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Dynamics of flags over wide ranges of mass and bending stiffness
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There have been many studies of the instability of a flexible plate or flag to flapping
motions, and of large-amplitude flapping. Here we use inviscid simulations and a linearized
model to more generally study how key quantities—mode number (or wave number),
frequency, and amplitude—depend on the two dimensionless parameters: flag mass and
bending stiffness. In the limit of small flag mass, flags perform traveling wave motions
that move at nearly the speed of the oncoming flow. The flag mode number scales as the
−1/4 power of bending stiffness. The flapping frequency has the same scaling, with an
additional slight increase with flag mass in the small-mass regime. The flapping amplitude
scales approximately as flag mass to the 1/2 power. For large flag mass, the dominant
mode number is low (0 or 1), the flapping frequency tends to zero, and the amplitude
saturates in the neighborhood of its upper limit (the flag length). In a linearized model, the
fastest growing modes have somewhat different power law scalings for wave number and
frequency. We discuss how the numerical scalings are consistent with a weakly nonlinear
model.

DOI: 10.1103/PhysRevFluids.7.013903

I. INTRODUCTION

There have been many experimental and theoretical studies of the flutter of flexible plates or
flags in recent years [1–18], following earlier work in the field of aeroelasticity [19–21]. Recent
extensions include multiple-flag or flag-boundary interactions [22–27], three-dimensional effects
[11,28–30], inverted flags [31–33], and applications to energy harvesting [34–38] and heat transfer
[39–44]. Many of these studies addressed the stability problem: determining the region in parameter
space where a flag in a uniform flow becomes unstable to transverse oscillations. Many studies
have also characterized the flag dynamics that occur after the instability grows to large-amplitude
flapping, including the transitions from periodic to chaotic motions [12,45,46]. Well-resolved
viscous simulations can be expensive at high Reynolds number (Re), making it challenging to sweep
large regions of parameter space. Inviscid fluid-structure interaction simulations are generally much
less expensive than high-Re viscous solvers because quantities only need to be tracked on solid
boundaries and vortex sheet wakes. The computational costs are greatly reduced when the vortex
sheet wakes are approximated in the far field. Therefore, inviscid models are suitable for computing
solutions throughout the regions of parameter space where their assumptions are physically valid.
Some of the challenges of inviscid models compared to viscous solvers include less theoretical and
computational development for fluid-structure interaction, a more limited range of physical validity,
and less robustness in some cases. Chen et al. [46] developed a vortex panel model to study the
inviscid dynamics of a flapping flag at a particular ratio of flag-to-fluid mass, and over a range of
dimensionless flow velocity starting at the stability threshold and increasing by a factor of almost
20. As velocity is increased above the stability threshold, the flag flaps in a range of periodic states
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FIG. 1. Example of flag snapshots (gray and green lines) and vortex sheet wake (blue line) for R1 = 10−2.5

and R2 = 10−5.05. The green and blue lines are the flag and wake positions at t = 9.5. The gray lines are the
flag positions at six equally spaced times from t = 5.375 to 9.0 in increments of 0.725.

with a single dominant frequency, and then at a certain velocity, jumps to a mode with a much higher
flapping frequency. Then a sequence of quasiperiodic bifurcations leads to a range of chaotic states,
followed by a range of periodic states with a higher bending mode, and a sequence of bifurcations
leading to chaotic flapping. In all, five ranges of periodic states were observed, one with up-down
asymmetry, interspersed with period-doubling and quasiperiodic bifurcations, and three ranges of
chaotic states. During this sequence of states, the flapping amplitude first increases by about a factor
of 2, then decreases by about the same factor. The frequency mostly increases, by about a factor of
2.

In the present work, we use a similar inviscid model [45,47] to probe the flag dynamics, varying
dimensionless bending stiffness (equivalent to varying dimensionless velocity) and varying the flag-
to-fluid mass ratio. Rather than focusing on a single mass ratio, we study the flag dynamics over
6.5 orders of magnitude of the mass ratio. At intermediate mass ratios, we observe periodic and
chaotic states similar to those in [46]. We do not study the sequences of states in detail here; our
focus instead is on determining to what extent basic dynamical quantities—amplitude, frequency,
and flapping mode number—can be approximated by simple scaling-law formulas. Most studies
have focused on flapping in low bending modes (i.e., with few deflection peaks), which are easier to
study experimentally and computationally. Large fabric flags may have much smaller dimensionless
bending rigidities than those studied in most previous experiments, and in field observations they
may exhibit traveling waves of deflection with fine wrinkled features corresponding to very high
bending modes [48–50]. Of particular interest here is the dynamics in the limit of very light and
flexible flags, where we find that stable high-mode-number, high-frequency, and small-amplitude
(but nonlinear) bending modes can occur.

II. MODEL

We consider a thin plate or flag clamped at its leading edge in an oncoming flow (see Fig. 1). A
sequence of flag snapshots are shown in gray, and in green at the latest time, together with the vortex
sheet wake in blue, emanating from the flag’s trailing edge. Because the flow is inviscid, the vorticity
remains confined to vortex sheets along the flag and the wake, which correspond to attached and
separated viscous boundary layers in the limit of zero thickness. A uniform horizontal flow with
velocity Uex has been applied at infinity upstream, and the flag, wake, and flow evolve under the
following system of equations which we first summarize: Euler’s equations of fluid momentum
balance; the no-penetration condition on the flag; a mechanical force balance between flag bending
stiffness, inertia, and fluid pressure; Kelvin’s circulation theorem; the Birkhoff-Rott equation for free
vortex sheet dynamics; and the Kutta condition governing vorticity production at the flag’s trailing
edge. We will present the most important equations here and refer to previous work [45,47,51,52]
for the remainder and additional background information. In the following, we nondimensionalize
lengths by half the flag length, L, velocities by the imposed flow speed U , and densities by the fluid
density ρ f .

