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Variational formulation of resolvent analysis
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The conceptual picture underlying resolvent analysis is that the nonlinear term in the
Navier-Stokes equations acts as an intrinsic forcing to the linear dynamics, a description
inspired by control theory. The inverse of the linear operator, defined as the resolvent, is
interpreted as a transfer function between the forcing and the velocity response. From
a theoretical point of view this is an attractive approach since it allows for the vast
mathematical machinery of control theory to be brought to bear on the problem. However,
from a practical point of view, this is not always advantageous. The inversion of the linear
operator inherent in the control theoretic definition obscures the physical interpretation
of the governing equations and is prohibitive to analytical manipulation, and for large
systems it leads to significant computational cost and memory requirements. In this
work we suggest an alternative, inverse-free, definition of the resolvent basis based on
an extension of the Courant–Fischer–Weyl min-max principle in which resolvent modes
are defined as stationary points of a constrained variational problem. This definition leads
to a straightforward approach to approximate the resolvent (response) modes of complex
flows as expansions in any arbitrary basis. The proposed method avoids matrix inversions
and requires only the spectral decomposition of a matrix of significantly reduced size
as compared to the original system. To illustrate this method and the advantages of the
variational formulation we present three examples. First, we consider streamwise constant
fluctuations in turbulent channel flow where an asymptotic analysis allows us to derive
closed form expressions for the optimal resolvent mode. Second, to illustrate the cost-
saving potential and investigate the limits of the proposed method, we apply our method to
both a two-dimensional, three-component equilibrium solution in Couette flow and, finally,
to a streamwise developing turbulent boundary layer. For these larger systems we achieve
a model reduction of up to two orders of magnitude. Such savings have the potential to
open up RA to the investigation of larger domains and more complex flow configurations.

DOI: 10.1103/PhysRevFluids.7.013905

I. INTRODUCTION

Resolvent analysis (RA) can be used to give insight into the forced response of a linearized
dynamical system. This concept was introduced by Trefethen et al. [1] and Jovanović and Bamieh
[2] who considered the stability and amplification of linearly stable flows to external forcing. These
ideas were later applied to turbulent flows by McKeon and Sharma [3] who interpreted the nonlinear
term in the Navier-Stokes equations (NSE) as a forcing to the linearized system. The conceptual
framework of RA is inspired by control theory (CT), such that the resolvent operator, the inverse
of the linearized operator, is interpreted as a transfer function from the forcing to the response.
A singular value decomposition (SVD) of the discretized resolvent operator provides two distinct
orthonormal bases (left and right singular modes) for both the response and the forcing, ordered by a
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set of gains (singular values) which quantify the linear amplification of the system. This CT-inspired
framework has proven theoretically useful since it is conceptually straightforward and benefits from
years of established mathematical machinery. However, from a practical point of view, the reliance
on the inversion of the linear operator poses some difficulties. It obscures the analytical tractability
of the equations and is computationally costly for all but the simplest systems.

Early studies using RA were largely focused on wall-bounded shear flows with only a single
nonhomogeneous spatial dimension for which the computational cost of the inversion and SVD of
the operator is trivial [2–6]. In these cases, linearly amplified length scales identified by RA were
found to correlate with the energetically active scales observed in experiments and simulations,
and the corresponding resolvent modes capture the qualitative features of the coherent structures
observed in wall turbulence [7]. In particular, resolvent modes have been found to exhibit the
self-similar behavior characteristic of the attached eddy hypothesis proposed by Townsend [5,8,9].
Towne et al. [10] have elaborated the assumptions under which resolvent response modes correlate
with spectral proper orthogonal decomposition (SPOD) modes computed from data, illustrating that
RA can predict coherent structure in the full flow field. More recently RA has also been extended to
2D flows such as boundary layers [11,12], the flow behind bluff bodies [13,14], exact coherent states
(ECS) [15], and turbulent jets [16,17]. In particular, modal analysis techniques including RA have
been used by a variety of authors to implement flow control strategies, for example, to suppress
vortex shedding [18], and delay flow separation [19]. For these 2D flows the computational cost
and memory requirements becomes considerable and thus the further extension to 3D flows has
generally remained limited.

The community has endeavoured to address these computational challenges through innovation
in novel methods of estimating resolvent modes. One area of research has been in so called
“matrix-free” methods such as the work of Martini et al. [20] who use the transient and steady
state responses of the periodically forced linearized system and its corresponding adjoint system
to estimate the action of the resolvent operator. Another avenue of investigation inspired by the
field of data analysis has been in “equation-free” methods such as Herrmann et al. [21] who use
dynamic mode decomposition (DMD) modes to estimate the linear dynamics of a system from a
time series of data. Others have made use of iterative Arnoldi Algorithms that replace the cost of
calculating the SVD and a matrix inverse with the cost of an LU decomposition and a few matrix
multiplications [11,16]. Furthermore, algorithms such as randomized SVD and others have made it
possible to efficiently and accurately compute singular modes of data sets that would otherwise be
prohibitively expensive [5,22–25].

The previously cited research has focused on the CT interpretation of RA and the SVD-based
definition of resolvent modes. In this work we take an alternative approach and propose an equiva-
lent definition based on an extension of the Courant–Fischer–Weyl min-max principle (CFL). The
CFL principle itself and the concept of an optimal forcing and maximum gain are well understood
and have been used extensively by a wide range of authors. For example, Dawson and McKeon [26]
derived analytical models of the optimal resolvent mode in wall-bounded shear flows, Monokrousos
et al. [27] and Garnaud et al. [28] investigated the optimal forcing structure in a Blasius boundary
layer and incompressible jets, respectively, and Towne [29] computed data-driven resolvent modes
in the context of turbulent jets. Here we present an explicit extension from the CFL principle, to
what we coin “variational resolvent analysis” (VRA), which constitutes an alternative definition of
the resolvent basis that includes all modes.

This variational definition is based on the solutions of the Euler-Lagrange equations associated
with the constrained variation of the operator norm of the linearized dynamics. Critically, this
definition does not involve the inversion of any operator, which is useful from both a theoretical
and practical sense. The inversion of large matrices is both costly and obscures the intuitive
interpretation of the underlying linear differential operator. The extension of the CFL principle to
include all resolvent modes was used by Sipp and Marquet [11] who defined the resolvent forcing
modes as the solutions to a generalized Eigenvalue problem, the current work builds on their results
by additionally avoiding the inversion of the linear operator and the need for any adjoint equations.
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While in general the resulting Euler-Lagrange equations remain difficult to solve exactly, this
variational formulation allows for the approximation of two- or three-dimensional resolvent modes
as an expansion in any convenient basis, such as for example a much cheaper one-dimensional
resolvent basis, an analytical basis such as that described by Dawson and McKeon [26], or a
data-driven one. Further, it requires only the eigenvalue decomposition of a matrix of reduced size.
In this paper we illustrate how this variational definition is useful in both gaining physical insights
by allowing for analytical progress in simplified systems, and by reducing computational cost in
complex systems. To illustrate the former we consider the case of streamwise constant fluctuations
in wall-bounded shear flows. To investigate the latter we first perform RA around a 2D/3C exact
coherent solution, where we find that we can accurately approximate the resolvent response modes
and reduce the computational complexity by an order of magnitude. Finally, the VRA formulation
is applied to a streamwise developing turbulent boundary layer, where the near wall modes can be
predicted with a 97% reduction in computational cost using resolvent modes calculated using a 1D
mean flow.

The paper is organized as follows. In Sec. II we derive the proposed variational definition. In
Sec. III we use the variational formulation to analyze streamwise constant structures in turbulent
channel flow. In Secs. IV and V we consider RA applied to both streamwise periodic and streamwise
developing two-dimensional, three-velocity-component (2D/3C) systems to illustrate the computa-
tional cost and memory saving potential of the proposed VRA formulation. In Sec. VI we analyze
the uncertainty and potential sources of error in our method. We provide discussion of the results
and the outlook for future applications in Sec. VII and conclude in Sec. VIII.

II. MATHEMATICAL FORMULATION

Let us consider a general forced linear system

∂u
∂t

− Au = f, (1)

where A represents a spatial-linear differential operator and u(x, t ), f (x, t ) ∈ C∞. The state vari-
ables u and f are referred to as the “response” and “forcing,” respectively. We consider the temporal
Fourier transfer of Eq. (1) and define the spatiotemporal linear operator

L(ω) ≡ iωI − A (2)

as well as the resolvent operator

H(ω) ≡ L(ω)−1, (3)

which is classically interpreted as a transfer function from the forcing to the response,

u = Hf . (4)

For readability we have dropped explicit reference to the dependence on ω. An SVD of the resolvent

H =
∞∑
j=1

ψ jσ jφ
H
j (5)

results in a pair of distinct sets of basis functions for the response (ψ j ) and forcing (φ j ) and are
referred to as the resolvent “response modes” and “forcing modes,” respectively. These are ordered
by their gains σ j that are ordered in descending order, representing the jth largest linear gain
possible. Here and throughout this work superscript H denotes the Hermitian adjoint, or for discrete
matrices the conjugate transpose.
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A. A variational definition of resolvent modes

A key contribution of this work is the observation that resolvent response modes may be
equivalently defined as the stationary points, q∗, of the operator norm of L under the condition
that the argument q∗ satisfies some norm constraint. More explicitly, the resolvent modes of the
linear operator H are defined as the stationary points of the functional

J = ‖Lq‖2
a (6)

subject to the constraint

‖q‖2
b = 1. (7)

We note that in general the norms ‖x||a ≡ xH Qax and ‖x||b ≡ xH Qbx need not be the same, such as
for example in the Orr-Sommerfeld and Squire decomposition discussed in Sec. III. Following the
notation of Herrmann et al. [21] the Cholesky factorization may be used to decompose the weight
matrix

Qa = FH
a Fa. (8)

This allows a general norm to be related to the Euclidean 2 norm. In other words, we can express
any arbitrary user-defined norm as

‖x||α = ‖Fαx||2, (9)

where α is simply a label used to distinguish between different norms.
The method of Lagrange multipliers allows us to combine Eqs. (6), (7), and the definition Eq. (9)

to formulate a constrained variational problem and define a Lagrangian

L(q) = ‖FaLq||22 − σ−2‖Fbq‖2
2 = qH LH QaLq − σ−2qH Qbq. (10)

Here L and F may be either interpreted as continuous differential operators or discrete matrices.
The vanishing of the variation with respect to the conjugate state q∗ is a necessary and sufficient
condition for the stationarity of Eq. (10). The reader is referred to Appendix A for a derivation of
this property based on the work of Refs. [30,31]. The resolvent response modes of H = L−1 are
then defined as the solutions to the Euler-Lagrange equations given by

δL
δq

= LH QaLq − σ−2Qbq = 0. (11)

Equation (11) constitutes an eigenvalue problem and thus has a countably infinite set of solutions
which we index by the subscript j:

LH QaLψ j = σ−2
j Qbψ j . (12)

We have denoted the eigenvalue σ−2
j and the eigenfunctions ψ j such that the singular values and

resolvent response modes of H are given by σ j and ψ j , respectively. The resolvent forcing modes
are recovered through

φ j = σ jLψ j . (13)

Note that the ψ j are guaranteed to be orthogonal w.r.t. Qb since the matrices in Eq. (12) are
Hermitian, and the φ j are orthogonal w.r.t. Qa, since

φH
i Qaφ j = σiσ jψ

H
i LH QaLψ j = σiσ

−1
j ψH

i Qbψ j = δi j . (14)

Other researchers have used variational based approaches to the study of forced linear dynamics
and we would like to comment briefly on how Eqs. (12) and (13) differ from these past studies.
Monokrousos et al. [27] formulated a variational problem to identify the optimal forcing structure,
which as formulated therein necessitated the introduction of an adjoint equation, which is avoided in
the current formulation. Sipp and Marquet [11] solved a generalized Eigenvalue problem to compute
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the resolvent forcing modes and then recovered the response modes by solving the linear system in
Eq. (13). Here we avoid any operator inversion by first computing the response modes and then
recovering the forcing modes afterwards. More fundamentally, we view the variational definition
proposed herein as a theoretical framework rather than simply a computational strategy. In Sec. II C
we present one possible technique for how this framework can be used in practice.

