
the vertical position x; see Fig. 4(a). Away from the top contact line (e.g., x � 2 cm), the film center
thickness hm is close to the prediction given by Jeffreys’ solution hJ . We note that the ratio hm/hJ

at large x is not identical to unity due to the experimental errors such as the vertical variation of the
thickness of the substrate (the result is sensitive to the noise in the experiments since we take the
ratio of experimental signals). In contrast, near the top contact line [e.g., x � 0.2 cm in the inset of
Fig. 4(a)], the film center thickness hm deviates from Jeffreys’ solution. The ratio hm/hJ decreases
significantly when approaching the top contact line, x = 0. This deviation is due to the edge effect
from the top contact line.

We perform standard thin-film analysis to estimate the surface tension effect from the top contact
line. For simplicity, we consider the liquid film that is uniform in the horizontal direction, i.e., the
substrate is infinitely wide and the gradient on the film is only in the vertical direction. In this
scenario, we denote the thickness profile of the liquid film as hc(x, t ), to distinguish it from the film
thickness h(x, y, t ) where there is an effect from the vertical edges. Note that in our experiments,
hm(x, t ) approaches hc(x, t ) when the width w is sufficiently large. Simplifying starting with Eq. (1),
hc(x, t ) satisfies (an alternative, but similar approach, is given in Ref. [25])

3μ
∂hc

∂t
= −γ

∂

∂x

(
h3

c

∂3hc

∂x3

)
− 3ρgh2

c

∂hc

∂x
. (9)

The three terms in Eq. (9) are the viscous, surface tension, and gravitational drainage effects,
respectively. We consider the late-time behavior of the liquid film, and the effect of the initial film
thickness profile is negligible. The structure of the three terms enables a similarity solution,

hc(x, t ) = At−3/5G(Bxt1/5) = At−3/5G(ξ ), (10)
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where ξ = Bxt1/5 is an independent dimensionless similarity variable that describes the edge effect
from the top contact line. Substituting Eq. (10) into Eq. (9), we find A = γ 1/5μ3/5

(ρg)4/5 , and B = (ρg)3/5

γ 2/5μ1/5 .
Correspondingly,

ξ = (ρg)3/5t1/5x

γ 2/5μ1/5
. (11)

The PDE that describes the film thickness profile [Eq. (9)] becomes an ODE,

−9

5
G + 3

5
ξG′ + (G3G′′′)′ + 3G2G′ = 0. (12)

It is interesting to note that Eq. (12) is the same as the ODE that describes the thin film in the arrested
bubble problem, while the boundary conditions are different [32]. For the boundary conditions
here, we note that the film thickness profile is Jeffreys’ solution away from the top contact line.
The corresponding boundary conditions for G(ξ ) is G(ξ ) → ξ 1/2 at ξ → ∞, which counts as two
boundary conditions (equations for G and G′, respectively) at infinity. The third boundary condition
is G = 0 at ξ = 0, i.e., the film thickness is zero at the top contact line. The fourth boundary
condition is the contact angle at the top contact line, and we choose G′ = 0 at ξ = 0 since silicone
oil completely wets the glass substrate. With these four boundary conditions, we can solve the ODE
in Eq. (11) to achieve the film thickness profile hc(x, t ).

We use the MATLAB BVP solver bvp5c to solve Eq. (11). In particular, we solve for G(ξ ) in
the interval ξ ∈ [0, ξ0], where ξ0 is the right boundary of the domain and is selected as ξ0 = 100 for
demonstration. Note that changing ξ0 will change slightly the numerical results, but the features of
the solutions are similar. The boundary conditions for the numerics are, respectively, G(0) = 0.01
(to avoid the singularity at the contact line), G′(0) = 0, G(ξ0) = ξ

1/2
0 , and G′(ξ0) = 1

2ξ
−1/2
0 . We

restrict the maximum number of mesh points to be less than 5×104 and the relative error to be
less than 10−6. The initial guess solution is G(ξ ) = ξ 1/2 in the interval [0, ξ0]. As a detail of the
numerics, we note that projecting the interval [0, ξ0] to [0, 1] (by setting ξ ∗ = ξ/ξ0) will stabilize
the numerical solving, but the ODE in Eq. (12) and the corresponding boundary conditions need to
be rescaled by ξ ∗ accordingly.