B. Proof of equivalence

We will now illustrate the equivalence of Eq. (12) to the standard SVD-based definition. For
simplicity we consider the case where ‖x||a = ‖x||b. Again, following the notation of Herrmann
et al. [21], the SVD of the properly weighted resolvent operator is given by

HF ≡ FHF−1 = �F ��H
F . (15)

The physical resolvent forcing and response modes are then recovered by left multiplication by
F−1, such that � = F−1�F and � = F−1�F , whose columns give the individual modes φ j and ψ j ,
respectively. We focus first on the resolvent response modes �. Beginning from the definition of the
weighted resolvent we can write

HF HH
F = �F �2�H

F . (16)

Next we use Eqs. (3), (8), and (15) to write the above expression in terms of the linear operator L,

F(L−1Q−1L−H )FH = �F �2�H
F . (17)

Taking the inverse of both sides and noting the unitary nature of �F we find

F−H (LH QL)F−1 = �F �−2�H
F . (18)

Finally, we right multiply by �F and left multiply by FH to arrive at

(LH QL)� = Q��−2 (19)

which is equivalent to Eqs. (12). Again, the resolvent forcing modes are then recovered through

� = L��. (20)

This establishes the equivalence of the variational and SVD-based definitions of resolvent modes.
We would like to emphasize that a consequence of this equivalence is that the completeness property
of the SVD-based basis also applies to the variational computed basis. The case where ‖x||a �= ‖x||b
follows similar arguments but for the sake of brevity is not included here.

C. Resolvent mode estimation

In general, the Euler-Lagrange Eqs. (12) are both analytically intractable and computationally
intensive for complex flows with multiple nonhomogeneous spatial dimensions. However, the
variational definition introduced here provides a convenient way to estimate resolvent modes as
an expansion in any convenient basis. Suppose we wish to estimate the resolvent response modes,
ψ(x), of some system defined on a particular domain. Then let q j (x) with ( j = 1...r) be some
known basis defined on that same domain. We can then write the resolvent response modes as an
expansion in this basis:

ψ = ajq j . (21)

Inserting this expansion into Eq. (10) transforms the continuous vector field q ∈ C∞ into a discrete
field a ∈ Cr , where a is the vector of amplitudes a j . The Euler-Lagrange Eq. (11) then takes the
form

Ma − σ−2Qa = 0, (22)
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where M, Q ∈ Cr×r , Mi j ≡ qH
i LH QaLq j , and Qi j ≡ qH

i Qbq j . The eigenvectors a contain the
amplitudes a j which optimally approximate the resolvent response modes in the known basis q j

and the σ are the associated optimally approximated singular values. For r basis elements we will
have M, Q ∈ Cr×r , and thus we will obtain r eigenvalue/eigenvector pairs, representing r singular
mode/singular value pairs. The necessary r depends on both the efficiency of the model basis and
the desired level of accuracy. Since Eq. (22) does not include any inherent approximations, if the
input basis is orthogonal the VRA approximation does converge to the exact solution computed
via SVD as r → ∞. However, any Galerkin type method, such as the one proposed here, is only
valuable as long as the size of the basis, r, is significantly smaller than the size of the discretized
system, n. If r ∼ O(n), then it would be preferable to compute the SVD directly, since one would
not be restricted to the span of the input basis, which if poorly chosen, may not accurately model
the true resolvent modes. However, we show in the following examples that for large systems a
reduction of order r/n of two orders of magnitude is possible.

Throughout this work we use lower-dimensional resolvent modes as a modeling basis. In such
cases the input basis elements q j are periodic in the wall parallel direction and generally localized
around a critical layer (where the wave speed c is equal to the local mean velocity) in the wall normal
direction. For example, we might have q j (x, y) ∼ g(y; c)eikx where k is the imposed wave number.
Thus, for this type of basis the number of retained spatial wave numbers determines the wall parallel
resolution of the VRA model and the number and range of retained wave speeds determines the wall
normal span of the VRA reconstruction.

However, we note that other types of modeling basis are possible, for example Towne [29] used
a data driven basis to estimate global resolvent modes in turbulent jets. While the derivation of
the model presented in Towne [29], based on successive applications of the CFL principle, differs
from the direct variational derivation presented here, the final eigenvalue problem being solved is
mathematically equivalent to Eq. (22). His work, coined empirical resolvent mode decomposition
aims to estimate resolvent modes that are constrained to lie in the span of the input basis, computed
from the full flow field data. This constraint is intended to ensure that the modes are physical in the
sense that they reflect structures observed in the real flow [29]. The variational approach described
in this work is, however, an alternative mathematical definition of the resolvent modes without any
reference to external data.

III. 1D RESOLVENT ANALYSIS: TURBULENT CHANNEL FLOW

A. The Orr-Sommerfeld squire system

As a first example we consider the incompressible linearized NSE for streamwise constant
fluctuations about a turbulent mean in a wall-bounded shear flow. This example illustrates the
fundamental theory and highlights the analytical manipulation enabled by the VRA framework.
The equations are nondimensionalized using the channel half-height and friction velocity. A Fourier
transform in the homogeneous spatial directions and time results in a system parametrized by the
Reynolds number, R, and the wave-number triplet, k = [kx, kz, ω]. Here kx and kz denote the wave
numbers in streamwise and spanwise directions, respectively, and ω again represents the temporal
frequency. We focus on streamwise constant fluctuations which are useful models of the streamwise
elongated structures known to play a crucial role in the sustenance of turbulence [32]. Therefore,
for the remainder of Sec. III we assume kx = 0.

The forced linearized NSE can be written as[
LOS 0
Ūy LSQ

][
v(y)
u(y)

]
=

[
gv (y)
gu(y)

]
. (23)

Here y ∈ [−1, 1] and [v, u] are the wall-normal and streamwise velocity fluctuations about the
streamwise, spanwise, and temporal averaged mean velocity Ū . The spanwise velocity is recovered
through the continuity equation as w = ik−1

z vy. The right-hand side [gv, gu]T represents an unknown
forcing. The relevant boundary conditions are thus v(±1) = vy(±1) = u(±1) = 0. Note that we
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write Eq. (23) in terms of u instead of the classical formulation in terms of the wall normal vorticity
η ≡ ikzu − ikxw. This is because if kx = 0, then u ∼ η. Note that this implies that the off-diagonal
term in Eq. (23) does not include the ikz present in more classical formulations. The Orr-Sommerfeld
and Squire operators in Eq. (23) simplify to

LOS = −iω∇2 − 1

R
∇4, (24)

LSQ = −iω − 1

R
∇2, (25)

where ∇2 ≡ ∂yy − k2
z . The inner product defining the kinetic energy norm is

〈qi, q j〉KE ≡ 〈
v∗

i v j + k−2
z v∗

i,yv j,y + u∗
i u j

〉
, (26)

where 〈 f (y)〉 ≡ ∫ 1
−1 f (y)dy, q = [v, u], and ‖q‖KE = √〈q, q〉KE. It is convenient to also define the

following norm associated with the OS operator induced by

〈·〉OS ≡ 〈
v∗

i v j + k−2
z v∗

i,yv j,y
〉
, (27)

which represents the contribution of v (and thus w) to the kinetic energy and where again the norm
is defined as ‖v‖OS = √〈v, v〉OS. Last, it is numerically convenient to implement Eq. (23) as[∇−2LOS 0

Ūy LSQ

][
v

u

]
=

[∇−2gv

gu

]
=

[
g̃v

gu

]
. (28)

To compare our variational results to the direct SVD we use the definition Eq. (28) going forward.

B. The Orr-Sommerfeld and Squire families

It is instructive to decompose the system into the Orr-Sommerfeld (OS) and Squire (SQ) families
of modes as suggested by Rosenberg and McKeon [15]. The OS family corresponds to the forced
response due to gv , [∇−2LOS 0

Ūy LSQ

][
vOS

uOS

]
=

[
g̃v

0

]
, (29)

which upon elimination of g̃v from the equation for uOS results in a decoupled system reminiscent
of the classical OS/SQ decomposition of linear stability theory [22,33]:

∇−2LOSv
OS = g̃v, (30)

LSQuOS = −Ūyv
OS. (31)

The SQ family of modes, however, is the forced response to gu, where by construction vSQ = 0:

LSQuSQ = gu. (32)

Since Eq. (32) is a normal scalar operator, the resolvent forcing and response modes are proportional
to the eigenmodes of LSQ, and the singular values are equal to the inverse of the norm of the
eigenvalues of LSQ:

ψ
SQ
j (y) =

{
0, sin

[ jπ

2
(y + 1)

]}
, (33)

φ
SQ
j (y) =

{
0, e

i arctan
(

−4Rω

π2 j2+4k2
z

)
sin

[ jπ

2
(y + 1)

]}
, (34)

σ
SQ
j =

[
1

16R2

(
π2 j2 + 4k2

z

)2 + ω2

]−1/2

. (35)

013905-7



BARTHEL, GOMEZ, AND MCKEON

The problem thus reduces to finding the OS family of modes associated with Eq. (29), which, in
accordance with Sec. II, are defined as the stationary points of the associated Lagrangian

L
(
qOS) = ‖∇−2LOSv

OS||2OS − σ−2‖qOS||2KE, (36)

where qOS ≡ [vOS, uOS] and we have made use of the fact that gu = 0 to simplify the operator norm.
To eliminate the streamwise velocity uOS we expand the solution to Eq. (31) in eigenfunctions of
LSQ given by Eq. (33):

uOS = − 1

λ
SQ
n

〈
vOSŪyuSQ

n

〉
uSQ

n . (37)

This allows us to write the kinetic energy constraint as

‖q‖2
KE = 〈|v|2 + k−2

z |vy|2 + |u(v)|2〉 = ‖v‖2
KE, (38)

where the third term u(v)2 is given by the square of Eq. (37). This allows us to rewrite Eq. (36) as

L
(
vOS

) = ‖∇−2LOSv
OS||2OS − σ−2‖vOS||2KE, (39)

with associated Euler-Lagrange equation

δ

δv

(‖∇−2LOSv
OS||2OS − σ−2‖vOS||2KE

) = 0. (40)

For kx = 0, the eigenfunctions of LOS may also be derived analytically [2,34]. Using standard
methods they are found to be

v j (y; kz ) = Aj{cos [γ j (y + 1)] − cosh [kz(y + 1)]}
+Bj

{
sin [γ j (y + 1)] − γ jk

−1
z sinh [kz(y + 1)]

}
,

(41)

λOS
j = 1

R

(
γ 2

j + k2
z

) − iω, (42)

where Aj, Bj , and γ j are defined in Appendix B and satisfy LOSv j = λOS
j ∇2v j and 〈vi, v j〉OS = δi j .

Expanding the solution to Eq. (40) in the basis of OS eigenfunctions Eq. (41) such that

vOS = amvm (43)

allows us to transform the variation into an optimization over the coefficients aj .

∂

∂a

[
‖∇−2LOSa jv j‖2

OS − σ−2
(∥∥a jv j

∥∥2

KE − 1
)] = ∂

∂a

[∣∣λOS
j

∣∣2
a2

j − σ−2aia j
(
δi j + UinU

H
n j

)] = 0,

(44)
Here the quantity Uin represents the projection of the OS eigenfunctions onto the SQ eigenfunctions
through Eq. (37) such that

Uin ≡ − 1

λ
SQ
n

〈
viŪyuSQ

n

〉
. (45)

Upon carrying out the above differentiation with respect to a we find the eigenvalue problem

‖�OS‖2a = σ−2(I + UUH )a, (46)

where �OS
i j = |λOS

i |2δi j . The eigenvectors a correspond to the the coefficients which optimally
represent the resolvent response modes of the system Eq. (29) as a linear combination of the
eigenbasis Eq. (41):

ψOS
j = [

a j
mvm, u

(
a j

mvm
)]

. (47)
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FIG. 1. Real part of the wall normal component v (a), streamwise component u (b), and forcing gv (c) of the
of the first, third, and fifth Orr-Sommerfeld family of resolvent modes. Reference modes computed via direct
SVD are shown in solid lines, VRA reconstruction using 20 basis eigenmodes is shown in symbols. kz = 6,
ω = 0.1, and R = 1000.

The singular values σ j are given by the eigenvalues of Eq. (46) and the forcing modes are recovered
through

φOS
j = [

σ j∇−2LOSv
OS
j , 0

] = [
σ jλ

OS
m a j

mvm, 0
]
. (48)

Together with the Squire family of resolvent modes Eqs. (33)–(35) the Orr-Sommerfeld family
given by Eqs. (47) and (48) fully describe the resolvent basis. In Fig. 1 we plot the real part of the
variationally reconstructed Orr-Sommerfeld response and forcing modes along side their numeri-
cally computed counterparts for the wave-number triplet [kx, kz, ω] = [0, 6, 0.1] and R = 1000. The
singular values plots are plotted in Fig. 2(a). For this example, the VRA model uses r = NOS = 20
basis elements, this value is chosen to show a balance between the accuracy and model reduction
capabilities of the method. Although for this example the computational cost is trivial, the reduction
in size of the relevant matrices and avoiding the need for matrix inversion reduces the computation
time by two orders of magnitude. To quantify the convergence of our method we plot in Fig. 2
the error in the VRA reconstruction of v, u, and σ as a function of the number of retained OS
eigenfunctions (r = NOS) included in the variational reconstruction. The error is defined as

eq =
√∫ 1

−1
|qsvd − qvra|2dy, (49)

where q = u, v and the subscripts vra and svd denote the quantities computed using the VRA model
and direct SVD, respectively. In all cases we observe monotonic convergence. In this this example
the VRA model is extremely effective at reconstructing the results of the direct SVD since our model
basis exactly spans the range of LOS.

C. Analytical approximation of ψ1

In this section we demonstrate how, under certain assumptions, the variational resolvent for-
mulation allows for the analytical approximation of the leading OS resolvent mode ψOS

1 . Written
explicitly, the Lagrangian associated with Eq. (23) is

L(v) =
[
ω2(∇2v)2 + 1

R2
(∇4v)2

]
+ 1

k2
z

[
ω2(∇2vy)2 + 1

R2
(∇4vy)2

]
− 1

σ 2
1

[
u(v)2 + v2 + k−2

z v2
y

]
,

(50)
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FIG. 2. Orr-Sommerfeld family of singular values (a) with reference values computed via direct SVD in
red, and variational reconstruction using 20 basis eigenmodes in black. Error in variational reconstruction as a
function of basis elements in σ j (b), v j (c), and uj (d) of ψ j for j = 1, 3, 5, 7, 9. kz = 6, ω = 0.1, and R = 1000
as a function of the retained basis elements r = NOS.

where u is the solution to

−iωu − 1

R
∇2u = −Ūyv. (51)

Here u and v are the streamwise and wall normal components of ψOS
1 and σ1 is the leading OS

singular value. The associated Euler-Lagrange equation written in terms of v is then

1

k2
z

(
1

R2
∇10 + ω2∇6

)
v + 1

σ 2
1

((
L−1

SQŪy
)H

L−1
SQŪyv − 1

k2
z

∇2v

)
= 0, (52)

with boundary conditions v(±1) = vy(±1) = u(±1) = 0. Note that we use the the original defini-
tion Eq. (23) not the numerical implementation Eq. (28) to derive Eq. (52). This is done to avoid the
analytically cumbersome treatment of the ∇−2 operator. The problem is now parameterized by ω,
R, and kz. Our analysis will consider the appropriate limits of each in turn.

It has been shown that for kx = 0 the most linearly amplified frequency is ω = 0, therefore we
will consider the limit as ω → 0. Since, in this limit Eq. (52) is regularly perturbed problem, the
leading order solution may be found by simply setting ω = 0. We may further simplify Eq. (52)
by considering a high Reynolds number limit R → ∞. Analysis of Eq. (29) reveals that for ω = 0,
σ1 ∼ R2 as R → ∞ (see Appendix C). This allows us introduce the small parameter ε ≡ R−1 such
that Eqs. (52) and (51) take the form

1

k2
z

∇10v + ε2

σ̃ 2
1

[
1

ε2
(∇−2Ūy)H∇−2Ūyv − 1

k2
z

∇2v

]
= 0, (53)

ε∇2u0 = Ūyv, (54)

where σ̃ �= f (R). We note that Eq. (54) implies that v ∼ εu and expand the solution in an asymptotic
series:

v = εv1 + ε2v2 + O(ε3),

u = u0 + εu1 + ε2u2 + O(ε3).
(55)
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The leading order solution to Eqs. (53) and (54) then satisfy

1

k2
z

∇10v1 + 1

σ̃ 2
1

[(∇−2Ūy)H∇−2Ūyv1] = 0, (56)

∇2u0 = Ūyv1, (57)

and the norm constraint takes the form

‖u0‖2 = 1. (58)

In this work we focus on the leading order solution, and thus to avoid notational clutter we drop the
subscripts 0 and 1 moving forward.

While we have managed to simplify the governing equations, the second term in Eq. (56) remains
prohibitive to analytical progress. To proceed we consider the y → −y symmetry of Eq. (23) which
dictates that the resolvent modes come in pairs, one of which is even about the center of the channel,
and one of which is odd. If additionally, the modes have compact support, as is generally the case,
then we have ψ1(y) = ψ1(−y) = ψ2(y) = −ψ2(−y), and therefore it is sufficient to solve for the
mode shape in one half of the domain.

We assume that v is indeed locally supported and thus introduce the scaling Y = kz|y ± 1| under
the assumption kz � 1 and make the transformation u(y), v(y) → U (Y ),V (Y ). We note that this
scaling differs from the k1/2

z and k2/3
z scaling derived by Arratia and Chomaz [35] in the context

of inviscid transient growth. If we formally take the limit as kz → ∞, then we may transform the
domain from y ∈ [−1, 1], to the “semi-infinite” half channel: Y ∈ [0,∞] and recover the solution
in the other half through ψ1(y) = ψ1(−y) = ψ2(y) = −ψ2(−y).

Finally, to make progress we require some suitable approximation of the mean velocity profile.
Since we are working within a high Reynolds number limit we choose to assume that the mean
velocity obeys a logarithmic profile over the entirety of the semi-infinite domain. This is a reasonable
assumption since in high Reynolds number channel flow the log-law applies to a large fraction of
the channel. Our approach thus implicitly assumes the support of the resolvent modes is localized
within this region where the log-law approximation is valid. The mean shear is then given in our
scaled variables by ŪY = kz(κY )−1, where κ is the Von Karman constant. We note that the mean
shear diverges as like Y −1 as Y → 0, however, since V (0) = VY (0) = 0 we have V (Y ) ∼ Y 2 as
Y → 0, and thus the right-hand side of Eq. (57) remains bounded as Y → 0.