The numerical solution of Eq. (12) is shown as the solid gray line in Fig. 4(b). In the experiments,
the width of the substrate w is sufficiently large so that our measurement of the film thickness in
the middle hm(x, t ) indicates hc(x, t ). Therefore, we merge the notations hm(x, t ) and hc(x, t ) in
the comparison with the experiments. In particular, we present the ratio of the film thickness to
the prediction by Jeffreys’ solution, hm/hJ , as a function of the independent self-similar variable
ξ , which describes the edge effect by the top contact line. We note that Tanner also proposed a
correction to the film thickness profile near the top contact line [25], which can be expressed in our
notations as

(hm/hJ )2 + k
(hm/hJ )1/3

ξ 5/6
= 1, (13)

where k ≈ 0.455 is a constant that is calculated by the numerical computation in Ref. [25]. Tanner’s
correction is derived mainly using an asymptotic approach and is displayed as the dashed gray line
in Fig. 4(b). As a result, both Tanner’s correction and our solution of the ODE (12) predict the
deviation of the film thickness profile from Jeffreys’ solution, near the top contact line. Our ODE
solution is slightly closer to the experimental measurements since it is directly the similarity solution
of the thin-film equation [Eq. (9)]. Further, we note that Figs. 4(a) and 4(b) are similar due to the
fact that the power of t is much smaller than the power of x in the expression of ξ . The spread of the
measured hm/hJ at small ξ is due to experimental error, such as the top contact line is not perfectly
horizontal, though the differences are negligible away from the top contact line.
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FIG. 5. The normalized film thickness profile at the centerline of the liquid film, hm/hJ . The width of the
substrate w varies from 2 to 47.5 mm. The viscosities of the liquid are μ = 20.8 (squares), 51.5 (diamonds),
102 (circles), 540 (upward-pointing triangles), and 1081 (downward-pointing triangles) mPa s, respectively.
The color bar indicates the vertical length scale x0 by Eq. (7) (note the logarithmic scale). (a) hm/hJ as a function
of the vertical position x. (b) hm/hJ as a function of the normalized vertical position x/x0. The dashed black
line represents Jeffreys’ solution, and the solid gray line represents the ODE solution (6) with the boundary
conditions Eq. (8). For the best presentation of the result, only a potion of the data is displayed, i.e., only the
result of the experiments with the shortest initial time t0 in each trial is displayed; see the description in Table I
below. Also, the number of the data points on each line presented is reduced by a factor of five. A full display
of the data set is in Fig. S4 [28].

E. Measurement of the film thickness at the centerline

In this section we focus on demonstrating the thickness profile of the liquid film along the
vertical centerline with the effect of the vertical edges. To achieve a large parameter space in the
experiments, we use different silicone oils to tune the viscosities μ from 20.8 to 1081 mPa s. The
initial time t0 (when the vertical translation starts) varies from 40 to 3720 s. The widths of the
prepared glass substrates vary from 1.97 to 47.5 mm. A list of experiments performed is displayed
in Table I below. We measured the film center thickness profile hm as a function of the vertical
position x. To compare with our modeling, we normalize hm with Jeffreys’ solution hJ , which is the
film thickness profile where there are no surface tension effects from the vertical edges.

The results of the experiments are displayed in Fig. 5. Certainly, the measured hm(x, t ) varies
significantly with different μ, t , and w [Fig. 5(a)]. A decrease in the width of the substrate w leads
to an enhancement in the edge effects to the middle: the transition of the horizontal film thickness
profile from a plateau-like shape to an approximately quartic shape occurs at a smaller vertical
position, and the ratio hm/hJ rapidly increases to approximately 1.2, where the film shape becomes
approximately quartic. On the other hand, a decrease in the viscosity μ or an increase in the time
t leads to thinner films and therefore a reduction in the surface tension effects associated with the
edges. The control experiments with different w or different μ are presented in Figs. S2 and S3 [28],
respectively. All the experimental data are presented in Fig. S4 [28].