Inspection of Eqs. (57) and (58) reveals that the appropriate scaling of the velocity components
is given by Ũ (Y ) = k1/2

z U (Y ) and Ṽ (Y ) = k3/2
z V (Y ). Additionally, we define the scaled Laplacian

∇̃2 ≡ ∂YY − 1 such that ∇2 → k2
z ∇̃2, and note that for kx = ω = 0 and kz → ∞ the singular value

scales as σ̃1 ∼ k−3
z (see Appendix C). Thus, we can write Eq. (56) in our scaled variables as

∇10Ṽ + 1

κ2k4
z γ

2
1

[(∇̃−2Y −1)H ∇̃−2Y −1]Ṽ = 0, (59)

where γ1 is a constant. We expand Ũ and Ṽ in asymptotic series

Ṽ = Ṽ0 + k−4
z Ṽ1 + O

(
k−8

z

)
,

Ũ = Ũ0 + k−4
z Ũ1 + O

(
k−8

z

)
,

(60)

which upon substitution into Eq. (59) allows us to eliminate the norm constraint at leading order
and reduce the problem of deriving the leading OS resolvent mode to

∇̃10Ṽ = 0, (61)

∇̃2Ũ = 1

κY
Ṽ , (62)

where we have again dropped the subscripts to avoid notational clutter. The relevant boundary con-
ditions are Ṽ (0) = ṼY (0) = Ũ (0) = Ṽ (∞) = Ũ (∞) = 0. The remaining constants of integration
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are then chosen such that ‖∇−2LOSV ‖2
OS is minimized and ‖U‖2 = 1. Here we choose to minimize

‖∇−2LOSV ‖2
OS instead of ‖LOSV ‖2

OS to facilitate comparison with the numerically computed modes.
However, we note that minimizing the latter functional leads to a very similar solution. Using
standard methods the solutions satisfying the boundary conditions are found to be

V (Y ) = k3/2
z

R
(a + bY + cY 2)Y 2e−Y , (63)

U (Y ) = −k1/2
z

24κ
[3cY 3 + (4b + 6c)Y 2 + (6a + 6b + 9c)(Y + 1)]Ye−Y . (64)

The three remaining constants of integration, a, b, c, are found by minimizing ‖∇−2LOSV ‖2
OS subject

to the constraint ‖U‖2 = 1. Straightforward integration results in

‖∇−2LOSV ‖2
OS = 1

R2
‖∇2V ‖2

OS = 4
k6

z

R4
(6a2 + 9b2 + 36bc + 72c2) (65)

and

‖U‖2 = 1

κ2

(
7

32
a2 + 1

128
(112b + 228c)a + 31

32
b2 + 351

64
bc + 1089

128
c2

)
= 1. (66)

Minimizing Eq. (65) subject to Eq. (66) results in the eigenvalue problem⎡
⎣12 0 0

0 18 36
0 36 144

⎤
⎦

⎡
⎣a

b
c

⎤
⎦ = 1

σ 2
1

(
R4

4κ2k6
z

)⎡
⎣7/16 7/8 9/4

7/8 31/16 351/64
9/4 351/64 1089/64

⎤
⎦

⎡
⎣a

b
c

⎤
⎦. (67)

Assuming κ = 0.4 the minimizing solution that satisfies the norm constraint is found to be

[a, b, c] = [0.1283, 0.1066, 0.0431]
√

2. (68)

The leading singular value is

σ1 = ‖∇−2LOS‖−1
OS = R2

2k3
z

. (69)

The wall-normal component gv of the optimal resolvent forcing mode φOS
1 is recovered through

∇2gv = σ1LOSv, (70)

subject to the boundary conditions gv (±1) = 0. Using Eq. (69) and letting gv (y) → GV (Y ) this
takes the form

∇̃2Gv (Y ) = σ1LOSv = − R

2kz
∇̃4V (Y ). (71)

The solution satisfying the boundary condition GV (0) = 0 is found to be

GV (Y ) = k1/2
z [4cY 3 + (3b − 6c)Y 2 + (2a − 3b)Y ]e−Y . (72)

The solutions Eqs. (63), (64), and (72) with optimal coefficients Eq. (68) are plotted in Fig. 3
alongside numerically computed resolvent modes for R = 10, 000 and ω = 0 over a range of kz.
Note that for kx = 0, and ω → 0 the symmetries of Eq. (28) result in numerical resolvent modes
with constant arbitrary phase, which for ease of comparison we set to zero. With the exception of
the u component for the smallest wave number (kz = 6), the derived scaling laws lead to reasonable
collapse in both the numerically computed resolvent response and forcing modes. As kz → 1 the
assumption of local support in y is no longer valid. In this limit ψ1 tends to have significant support
at the channel center.

For the response modes the analytically-derived mode accurately predicts the shape, amplitude,
and localization of the numerically computed modes. The analytical prediction of the wall normal
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FIG. 3. Optimal resolvent modes: v (a), u (b), gv (c), and singular value (d) for kx = 0, ω = 0, R = 10 000
and a range of kz. Numerically, calculated modes/singular values are shown in colored lines/dots, analytically
derived modes/singular values are shown in black open circles/dashed line. From light to dark, colors indicate
increasing kz from 6 to 100 (a–c).

velocity is most accurate for the largest wave numbers, tending to slightly over predict the amplitude
of the smaller wave-number modes. This is most likely due to the fact that the amplitude of v is
smaller by a factor of R = 10, 000 and is thus susceptible to some numerical uncertainty since
it does not meaningfully contribute to the norm. The streamwise velocity more closely obeys the
derived scaling laws, and thus the analytical model accurately predicts the shape of the numerically
computed modes for all kz > 6.

The prediction of the forcing mode is slightly less accurate. While we capture the location and
amplitude of the peak, the model underpredicts the true mode closer to the wall. The discrepancy in
the forcing despite accurate reconstruction of the response is due to the sensitivity of the action of
linear operator LOSv to perturbations in the argument v. This is discussed in detail in Sec. VI.

Finally, in Fig. 3 we also plot the numerically computed leading singular values along side the
analytical prediction Eq. (69). While the analytically obtained value of σ1 slightly under-predicts
the true singular values for the smaller values of kz, the numerical singular values do converge to
the analytical prediction with increasing kz, consistent with the assumption made in our model that
kz � 1. This under prediction is consistent with the fact that the true singular value represents the
global maximum gain.

IV. 2D RESOLVENT ANALYSIS: PERIODIC MEAN FLOW

In this section we use VRA to efficiently and accurately compute resolvent modes about a 2D/3C
mean flow. We consider the equilibrium solution EQ1 found in plane Couette flow by Nagata
[36]. The data was obtained from the open-source database channelflow.org [37,38]. In this case
the flow has two nonhomogeneous spatial dimensions, the wall normal direction y ∈ [−1, 1] and
the spanwise direction z ∈ [−Lz/2, Lz/2] with Lz = 0.8π . The spanwise periodic EQ1 solution is
shown in Fig. 4. The 2D/3C resolvent modes computed about this flow are then parameterized by
the streamwise wave number and frequency pair [kx, ω]. We choose as our modeling basis the local
1D resolvent modes about the mean flow Ū (y) given by the spanwise average of the EQ1 solution:
qj (y, z) = ψ1D

j (y; kz, kx, c)eikzz. In other words, we seek to approximate the 2D/3C resolvent modes
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FIG. 4. Exact coherent state EQ1 at R = 400 used to compute 2D/3C resolvent modes: U (y, z) (a), V (y, z)
(b), W (y, z)(c) and spanwise average Ū (y)(d) used to compute the 1D basis modes.

from the 1D resolvent basis as

ψ2D(y, z; kx, c) = a jq j (y, z). (73)

The expansion coefficients aj are found by solving the eigenvalue problem

Ma − σ−2Qa = 0, (74)

where Mi, j = 〈L2Dqi, L2Dq j〉 and Qi, j = 〈qi, q j〉. The operator L2D is the NS operator, in velocity-
vorticity form, linearized about the 2D/3C mean flow, the details of which are discussed in
Rosenberg and McKeon [39]. The operator is discretized in Ny = 33 Chebychev points in the
wall normal direction, and Nz = 32 linearly spaced points in the spanwise direction, for a total
of N2D = 2 × Ny × Nz = 2112 degrees of freedom.

The 1D resolvent modes are computed for the same kx as the 2D modes, and a range of Nc = 3
linearly spaced wave speeds 0.8c � c1D � 1.2c where c = ω/kx. We use a range of c1D since the
2D mode is expected to be localized near but not necessarily exactly at the critical layer where
c = Ū (y). To account for the variation in z we include a range of Nkz = 11 spanwise wave numbers
kz = [−5...0...5] × 2π/Lz. We found that increasing the number of retained harmonics beyond
this range did not meaningfully change the results. At each wave-number triplet [kx, kz, c] we
include NSVD = 8 resolvent modes, resulting in a total of r = Nc × Nkz × NSVD = 254 degrees of
freedom. These values were chosen to demonstrate a balance between accuracy and the cost-saving
potential of the proposed method. (The reader is referred to Appendix D for an illustration of some
representative basis elements.) Once L2D is known, the construction of the matrices M and Q
takes approximately 0.5 s and the associated eigendecomposition takes approximately 0.01 s on
a personal laptop. Meanwhile, the inversion and direct truncated SVD of the original system takes
approximately 5 s using the built in Matlab functions mldivide() and svds().

In Figs. 5 and 6 we compare the real part of the first four resolvent response modes of the
variational reconstruction and the modes computed directly through the SVD of the 2D resolvent
for kx = 0.5 and c = 0.75 and R = 400. The variational approach very accurately reconstructs the
true response modes considering the significant reduction in computational complexity.
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FIG. 5. Real part of the v component of the first 4 resolvent response modes (ψ j ) for kx = 0.5, c = 0.75,
and R = 400. Top row: true modes, bottom row: VRA model with Nkz = 11, Nc = 3, and NSVD = 8. From left
to right: j = 1, 2, 3, 4.

In Figs. 7 and 8 we plot resolvent forcing modes computed from the response modes through
φ j = σ jL2Dψ j . Interestingly we find that while the gv component is reproduced accurately the gη

component shows significant discrepancy. While the qualitative shape of the η component of the

FIG. 6. Real part of the η component of the first four resolvent response modes (ψ j ) for kx = 0.5, c = 0.75,
and R = 400. Top row: true modes, bottom row: VRA model with Nkz = 11, Nc = 3, and NSVD = 8. From left
to right: j = 1, 2, 3, 4.
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FIG. 7. Real part of the v component of the first four resolvent forcing modes (φ j ) for kx = 0.5, c = 0.75,
and R = 400. Top row: true modes, bottom row: VRA model with Nkz = 11, Nc = 3, and NSVD = 8. From left
to right: j = 1, 2, 3, 4.

forcing mode is predicted by the VRA model, the mode is contaminated by higher harmonics. This
contamination observed in the VRA reconstruction of the forcing modes, φ j , despite the accurate
reconstruction of the response modes, ψ j , is due to the directional amplification of the resolvent

FIG. 8. Real part of the η component of the first four resolvent forcing modes (φ j ) for kx = 0.5, c = 0.75,
and R = 400. Top row: true modes, bottom row: VRA model with Nkz = 11, Nc = 3, and NSVD = 8. From left
to right: j = 1, 2, 3, 4.
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FIG. 9. Singular values for kx = 0.5, c = 0.75, and R = 400 (a). SVD reference (red squares) and VRA
model(black circles), same model parameters as in Figs. 5–8. Integrated error of variational reconstruction of
first six resolvent response modes (b) and (c), plotted separately for clarity, and first six singular values (d) as
a function of retained singular basis elements NSVD for Nc = 1 and Nkz = 11. Results with c = 0.75 are plotted
in plain lines and those with c = 0 are plotted with lines with open circles. From light to dark, colors indicate
increasing j from 1 to 6.

operator or equivalently, a sensitivity of the action of the linear operator L2Dq, to perturbations in
the input q. This phenomenon is discussed in detail in Sec. VI.