The scaling law (7) shows a vertical length scale that quantifies the edge effects to the middle of
the liquid film. x0 combines the effects of the surface tension, viscosity, and gravitational drainage,
increases with w or t , and decreases with μ. Larger values of x0 indicate weaker edge effects, and
the film thickness profile remains close to Jeffreys’ solution for longer vertical distance before it
becomes approximately quartic; see the shift from the blue data points to the red data points in
Fig. 5(a). Note that the red data points in Fig. 5(a) are similar to Jeffreys’ solution since the width
w is large, but we expect these ratios hm/hJ to rise to approximately 1.2 where x is sufficiently long
(e.g., one meter).
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Though the ratio hm/hJ as a function of x spreads significantly with different w, t , and μ, by
normalizing the vertical position x by the vertical length scale x0 [Eq. (7)], the results approximately
collapse and agree with the approximation based on the ODE solution [Eq. (6) with the boundary
conditions in Eq. (8)]; see Fig. 5(b). The upper limit of x is approximately 8 cm in the experiments,
and thus, the results with large x0 are in the region of small x/x0 in Fig. 5(b). For example, the
red data points [x0 = O(10) m] are in the region where x/x0 � 0.01 in Fig. 5(b). We note that the
data do not tightly collapse to a single curve due to the experimental errors, such as (1) the edge
effect from the top contact line, which is discussed in Sec. III D, (2) the variation of the substrate
thickness in the vertical direction, and (3) the nonuniformity of the contact, or wetting, properties at
the vertical edges. Slight local dewetting might occur at the edges.

As x/x0 increases, the horizontal film shape transits from a plateau-like shape to an approxi-
mately quartic shape, and the ratio hm/hJ increases to approximately 1.2. The film shape remains
approximately quartic for x/x0 � 0.05. Inspired by Ref. [20], an estimate of the shape of the steady
approximately quartic shape is made in Appendix C. On the other hand, we note that the draining
film is a thin film throughout the experiments, i.e., h � w. However, when the narrow substrate is
sufficiently long, e.g., x = O(10) m, h increases with the vertical distance and approaches w, the
thin-film analysis breaks down, and we expect the ratio hm/hJ to decrease to less than unity.

Finally, we note that the transition of the film shape is expected to occur at x/x0 ≈ 0.02 [e.g.,
Fig. 5(b)], which is much less than unity. This small value of x/x0 is due to the selection of the
scales in our scaling argument [Eq. (7)]. In practice, if we select y = w/2, which is the distance
between the vertical edge and the center, and η = 2, where we reported in our previous work [26]
that the film shape reaches a peak at η ≈ 2, the scaling of the vertical length becomes

x∗
0 = 1

216/3

ρgt1/3w8/3

γ 2/3μ1/3
= x0

216/3
≈ x0

40
≈ 0.02x0. (14)

The length scale x∗
0 is a more practical presentation of the length scale that describes the vertical edge

effects on the liquid film for drainage on a vertical, narrow substrate. The middle of the liquid film
is affected by the edges, and the horizontal film thickness profile becomes approximately quartic
where x/x∗

0 � 1.

IV. CONCLUSIONS

In this article, we characterized the thickness profile of a draining film on a vertical, narrow
substrate. Silicone oils with different viscosities and glass substrates with different widths were used
in the experiments. A motorized stage was used to translate the liquid film on the glass substrate
vertically, and the thickness profile of the draining film was measured with interferometry, over an
extended range [O(102) mm] in the vertical direction. The interferometric measurements indicated
that, away from the top contact line, the overall film thickness profile is affected from the edges
by surface tension. As the vertical position x increases, the film thickness profile in the horizontal
direction transits from a plateau-like shape with two visible peaks to an approximately quartic shape,
and the structure of the approximately quartic shape remains constant for large x. Though affected
by the vertical edges, the thickness of the liquid film still scales with Jeffreys’ solution. Away from
the top contact line, the ratio of the film center thickness hm to the prediction of Jeffreys’ solution
increases to approximately 1.2 and then remains approximately constant. Further, scaling arguments
were made to analyze (1) the propagation of the region where surface tension is important, from the
vertical edges to the centerline of the liquid film and (2) the surface tension effect on the liquid
film near the top contact line. Vertical length scales which respectively represent the edge effects
from the vertical edges and the top contact line were proposed and demonstrated. As a result, we
find good agreements between the experimental measurements and our scaling arguments. Looking
forward, the construction of a numerical simulation to fully solve the thin-film equation to examine
the asymptotic limit of the self-similar approximation and the analysis of the contact, or wetting,
properties at the edges remain topics for future investigations.
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APPENDIX A: CONDITIONS OF THE EXPERIMENTS

Table I displays all of the experimental conditions presented in this study. The table respectively
displays the series (no.) of the glass substrate, the measured width of the top end of the substrate
wtop, the measured width of the bottom end of the substrate wbot, the mean width of the glass
substrate w [= (wtop + wbot )/2], the viscosity of the liquid μ, the series of the trial, i.e., the number
of times that the silicone oil was injected on the same glass substrate, and the initial time t0 when
the experiment starts and the glass substrate starts to translate upwards.

APPENDIX B: INTERFEROMETRIC PATTERNS OF THE DRAINING FILM (EXTENDED)

Figure 6 shows the interferometric patterns and the measurements of the draining film over an
extended vertical position. Figure 6 is an extended version of Fig. 2. The vertical positions are
x = 3.6–8.4 cm. For large values of the vertical position x, the interferometric patterns are similar to
each other, and the film thickness profile in the horizontal direction remains approximately quartic.

APPENDIX C: THE APPROXIMATELY QUARTIC SHAPE OF THE DRAINING FILM

Here we attempt to model the steady approximately quartic shape of the draining film in the
horizontal direction, at large x/x0. We start from the standard thin-film equation [Eq. (3)]. We seek
the solution of the film thickness profile, h(x, y, t ), based on Jeffreys’ solution. The film thickness
profile is

h(x, y, t ) = hJ (x, t )H (x, y, t ) = (μx/ρgt )1/2H (x, y, t ). (C1)

Substituting Eq. (C1) into Eq. (3), we get that

−3

2
H + 3t

∂H

∂t
= − γμ1/2x3/2

(ρg)3/2t1/2

∂

∂y

(
H3 ∂3H

∂y3

)
− 3H2

(
1

2
H + x

∂H

∂x

)
. (C2)

In our experimental observations, away from the top contact line, the film thickness profile in the
horizontal direction remains the same as an approximately quartic shape, i.e., H does not change
with x or t . This observation indicates that the terms ∂H/∂x and ∂H/∂t are negligible. Also, we set
Y = y/w for simpler presentations. Equation (C2) then becomes

−H + H3 + 2

3

γμ1/2x3/2

(ρg)3/2t1/2w4

∂

∂Y

(
H3 ∂3H

∂Y 3

)
= 0. (C3)

We are interested in the film thickness structure H in the horizontal direction, H (Y ). To estimate
H (Y ), we collect the terms of H (Y ) in the Taylor’s series near Y = 0; note that H (Y ) is an even
function. In particular, we set H (y) to be quartic,

H (y) = a − bY 2 − cY 4, (C4)

where a, b, c are constants, which can be a function of x or t but are independent on Y . The boundary
conditions are H = 0 at Y = ± 1

2 , i.e., the film thickness is zero at the edges, where y = ± 1
2w. We

do not yet set the contact properties at the edges due to the fact that we have only three degrees
of freedom (a, b, and c) in the expansion. Also, for simplicity of the expression, we denote that
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TABLE I. The conditions of the experiments. The experiments with substrates no. 6, 9, 22, 26, and 29 are
processed to construct Figs. 4 and S1 [28]. The experiments with substrates no. 1–29 (only with the initial time
t0 set in boldface) are processed to construct Fig. 5. The experiments with substrates no. 10–22 are processed to
construct Fig. S2 [28]. The experiments with substrates no. 1–5, 7, 8, 14, 16, 23–25, 27, and 28 are processed
to construct Fig. S3 [28]. All the results from the experiments are used to construct Fig. S4 [28].