Additionally, in Fig. 9(a) we compare the variationally computed singular values with the true
values computed via direct SVD. The singular values are estimated relatively accurately, with our
model tending to slightly underestimate the leading singular values. As before, the true singular
values represent the optimal gains and the predicted singular values are bounded above by the true
values. For this example there is no significant separation of singular values, in other words the
resolvent operator is not low rank, and yet our method still accurately predicts the singular values
and resolvent response modes.

To quantify the convergence properties of the proposed method, for this example we fix c1D =
c2D, include kz = [−5...0...5] × 2π/Lz such that Nc = 1 and Nkz = 11 and compute the error as a
function of the number of retained singular modes NSVD. The error is based on the kinetic energy
norm and is defined as

e ≡
√

1

2Lz

∫ Lz

0

∫ 1

−1

∣∣ψ2D
svd − ψ2D

vra

∣∣2
dydz, (75)

where ψ = [u, v,w]. The error is plotted in Fig. 9 alongside the relative error in singular values
for two values of the wave speed, c = 0.75 and c = 0. The former corresponds to the example
plotted in Figs. 5 through 9(a) where there is no significant singular value separation. The latter case
corresponds to a case where the 2D/3C resolvent is more low rank, (σ1/σ2 ≈ 6). In both cases our
method is not only able to accurately approximate the leading singular mode and value but also a
large range of suboptimal modes and singular values. Interestingly, we see that our method is more
accurate in the case where there is less singular value separation. Furthermore, for the low rank
case, (c = 0) the largest error in singular value is for σ1. Again, these findings are a result of the
directional nature of the resolvent operator and are discussed in detail in Sec. VI.
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V. 2D RESOLVENT ANALYSIS: STREAMWISE DEVELOPING MEAN FLOW

In this section we use VRA to approximate the resolvent modes for a streamwise developing
zero pressure gradient turbulent boundary layer (ZPGTBL). The streamwise developing nature
of this flow necessitates large spatial domains and requires nonreflecting boundary conditions at
the inlet and outlet of the domain. In this case the direct computation of the resolvent operator
becomes impossible on a personal computer, and the size of the resulting matrices lead to memory
requirements which become cumbersome even for high performance computers. Again we choose
as our modeling basis 1D resolvent modes, in this case calculated using the mean flow Ū (y) at the
inlet of the domain. Thus we have qj (x, y) = ψ1D

j (y; kx, kz, c)eikxx.
The reference 2D resolvent modes are computed using L2D, the NS operator linearized about

the mean flow, Ū(x, y), under the assumption that the streamwise and wall normal directions are
nonhomogenous. The mean flow is interpolated from mean profiles of a ZPGTBL DNS dataset
described in Schlatter and Örlü [40] with inlet Reτ = uτ δ99/ν ≈ 700. Variables without superscript
are nondimensionalized with the velocity scale U∞, the free stream velocity, and δ99, the inlet
boundary layer thickness, and variables with superscript + denote rescaling with the local friction
velocity, uτ (x), and local friction lengthscale �(x) = ν/uτ . The nonhomogeneous directions are
discretized using a Chebyshev-Chebyshev grid, with Ny points in y ∈ [0, ymax] and Nx points in
x ∈ [xi, xi + Lx], where Lx is the domain length in outer units. Our state q = [u, v,w, p]T assumes
the following wall normal boundary conditions: u(x, 0) = 0, vy(x, y) = 0, and uy(x, ymax) = 0. At
the inlet and outlet, we use Dirichlet boundary conditions and extrapolation boundary conditions
with an artificial sponge layer applied to damp any artificial reflections due to the boundary
conditions [41,42]. The discretization was validated with the results from Ran et al. [41]. We note
that using finite differences results in sparser operators that would reduce the computation times, but
this was not explored in this paper. The modes are parametrized by the spanwise wave number kz

and the temporal frequency, ω. Here we consider three wave number–frequency combinations, two
inner modes: [kz, ω] = [43.9, 1.8] and [183,3.6], and an outer mode localized in the wake region:
[kz, ω] = [11.0, 2.3]. The latter is used to illustrate the current limitations of the proposed method.

Because the dimension of matrix L2D is 4NxNy × 4NxNy, the matrix inversion and singular value
decomposition are expensive, and scale with O[(4NxNy)3]. To avoid such expensive calculations, an
LU decomposition and Arnoldi Method is applied as in Sipp and Marquet [11] and Schmidt et al.
[16] to compute the SVD of the resolvent by solving linear systems, as opposed to computing the
matrix inverse. The most expensive computation, the LU decomposition, is handled with PARDISO,
a sparse linear algebra solver which is part of the Intel math kernel library, as in Ref. [43]. Because of
the low rank behavior that is often exhibited by the resolvent operator, the Arnoldi Method converges
to the singular values and singular vectors in a few iterations. Although this strategy is considerably
faster than computing the inverse and taking the SVD, the LU decomposition is still an expensive
O[(4NxNy)3] operation.

The 1D resolvent modes used as the model basis are all calculated using the inlet mean velocity
profile, the same kz as the 2D modes, a range of Nkx streamwise wave numbers defined as integer
multiples of 2π/Lx, and Nc wave speeds, c. Although the model basis is computed using knowledge
at one streamwise location, the coefficients of the basis are determined using L2D, which includes
the streamwise variation of the mean. The multiple wave numbers allow for constructive and
destructive interference, creating the structure seen in the true response mode. Due to the critical
layer mechanism, the 1D modes are localized at the critical layer, where Ū (y) = c. To cover
the wall-normal extent where we expect the 2D mode to be localized we then include a range
of Nc linearly spaced wavespeeds. At each wave-number triplet [kx, kz, c] we also include the
leading NSVD resolvent modes, resulting in a total of r = Nkx × Nc × NSVD degrees of freedom.
The modeling parameters, global mode spatial resolutions, and overall model reduction for the two
examples considered here are summarized in Table I. The reader is referred to Fig. 19 in Appendix D
for an illustration of some representative basis elements.
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TABLE I. Global parameters (kz, ω), spatial discretization of the full system (Nx, Ny ), modeling parameters
of the VRA model (Nkx , Nc, NSVD, cmin, cmax), and model reduction from full system to VRA model.

kz ω Nx Ny Nkx Nc NSVD cmin cmax (Nkx × Nc × NSVD)/(4 × Nx × Ny)

43.9 1.8 192 81 26 3 6 0.2U∞ 0.65U∞ 1/133
183 3.6 96 81 16 3 1 0.05U∞ 0.25U∞ 1/648
11.0 2.3 192 81 32 6 10 0.6U∞ 0.99U∞ 1/33

A. Inner Modes

In Figs. 10 and 11 we compare the first four resolvent modes of the variational reconstruction
and the modes computed directly through the classic resolvent analysis of the 2D resolvent for
[kz, ω] = [43.9, 1.8] and [kz, ω] = [183, 3.6]. The former’s spanwise wavelength λ+

z ∼ 100 is rep-
resentative of near wall streaks whereas the latter’s spanwise wavelength λ+

z ∼ 25 is representative
of smaller structure close to the wall [44]. In both cases we note that all modes display streamwise
oscillations at wavelengths on the order of δ99. Additionally, we also note the presence of a larger
wavelength in the form of a modulating envelope with wavelength Lx/ j where j is the rank of
the mode. In both cases the characteristic streamwise wavelength and the modulating envelope of
the modes are captured by the VRA model for both the optimal and the higher-order modes. We
note that this streamwise evolution in both shape and amplitude is not present in the VRA basis
functions (see Appendix D). Because of this streamwise scale separation, the VRA model requires
basis functions with a large range of streamwise wave numbers. Despite this, the number of retained
wave numbers Nkx is still significantly less than the required streamwise spatial discretization, Nx,
of the full system.

FIG. 10. First four resolvent response modes (ψ j ): real part of the streamwise component u. j = 1, 2, 3, 4
(a–d, respectively) for Reτ ≈ 700 and [kz, ω] = [43.9, 1.8]. Top panels: true global modes, bottom panels:
VRA model. Upper x axis: represents outer units x, lower x axis represents inner units x+. Model basis
parameters are: Nkx = 26, Nc = 3, NSVD = 6.
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FIG. 11. First four resolvent response modes (ψ j ): real part of the streamwise component u. j = 1, 2, 3, 4
(a–d, respectively) Reτ ≈ 700 and [kz, ω] = [183, 3.6]. Top panels: true global modes, bottom panels: VRA
model. Upper x axis: represents outer units x, lower x axis represents inner units x+. Model basis parameters
are: Nkx = 16, Nc = 3, NSVD = 1.

For the wider (smaller kz) modes plotted in Fig. 10, we see that the VRA model predicts the mode
shape and amplitude present in the SVD-based modes and replicates many of the general features.
Especially in the interior of the domain, the VRA modes capture the reference modes relatively
accurately. However, near the streamwise boundaries there are some significant discrepancies. Here,
the VRA modes have less support as compared to the reference modes. This difference is likely due
to the basis functions not satisfying the same streamwise boundary conditions as the 2D modes. The
basis has periodic boundary conditions while the 2D modes are treated with nonreflecting boundary
conditions. The nonreflecting boundary conditions, through the sponge, cause the SVD modes to
abruptly decay to 0 near the inlet and outlet of the domain.

The narrower (larger kz) modes plotted in Fig. 11 show relatively good agreement between the
VRA prediction and the SVD-based modes throughout the domain. This is likely because in this
case the shorter domain restricts the streamwise development of the mean flow, (700 < Reτ < 740),
as opposed to the case of kz = 43.9 where (700 < Reτ < 1040). Additionally, the narrower modes
have less streamwise extent and are localized in the near wall region y+ < 35 where they are less
susceptible to streamwise development of the wake [45]. Since the mean flow is nearly parallel in
this region, the fact that the 1D resolvent modes used in the VRA model are periodic in x is less of
an impediment. However, as seen for example in Fig. 11(c), there is still some discrepancy between
the suboptimal SVD and VRA based modes with the VRA mode being slightly shifted towards the
inlet relative to the reference mode.

Figure 12 shows all three components of the optimal forcing mode: φ1 for both kz = 43.9
and kz = 183. We plot all three components of the forcing modes to illustrate the componentwise
amplification present in nonnormal operators. For the response modes the streamwise component
accounts for >95% of the total norm of the leading modes investigated here, whereas for the
leading forcing modes, the streamwise components account for less than 5% of the total norm. In
wall-bounded flows this discrepancy in the amplification is associated with the lift up mechanism,
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FIG. 12. Leading resolvent forcing mode (φ1) for Reτ ≈ 700. [kz, ω] = [43.9, 1.8], fu (a), fv (c), fw (e).
[kz, ω] = [183, 3.6], fu (b), fv (d), fw (f). In each subplot, top panels: true global modes, bottom panels: VRA
model. Upper x axis represents outer units x; lower x axis represents inner units x+. Model basis parameters
are the same as in Table I.

where disturbances with large spanwise and wall normal components lead to flow responses with
large streamwise components. Physically, this is related to the counter rotating vortices that lead to
streamwise velocity streaks as recently reviewed by Brandt [46]. In Fig. 13 we compare the exact
singular values and the VRA prediction. Unlike the previous examples we have analyzed, we see
that in both cases the VRA model significantly underpredicts the singular values. The error is greater
for kz = 43.9 with errors of approximately 33% in σ1 compared to around 15% for kz = 183.

In this example the VRA model largely fails to predict the shape of the forcing modes, most
notably in the streamwise component of the forcing, and displays significant error in the prediction
of the singular values. While the cross-stream components of the VRA approximations capture some
of the features seen in the SVD-based forcing modes, the VRA modes exhibit a π/2 phase shift not
seen in the SVD-based mode. Interestingly, the phase shift seems to be centered at different wall
normal locations for all three velocity components. We note that despite the differences in the shape,
the VRA forcing modes still replicate the component amplitude trends of the SVD-based forcing
modes. Again the significant difference in the VRA and SVD-based singular values and forcing
modes, despite the similarity in the response modes, illustrates how H acts as a directional amplifier.
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FIG. 13. Singular values from the direct SVD (red squares) and variational reconstruction (black circles)
at Reτ ≈ 700. [kz, ω] = [43.9, 1.8] (a), [kz, ω] = [183, 3.6] (b).

The resolvent identifies the most amplified forcing mode, however, L does not preferentially amplify
the leading response. This is discussed in detail in Sec. VI.

B. Outer Modes

To illustrate the limits of our method we consider a wave number–frequency combination
for which the resolvent mode is localized in the wake region of the boundary layer: [kz, ω] =
[11.0, 2.3]. The model parameters, Nkx , Nc, and Nj (summarized in Table I) were chosen such that
further increasing the degrees of freedom no longer provided a meaningful speed up over the SVD of
the original system. While the range of Reτ is the same as for the mode with kz = 44, here the global
resolvent mode has a much larger wall normal extent and is strongly affected by the streamwise
development of the mean flow [45]. Figure 14 shows the comparison of the VRA reconstruction
of the resolvent response mode and the true reference response mode. As is clear from the figure,
the VRA model completely fails to capture the broad support of the true mode in the outer wake
region, and is instead much more localized closer to the wall and further upstream. Despite the lack
of agreement between the VRA prediction and the RA mode, the VRA does reasonably predict
the streamwise wavelength of the oscillations of this outer scaled mode and the relative amplitudes
between u, v, and w (not shown). This example illustrates that for strongly streamwise dependent
flows, local, and thus streamwise periodic resolvent modes are inadequate as a modeling basis for

FIG. 14. Real part of optimal resolvent response mode (ψ1) for [kz, ω] = [11.0, 2.3]: u (a) and v (b). Top
panels: true global modes, bottom panels: VRA model. Upper x axis represents outer units x; lower x axis
represents inner units x+.
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TABLE II. Wall time and memory requirements for the LU/Arnoldi based SVD and the VRA model with
the parameters in Table I. The construction of linear operator L2D is required for both methods and is thus not
included in this comparison.

Method Wall time RAM used

LU/Arnoldi SVD (kz = 43.9) 72 min 5.98 GB
VRA (kz = 43.9) 2 min 3.47 GB

LU/Arnoldi SVD (kz = 183) 14 min 5.34 GB
VRA (kz = 183) < 1 min 1.26 GB

even qualitative reconstructions of the global resolvent modes. More generally, if the boundary
conditions of the modeling basis differ too much from those of the system being investigated the
results of the VRA reconstruction may be inaccurate. Better agreement could potentially be obtained
by artificially altering the streamwise variation of the input basis to more closely match the desired
result. However, such basis optimization is beyond the scope of this work.

C. Computational Complexity

Finally, in Table II we compare the wall time and memory usage of the VRA model to the SVD
of the original system for the modes in Sec. V A. We do not include the outer mode since this
case the VRA method failed to even qualitatively replicate the true mode. The computations were
all carried out on the Richardson computing cluster at Caltech using the same discretization and
mode parameters as summarized in Table I. The direct SVD computations include the inversion
and SVD of L2D using the LU decomposition and Arnoldi method described above. For the VRA
model the computation includes the computation of the local resolvent mode basis as well as the
construction and spectral decomposition of the variational matrices Eq. (22). Both methods require
the construction of L2D and thus we do not include it in this comparison. The construction of L2D

takes approximately 90 and 20 s for kz = 43.9 and kz = 183, respectively. For both cases we see a
roughly 97% reduction in wall time. The memory savings are significant but less drastic at 42% and
76%, respectively. While the VRA model does not require any inversion it still requires knowledge
of the full size 4NxNy × 4NxNy matrix L2D leading to these more modest gains in memory usage. We
acknowledge that in this case the VRA method does not reproduce the the SVD modes exactly and
so this comparison should be viewed in the context of a trade-off in cost and accuracy. However,
considering that the VRA model replicates all the characteristic features of the SVD modes we
believe our method alleviates a significant computational bottleneck in the computation of resolvent
modes of nonperiodic 2D systems such as the ZPGTBL considered here.

VI. SENSITIVITY ANALYSIS: THE INFLUENCE OF RANK AND CONDITION NUMBER

In both Secs. IV and V we observed that even when the resolvent response modes, ψ j , were
modeled accurately by the VRA method, the singular values, σ j , and the forcing modes, φ j =
σ jLψ j , may be susceptible to significant error. This is due to the directional amplification of the
resolvent operator H which in the classical CT view of RA minimizes error in the response to errors
in the forcing, but in this VRA framework amplifies errors in the predicted forcing due to errors
in the response. This phenomenon can be demonstrated using the definition of the SVD Eq. (5).
We note that similar analysis has been performed by Schmid and Brandt [47], who considered the
sensitivity of the eigenvalues and eigenvectors of the linearized NS operator to wide range of types
of perturbations.
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Consider the action of H and L on arbitrary inputs φ̃ and ψ̃, respectively:

Hφ̃ =
∑

j

σ jψ j〈φ j, φ̃〉, (76)

Lψ̃ =
∑

j

σ−1
j φ j〈ψ j, ψ̃〉, (77)

where φ̃ and ψ̃ have unit norm. Suppose we chose φ̃ = aφ1 + bf and ψ̃ = aψ1 + bq such that
〈φ1, f〉 = 0 and 〈ψ1, q〉 = 0 as separate approximations for φ1 and ψ1, respectively. Equation (76)
demonstrates that the higher-order response modes are weighted by σ j < σ1 for j > 1, indicating
that the component of φ̃1 along φ1 is weighed more heavily than the error f when approximating the
leading response mode. On the contrary, Eq. (77) demonstrates that the output in the direction of
φ1 is weighted by the smallest singular value of L, σ−1

1 , whereas the higher-order components are
weighted by the larger singular values, σ−1

j with j > 1. When using Eq. (13) to predict φ1 based on
an approximation of ψ1, this projection of the error onto higher-order modes corrupts the prediction
by weighing the output onto higher-order forcing modes.

The differences between the error in approximating the gain in H and L can be quantified
through a perturbation analysis of the singular values. The singular values are related to the resolvent
response and forcing modes by

σ 2
j = (Hφ j )

H Q(Hφ j ) = [(Lψ j )
H Q(Lψ j )]

−1. (78)

We consider the sensitivity of σ j to perturbation in either the resolvent forcing or response modes:
ψ j,ε = ψ j + εr and φ j,ε = φ j + εg, where ε � 1 and ||ψ j || = ||φ j || = ||r|| = ||g|| = 1. We define
the perturbed singular value: σ j,ε,L ≡ σ j (ψ j,ε ) and σ j,ε,H ≡ σ j (φ j,ε ). We may then derive the bounds
on the error induced by the ε small perturbation in the singular modes:

|σ j,ε,L − σ j |
σ j

� εσ j ||L||, (79)

|σ j,ε,H − σ j |
σ j

� ε
σ1

σ j
. (80)

The details of the derivation are included in Appendix E. We can perform a similar analysis to
investigate the sensitivity of the predicted forcing modes to perturbations in the response modes and
vice versa:

φ j,ε,ψ ≡ σ j,ε,LL(ψ j + εr), (81)

ψ j,ε,φ ≡ σ j,ε,H H(φ j + εg). (82)

Here the σ j,ε,L and σ j,ε,H are the same as defined above. The error in the resolvent modes may be
bounded as follows:

‖φ j,ε,ψ − φ j‖ � ε(σ j‖L‖ + 1)σ j‖L‖, (83)

‖ψ j,ε,φ − ψ j‖ � ε

(
σ1

σ j
+ 1

)
σ1

σ j
, (84)

where again we relegate the details to Appendix F. These results imply that as long as σ j/σ1 is
not too large an O(ε) perturbation to φ leads to an error of O(ε) in σ and φ; however, an O(ε)
perturbation in ψ leads to an error in σ and φ that is expected to be larger by a factor of σ j‖L‖.
To analyze how large the factor is expected to be we follow the analysis of Symon et al. [13] and
consider the spectral decomposition of L = V�V−1 which allows us to to rewrite Eq. (79) as

|σ j,ε,L − σ j |
σ j

� εκ
σ j

σmin
� εκ

σ1

σmin
, (85)
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FIG. 15. Top row: relative error in singular value, normal(c = 0): b/a = 1.5 (a), b/a = 50 (b), nonnormal:
c/a = 0.1 (c), c/a = 5 (d). Bottom row: relative error in singular modes, normal(c = 0): b/a = 1.5 (e), b/a =
50 (f), nonnormal: c/a = 0.1 (g), c/a = 5 (h). Color code: error due to perturbation to ψ (solid black), error
due to perturbation to φ (solid red), and derived upper bound (dashed green).

where

σmin ≡ min
σ j∈�(H)

σ j =
[

max
λ j∈�(L)

(λ j )

]−1

(86)

is the minimum singular value of the resolvent and κ ≡ ‖V‖‖V−1‖ is the condition number. The
latter is always greater than one and quantifies the nonorthogonality of the eigenvectors, and thus
the nonnormality of the operator. This nonnormality leads to the phenomenon of pseudoresonance,
where small perturbations to the operator lead to large perturbations to the eigenvalues [48]. Thus,
there are two mechanisms which lead to an increased sensitivity of singular values and forcing
modes to perturbations in the response modes. First, the relative resonant amplification of the
mode quantified by σ j/σmin, and second, the pseudoresonant amplification of the linear dynamics
quantified by κ .