Substrate no. wtop [mm] wbot [mm] w [mm] μ [mPa s] Trial no. t0 [s]

1 3.24 3.36 3.30 20.8 1 45
2 3.82 3.92 3.87 20.8 1 60

2 60
3 4.14 4.28 4.21 20.8 1 40
4 5.70 5.88 5.79 20.8 1 60
5 5.76 5.84 5.80 20.8 1 40; 300; 600; 1200

2 300; 600
6 ∼47.5 ∼47.5 ∼47.5 20.8 1 60; 360; 900

2 60; 360; 900
7 4.06 4.06 4.06 51.5 1 90

2 60
8 6.10 6.12 6.11 51.5 1 62

2 61
9 ∼47.5 ∼47.5 ∼47.5 51.5 1 64; 361

2 60; 362; 662
10 1.94 2.00 1.97 102 1 120; 480; 900

2 120; 480; 900
11 2.26 2.30 2.28 102 1 120; 480; 900
12 2.54 2.48 2.51 102 1 125
13 3.22 3.38 3.30 102 1 120; 480; 900

2 120; 480; 900
14 4.04 4.02 4.03 102 1 120; 480; 900

2 120; 480; 900
15 5.12 5.12 5.12 102 1 120; 480; 900

2 120; 480; 900
16 6.08 6.26 6.17 102 1 120; 480; 900

2 128; 480; 900
17 8.36 8.66 8.51 102 1 480; 900
18 11.46 11.88 11.67 102 1 120; 480; 900
19 14.98 14.90 14.94 102 1 120; 480; 900

2 120; 480; 900
20 20.44 20.18 20.31 102 1 162; 480; 900

2 120; 480; 900
21 30.30 31.00 30.65 102 1 120; 480; 900

2 120; 480; 900
22 ∼47.5 ∼47.5 ∼47.5 102 1 120; 480; 900

2 120; 480; 900
23 3.16 3.24 3.20 540 1 300; 1200

2 300; 1800; 3720
24 3.60 3.54 3.57 540 1 360
25 6.04 6.08 6.06 540 1 300; 1200; 3600

2 300; 1200; 3630
26 ∼47.5 ∼47.5 ∼47.5 540 1 300; 1200; 3600

2 300; 1200; 3720
27 4.10 4.18 4.14 1081 1 600; 1200; 3600

2 632; 1200; 3600
28 7.16 7.16 7.16 1081 1 610; 1200; 3600

2 600; 1220; 3600
29 ∼47.5 ∼47.5 ∼47.5 1081 1 600; 1200; 3600

2 600; 1200; 3610
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FIG. 6. Interferometric patterns and measurements of the draining liquid film. This figure is an extended
version of Fig. 2, and the vertical positions are x = 3.6–8.4 cm. The viscosity of the liquid is μ = 102 mPa s,
the initial time is t0 = 8 min, and the width of the glass slide is w = 4.03 mm. (a)–(d) The interferometric
patterns of the draining liquid film with ranges of the vertical position (a) x = 3.6–4.8, (b) 4.8–6, (c) 6–7.2,
and (d) 7.2–8.4 cm, respectively. The dashed red lines represent the centerline of the liquid film where y = 0.
(e)–(i) The normalized horizontal thickness profile of the liquid film, h/hJ , as a function of the normalized
horizontal position y/w, at the vertical positions (e) x = 4, (f) 5, (g) 6, (h) 7, and (i) 8 cm. These vertical
positions are also marked as the horizontal dashed yellow lines in the interferometric patterns (a)–(d). The blue
circles denote the film thickness profile measured by interferometry, and the solid black lines denote the model
predictions based on the ODE (6) with the boundary conditions (8).
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K = γμ1/2x3/2

(ρg)3/2t1/2w4 = ( x
x0

)3/2. Substituting Eq. (C4) in Eq. (C2), we can collect the leading-order terms
that

y0 : − a + a3 − 16Ka3c = 0, (C5a)

y2 : b − 3a2b + 144Ka2bc = 0. (C5b)

The boundary condition indicates that

a − 1

4
b − 1

16
c = 0. (C6)

As a result, the solution of Eqs. (C5) and (C6) is

a = 2√
3
, (C7a)

b =2048
√

3K − 3

768K
, (C7b)

c = 1

64K
. (C7c)

Equations (C4) and (C7) give an estimate of the horizontal quartic profile of the liquid film
thickness, away from the top contact line. We note that H (0) = a = 2/

√
3 ≈ 1.155 and is similar

to the observation in the experiments that hm/hJ ≈ 1.2 for large x/x0 (note that H ≡ hm/hJ ).
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