A. Perturbation analysis of a simplified example

To illustrate the effects of resonant and pseudoresonant amplification on the error in singular
values and singular modes we compute |σ1,ε,L − σ1|, |σ1,ε,H − σ1|, |φ1,ε,L − φ1|, and |ψ1,ε,H − ψ1|
for the model operator

L =
[

a c
0 b

]
(87)

for a range of ε. To test the resonant amplification, we compare the error in singular values for
normal operators L with the parameters set to [a, b, c] = [1, 1.5, 0] and [a, b, c] = [1, 50, 0]. To test
the pseudoresonant effects, we introduce and vary the off-diagonal term c that makes L nonnormal.
We compare [a, b, c] = [1, 1.5, 0.1] and [a, b, c] = [1, 1.5, 5]. In each case we set the perturbation
vectors r and g to be orthogonal to ψ1 and φ1, respectively. The error in singular values is plotted
in the top row of Fig. 15 and the error in the singular modes is plotted in the bottom row of Fig. 15.
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These plots reveal that, as expected, the error grows with ε, but, when the resonant or pseudoresonant
effects are increased, the error due to a perturbation in ψ is greater by several orders of magnitude
than the error due to perturbations in φ. The error in singular modes is proportional to ε as predicted
by the derived error bounds, while for small ε the error in singular values actually grows as ε2. This
is due to the fact that for this toy problem the perturbation is chosen to be orthogonal to the singular
vectors which causes the O(ε2) contribution to dominate.

B. Implications and limitations

This analysis illustrates an inherent drawback of the proposed VRA based method. The benefits
of circumventing the inversion of the linear dynamics come at the cost of losing the directional
amplification of the resolvent operator. Since H = L−1, the largest singular values of H correspond
to the smallest singular values of L and vice versa. Thus, the action of L on the response modes, as
in Ref. (13), amplifies the higher-order forcing modes. Furthermore, the greater the singular value
separation of H, the more difficult it becomes for spectral decomposition algorithms to disambiguate
the desired modes from numerical artifacts and other spurious modes. This marks a difference
between VRA and RA algorithms that approximate the SVD with matrix sketching where the
convergence is improved when H is low rank [25].

Furthermore, since our method relies on multiplication by the generally nonnormal linear op-
erator L to recover the forcing modes through Eq. (13), the VRA approximation of these forcing
modes is susceptible to errors if κ (L) is large. Although we note that since the matrices in Eq. (22)
are normal, the VRA based estimation of the resolvent response modes is robust to the nonnormality
of the linear dynamics.

Another factor leading to the increased error in the singular values and forcing modes we have
observed is that the continuous linear differential operators being analyzed have unbounded spectra.
Therefore, the maximum eigenvalue of the discretized operator L ∈ Cn×n grows with its size n. In
particular, we expect the maximum eigenvalue of second-order differential equations like the ones
considered here to scale with n2. However, depending on the numerical discretization used, the
largest eigenvalues may be spurious, as in the case of Chebyshev differentiation matrices, where the
largest eigenvalue scales with n4 for these second order differential equations [49]. This implies that
the VRA reconstruction of the singular values and forcing modes becomes increasingly sensitive to
errors in the response modes as the number of basis elements grows.

These are noteworthy limitations of our proposed method since the cost-saving potential of
the proposed method is greatest for larger systems and, in many flows of interest, the resolvent
operator is, in fact, low rank. Nonetheless, in most cases the aim of equation-driven modal analysis
techniques such as resolvent analysis is to identify coherent structures or obtain an efficient
modeling basis [15,50,51]. In these cases the resolvent response modes, which our method can
predict independent of condition number or singular value separation, are of primary interest. In the
resolvent formulation of the nonlinear NSE, the forcing modes arise through their projection onto
the nonlinear interaction of the response modes: 〈φ,ψ · ∇ψ〉 [7,51]. As discussed in Sec. VI, the
error in the forcing modes arises due to higher-order ( j � 1) response modes with very small σ j

being amplified through the action of L. However, since these higher-order modes are not expected
to be dynamically relevant [52], especially if the resolvent is low rank, they generally will not have
significant projection onto the actual nonlinear interaction of the response. This may, in some cases,
ameliorate the practical implications of the error in forcing modes since even if there is significant
error in φ, the error in the relevant metric, 〈φ,ψ · ∇ψ〉, is expected to be small.

VII. DISCUSSION

The examples presented in this paper illustrate the avenues of progress enabled by the VRA
formulation of resolvent analysis. First, circumventing the inversion of the linear operator in the
definition of the resolvent modes allows for analytical manipulation. This facilitates the derivation
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FIG. 16. Comparison of the matrix operations and computational complexity involved in the VRA and
SVD-based computations of resolvent modes. VRA operations are shown in blue, SVD operations are shown
in red.

of scaling laws and parametric dependencies as we have done in Sec. III C. Second, from a numerical
point of view, the VRA method avoids the calculation of a matrix inverse and applying expensive
linear algebra decompositions to the matrices. Figure 16 outlines the matrix operations and com-
putational complexity of the VRA method presented herein and the direct SVD. For a matrix of
dimension n × n, calculating the inverse, performing an LU decomposition, and applying an SVD
are each O(n3) operations. The resolvent matrix, calculated as the inverse of a matrix, is in general,
a dense matrix which leads to large memory costs in terms of storage. Even avoiding the inverse
by applying the LU decomposition as explained in Sec. V would require storage of large dense
triangular matrices. Typically when the Linearized NS (LNS) operator is discretized, the resulting
matrix is sparse. Sparse matrices have the advantage that only their nonzero elements are stored
and sparse matrix operations can be computed more efficiently. Even though the discretizations
described herein use spectral methods, the discretized LNS operator described in Sec. V, L2D, boasts
sparsity of less than 1%. In the VRA method, the sparse discretized LNS operators are only used for
matrix multiplication with the basis to create the r × r matrices M and Q for the eigenvalue problem
in Eq. (22). Since the analytical form of the LNS operator is known, the matrix multiplications can
be avoided altogether if the basis is defined with analytic functions, as demonstrated in Sec. III C.
Although the resulting matrices M and Q are dense, the eigenvalue problem can be solved almost
trivially with standard methods as it scaled with O(r3) where r � n. Even if the number of basis
elements, r, becomes large, the eigenvalue problem could be solved with approximate methods like
the Arnoldi Algorithm with the Shift and Invert method.

As discussed in Sec. VI, the VRA method is prone to error in predicting the singular values and
forcing modes when there is strong nonnormality or the operator is very low rank. In this sense, the
herein proposed VRA method provides a natural compliment to the recently developed randomized
resolvent analysis method proposed by Ribeiro et al. [25], which is particularly effective when
the resolvent is low rank. However, we reiterate that response modes can be modeled accurately
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regardless of these properties and at a fraction of the cost of a direct SVD. Furthermore, it is these
response modes that are generally of primary interest. They have been shown to be an efficient
basis for a variety of flows including turbulent jets [16,17], boundary layers [11,12], exact coherent
states, [15,53], and others. Notably, Sharma et al. [53] showed that using five response modes per
Fourier mode for the N3L lower branch solution in a pipe, fluctuations were reconstructed retaining
98% of the fluctuation energy. Using only one response mode per Fourier mode, they were able to
reconstruct 95% of the fluctuation energy. Towne et al. [10] also studied the similarities between
RA and SPOD. They found that the response modes and the data driven SPOD modes are equivalent
when there is uncorrelated, white-noise forcing. This implies that in certain conditions RA could be
used as a predictive tool to model near wall structures in the simulation of high Reynolds number
wall bounded flows, where large numerical resolution is needed to resolve the near wall structures.
Furthermore, since the proposed method is derived directly from the definition of the forced linear
system, the method is not fundamentally limited to linear systems or a certain type of input basis.

The primary limitation is that the spatial support of the input basis needs to overlap with
the spatial support of the resolvent modes being estimated. In particular, we saw in Sec. V B
that a sufficiently strong mismatch between the boundary conditions of the input basis and the
linear operator can lead to significant errors in the VRA reconstruction. In general, a critical layer
mechanism (as in Sec. IV) or scaling laws (as in Sec. V) dictate the spatial localization and length
scale of resolvent modes and thus one can reliably predict this region of support a priori. However,
for flows where the general region of spatial support can not be predicted, a larger input basis with a
broader range of wave numbers and spatial support may be necessary. We found the most important
parameter is the number of retained spatial wave numbers, Nkz or Nkx , and if the largest relevant wave
number is not known a priori it may be necessary to progressively increase these parameters until
convergence is obtained. Additionally, unlike some recent equation-free methods such as Herrmann
et al. [21], our method relies on knowledge of the linearized dynamics of the system, which in some
cases may not be known a priori. In this regard the primary challenge is generally lack of knowledge
of the mean flow. However, recently several authors have developed methods to efficiently estimate
the mean dynamics for a range of flows [39,54,55]. Such techniques could be combined with the
method presented in this work to efficiently compute resolvent modes in situations were the mean
dynamics are unknown, or would be costly to compute directly, although this is beyond the scope
of this work.

VIII. CONCLUSIONS

In this work we have suggested an alternative conceptual framework based on the calculus
of variations from which to view resolvent analysis. In this variational framework the resolvent
response modes are defined as the stationary points of an operator norm subject to a relevant
norm constraint. We proved that this variational formulation is equivalent to the standard SVD-
based definition, and introduced a method to estimate the resolvent modes of complex systems as
expansions in lower-dimensional basis functions. The crucial advantage of this formulation and
the method presented herein is the lack of reliance on the inversion of the linear operator, which
from a theoretical point of view allows for easier analytical manipulation, and from a practical
point of view, enables drastic model reduction and leads to a significant reduction in computational
complexity.

The analytical advantages were illustrated on the example of streamwise constant structures
in a turbulent channel flow, where we derived a closed form solution to the Euler-Lagrange
equations governing the optimal resolvent mode. Resolvent modes have shown to encode physically
relevant features of turbulence [7], and therefore we believe the improved analytical tractability of
the variational formulation will open the door to the further understanding and discovery of the
underlying physics.

The numerical advantages were illustrated first for both a 2D/3C equilibrium solution in plane
Couette flow and a streamwise developing turbulent boundary layer. In the first example we
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showed that if the model basis satisfies the same boundary conditions as the full system, the VRA
model converges to the true modes as more basis are included in the VRA model. In the second
case we showed that even if the basis does not satisfy the correct boundary conditions, and the
streamwise development of the mean flow is not too strong, the VRA model is able to reproduce
the characteristic features of the SVD-based modes with a reduction of order of over two orders
of magnitude resulting in an order of magnitude reduction in computation time and a 40 − 75%
reduction in RAM usage. As formulated here, the current method fails for flows with very strong
streamwise development. In such cases, a more carefully chosen modeling basis, which already
encodes some of the anticipated streamwise development, is likely needed for our method to be
viable. This is a focus of ongoing research.

For the examples considered here the proposed method accurately modeled the resolvent re-
sponse modes, however we observe significant error in the reconstruction of the forcing modes.
We preformed a sensitivity analysis and demonstrated that the error in the VRA estimate of the
forcing modes is due to the directional amplification of the resolvent and is enhanced in situations
were the resolvent operator is very low rank or highly nonnormal. Nonetheless, we believe that this
conceptual approach to resolvent analysis can open the door for further analysis of the NSE and
the discovery of new physics, as well as enabling the real time computation of resolvent modes
in applications such as experiments and simulations where the cost of the standard SVD-based
approach is prohibitive.
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APPENDIX A: VARIATION OVER COMPLEX FIELDS

The following derivation is an extension of the theory derived in Refs. [30,31]. Let J =
〈F (q, q∗,∇q,∇q∗)〉 ∈ R, where q = a + ib ∈ C∞, with a, b ∈ R∞. The functional J can equiva-
lently be written as J = 〈F (a, b,∇a,∇b)〉. The Euler-Lagrange equations defining stationary points
of J with respect to a and b are given by

δF

δa
≡ ∂F

∂a
− ∇ ∂F

∂∇a
= 0, (A1)

δF

δb
≡ ∂F

∂b
− ∇ ∂F

∂∇b
= 0. (A2)

Since F ∈ R a simple change of variables to q and q∗ leads to

δF

δq
= 1

2

(
δF

δa
− i

δF

δb

)
, (A3)

δF

δq∗ = 1

2

(
δF

δa
+ i

δF

δb

)
, (A4)

which implies that

δF

δa
= δF

δb
= 0 ⇒ δF

δq
= δF

δq∗ = 0. (A5)

Furthermore, since F , a, and b are real functions it follows that

δF

δq
= 0 ⇒ δF

δa
= δF

δb
= 0, (A6)

δF

δq∗ = 0 ⇒ δF

δa
= δF

δb
= 0, (A7)
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FIG. 17. Absolute value of the Orr-Sommerfeld eigenfunctions v j ( j = 1...8) for kx = 0, kz = 6, and ω =
0.1.

and therefore either of the above conditions is necessary and sufficient for stationarity.

APPENDIX B: ORR-SOMMERFELD EIGENFUNCTIONS

The Orr-Sommerfeld eigenvalue problem for kx = 0 on the domain y ∈ [−1,+1] is given by

−iω∇2v j − 1

R
∇4v j = λOS

j ∇2v j (B1)

subject to the boundary condition v(±1) = vy(±1) = 0. This problem has been analyzed by several
authors including Jovanović and Bamieh [2], Dolph and Lewis [34], and the solutions are found to
be

v j (y; kz ) = Aj{cos[γ j (y + 1)] − cosh[kz(y + 1)]}
+Bj{sin[γ j (y + 1)] − γ jk

−1
z sinh[kz(y + 1)]},

(B2)

λOS
j = 1

R

(
γ 2

j + k2
z

) − iω, (B3)

where the γ j are defined as the roots of the following equation:

cos(2γ ) cosh(2kz ) −
(

k2
z − γ 2

2kzγ

)
sin(2γ ) sinh(2kz ) − 1 = 0. (B4)

The relative amplitudes Aj and Bj are defined for each γ j as the solutions of the following system:[
cos(2γ j ) − cosh(2kz ) sin(2γ j ) − (γ jk−

z 1) sinh(2kz )
−γ j sin(2γ j ) − kz sinh(2kz γ j (cos(2γn) − cosh(2kz ))

][
Aj

Bj

]
=

[
0
0

]
. (B5)

In Fig. 17 we plot the eigenfunctions v j for the same parameters plotted in Sec. III: kx = 0, kz = 6,
and ω = 0.1.

APPENDIX C: SINGULAR VALUE SCALING

The resolvent operator we consider in Sec. III is defined as

H =
[

LOS 0
Ūy LSQ

]−1

=
[

L−1
OS 0

−L−1
SQŪyL−1

OS L−1
SQ

]
. (C1)
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FIG. 18. Select elements of input resolvent basis: q(y, z) = ψkx ,kz ,ω, j (y)eikzz for kx = 0.5, ω = 0.375, j = 1
and Lzkz/2π = 1 (a, e), 2 (b, f), 3 (c, g), and 4 (d, h). Top row: v, bottom row η.

Noting the definitions Eqs. (25) and (24), if ω = 0, then H may be written in the form

H =
[

RHvv 0
R2Huv RHuu

]
, (C2)

where Hvv, Huv, Huu �= f (R). This reveals that as R → ∞, ‖H‖ = σ1 → R2‖Huv‖ ∼ R2. If we
further consider the limit kz → ∞ and rescale the wall normal coordinate Y = kzy, then we find

‖Huv‖ = ∇−2Ūy∇−2 = k−3
z ∇̃−2Ūy∇̃−2, (C3)

where ∇̃2 = ∂2

∂Y 2 − 1. Thus for kx = 0 and as ω → 0, R → ∞ and kz → ∞ we find that

σ1 ∼ R2k−3
z . (C4)

A more in depth analysis can be found in Ref. [2].

APPENDIX D: SELECT INPUT BASIS ELEMENTS

In this section we plot a selection of representative input basis elements used in the 2D examples
presented in this work. Figure 18 shows four of the local resolvent modes used in the VRA
reconstruction of the 2D resolvent modes computed about EQ1 in Sec. IV. Figure 19 show two of
the local resolvent modes used in the reconstruction of the 2D resolvent modes computed about the
ZPGTBL in Sec. V. Figure 19(a) represents a “wall-attached” mode used in the reconstruction of the
global resolvent inner-mode with [kz, ω] = [44.0, 1.8]. Figure 19(b) represents a “wall-detached”
mode used for the outer-mode with [kz, ω] = [11.0, 2.3].

APPENDIX E: SINGULAR VALUE SENSITIVITY

The true singular value/mode pairs satisfy

σ 2
j = (Hφ j )

H Q(Hφ j ) = [(Lψ j )
H Q(Lψ j )]

−1. (E1)

013905-31



BARTHEL, GOMEZ, AND MCKEON

FIG. 19. Select elements of input resolvent basis: q(x, y) = ψkx ,kz ,ω, j (y)eikxx for [kz, ω] =
[44.0, 0.65U∞/kx] (a) and [kz, ω] = [11.0, 0.8U∞/kx] (b). In both cases Lxkx/2π = 3 (top panel) and
12 (lower panel), and in all cases j = 1.

Consider a perturbation to either ψ j or φ j :

ψ j,ε =ψ j + εr,

φ j,ε =φ j + εg,
(E2)

where ||ψ j || = ||φ j || = ||r|| = ||g|| = 1 and ε � 1. The error in the singular value due to a
perturbation in ψ may be bounded as follows:

σ−2
j,ε,L = [L(ψ + εr)]H Q[L(ψ + εr)] = σ−2

j + 2ε�{(Lψ)H Q(Lr)} + O(ε2). (E3)

Using the definition Lψ j = σ−1
j φ and rearranging slightly we find

σ j,ε,L = σ j (1 + 2εσ j�{(φ)H Q(Lr)})−0.5. (E4)

Taylor expanding for small ε gives

σ j,ε,L = σ j − εσ 2
j �{(φ)H Q(Lr)} + O(ε2). (E5)

Further, applying the Cauchy-Schwartz inequality and noting that ‖φ j‖ = ‖r‖ = 1 leads to

|σ j,ε,L − σ j‖
σ j

� εσ j‖L‖. (E6)

Conversely, the error in the singular value due to a perturbation in φ may be bounded as follows:

σ 2
j,ε,H = [H(φ + εg)]H Q[H(φ + εg)] = σ 2

j + 2ε�{(Hψ)H Q(Hg)} + O(ε2). (E7)

Using the definition Hφ j = σ jψ and rearranging slightly we find

σ j,ε,H = σ j
(
1 + 2εσ−1

j �{(ψ)H Q(Hg)})0.5
. (E8)

Taylor expanding for small ε gives

σ j,ε,H = σ j + ε�{ψH Q(Hg)} + O(ε2). (E9)

Again, applying the Cauchy-Schwartz inequality and noting that given that ‖ψ j‖ = ‖g‖ = 1 and
‖H‖ = σ1 leads to

|σ j,ε,H − σ j‖
σ j

� ε
σ1

σ j
. (E10)
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APPENDIX F: SINGULAR MODE SENSITIVITY

Here we derive bounds on the sensitivity of φ j :

φ j,ε,ψ = σ j,ε,LL(ψ j + εr) = σ j,ε,LLψ j + εσ j,ε,LLr. (F1)

Again, we assume ‖ψ j‖ = ‖r‖ = 1 and ε � 1. Subtracting φ j = σ jLψ j from both sides, and
rearranging the right-hand side slightly results in

φ j,ε,ψ − φ j = (σ j,ε,L − σ j )Lψ j + ε(σ j,ε,L − σ j )Lr + εσ jLr. (F2)

We note from the results of Appendix E that (σ j,ε,L − σ j ) ∼ ε which allows us to write

φ j,ε,ψ − φ j = (σ j,ε,L − σ j )Lψ j + εσ jLr + O(ε2). (F3)

Next, we analyze the norm of both the left- and right-hand side, which upon application of the
triangle inequality, the Cauchy-Schwartz inequality, and Eq. (E6) results in

‖φ j,ε,ψ − φ j‖ � ε(σ j‖L‖ + 1)σ j‖L‖. (F4)

The same analysis may be applied to derive bounds on the sensitivity of ψ j ,

ψ j,ε,φ ≡ σ−1
j,ε,H H(φ j + εg) = σ−1

j,ε,H Hφ j + εσ−1
j,ε,H Hg, (F5)

where again we assume ‖φ j‖ = ‖g‖ = 1 and ε � 1. Subtracting ψ j = σ−1
j Hφ j from both sides,

and rearranging the right-hand side slightly results in

ψ j,ε,φ − ψ j = σ j − σ j,ε,H

σ jσ j,ε,H
Hφ j + ε

σ j − σ j,ε,H

σ jσ j,ε,H
Hg + εσ−1

j Hg. (F6)

Taylor expanding about ε = 0 and noting that (σ j,ε,H − σ j ) ∼ ε results in

ψ j,ε,φ − ψ j = σ j − σ j,ε,H

σ 2
j

Hφ j + εσ−1
j Hg + O(ε2). (F7)

Next we analyze the norm of both the left- and right-hand side, which upon application of the
triangle inequality, the Cauchy-Schwartz inequality, and Eq. (E10) results in

‖ψ j,ε,φ − ψ j‖ � ε

(
σ1

σ j
+ 1

)
σ1

σ j
. (F8)
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