013903-2



DYNAMICS OF FLAGS OVER WIDE RANGES OF MASS …

The position of the (inextensible) flag is described as ζ (s, t ) = x(s, t ) + iy(s, t ),−1 � s � 1,
a curvilinear segment of length 2 in the complex plane, parametrized by arc length s and time t .
The flow is an inviscid potential flow, so at each instant it may be computed in terms of quantities
on the flag (the boundary of the flow domain) and on the vortex sheet wake. The vortex sheet has
two parts: a “bound” part, coincident with the flag itself, for −1 � s � 1, and a “free” part, for
1 < s < 1 + Lw, representing a vortex wake of length Lw that emanates from the flag’s trailing edge
at s = 1. On both parts, the vortex sheet’s strength is denoted γ (s, t ) and its position is denoted
ζ (s, t ) (the same as the flag’s position for −1 � s � 1). The bound vortex sheet strength evolves
to satisfy the no-penetration condition on the flag (but not the no-slip condition, since the flow is
inviscid),

Im[e−iθ (s,t ) ∂tζ (s, t )] = Im

{
e−iθ (s,t )

[
1 + P

∫ Lw+1

−1
γ (s′, t )K (s, s′, t ) ds′

]}
, −1 � s � 1. (1)

This condition sets the component of the flag’s velocity normal to the flag [the left-hand side of
(1)] equal to the same component of the flow velocity [the right-hand side of (1)]. Here, θ (s, t ) is
the tangent angle of the flag. The unity term inside the parentheses on the right-hand side is the
uniform background flow and K (s, s′, t ) is the complex flow velocity at ζ (s, t ) due to a point vortex
of strength unity located at ζ (s′, t ). The special integral symbol in (1) denotes a principal-value
integral, due to the ∼1/(s − s′) singularity in K (s, s′, t ). The kernel is given by

K (s, s′, t ) = 1

2π i

1

ζ (s, t ) − ζ (s′, t )
, −1 � s, s′ � 1. (2)

We use a regularized version of the kernel on the free vortex sheet (s′ > 1), which allows for smooth
vortex sheet dynamics [53]:

K (s, s′, t ) = 1

2π i

ζ (s, t ) − ζ (s′, t )

|ζ (s, t ) − ζ (s′, t )|2 + δ(s′, t )2
, −1 � s � 1, s′ > 1, (3)

where the overbar gives the complex conjugate, and we set

δ(s′, t ) = δ0
[
1 − e−|ζ (1, t ) − ζ (s′, t )|2/4δ2

0
]
, (4)

with δ0 = 0.2. This regularization tapers to zero at the trailing edge, s′ = 1, so K (s, s′, t ) is
continuous there. The tapered regularization allows for smooth vortex sheet dynamics away from
the trailing edge, while decreasing the effect of regularization on the generation of vorticity at the
trailing edge [54]. At the trailing edge, the vortex sheet is advected away from the flag by the
uniform background flow, so it remains in the less regularized region near s′ = 1 for a time that is
too short to allow chaotic dynamics to develop. In [47,54], we found that the body deflection and/or
wake vorticity vary by a few percent or less when δ0 is 0.2 or smaller in the tapered distribution (4).

The vortex sheet strength γ (s, t ) is coupled to the pressure jump [p](s, t ) across the flag using a
version of the unsteady Bernoulli equation [55,56],

∂tγ (s, t ) + ∂s{[μ(s, t ) − τ (s, t )]γ (s, t )} = ∂s[p](s, t ), −1 � s � 1. (5)

Here, μ(s, t ) is the component of the flow velocity tangent to the flag,

μ(s, t ) = Re

{
e−iθ (s,t )

[
1 + P

∫ 1+Lw

−1
γ (s′, t )K (s, s′, t ) ds′

]}
, (6)

and τ (s, t ) is the flag’s velocity component tangent to itself,

τ (s, t ) = Re[e−iθ (s,t )∂tζ (s, t )]. (7)

The unsteady Euler-Bernoulli beam equation couples the pressure loading to flag inertia and
bending stiffness (spatially uniform),

R1∂ttζ + R2∂s[∂sκ (s, t )ieiθ (s,t )] − ∂s[T (s, t )eiθ (s,t )] = −[p]ieiθ (s,t ). (8)
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Here, R1 and R2 are the dimensionless material parameters for the flag,

R1 = ρsh

ρ f L
, R2 = B

ρ f U 2L3W
, (9)

where ρs is the mass per unit volume of the flag and h is its thickness. We assume that h/L is small,
but ρs/ρ f may be large, so R1 may assume any non-negative value. As stated previously, ρ f is the
mass per unit volume of the fluid and L is half the flag length. B is the flag bending stiffness, U
is the uniform background flow speed, and W is the out-of-plane width of the flag. The flow is
assumed to be two dimensional (2D), so it is uniform in the out-of-plane direction. In (8), κ = ∂sθ

is the beam’s curvature and T (s, t ) is the tension in the flag, arising from its inextensibility. T is
eliminated in terms of κ by integrating the tangential component of (8) from the free end of the flag
(s = 1) where T = 0 (and κ = ∂sκ = 0). The normal component of (8) is then used to relate [p] to
the flag shape and motion given by ζ and κ , with “clamp” boundary conditions described below in
Eq. (10). Further details are given in a previous work [47]. We also refer the reader to this work for
information on how the vorticity in the free vortex sheet is generated at the trailing edge using the
Kutta condition, and advected in the flow using the Birkhoff-Rott equation.

We evolve the flag and flow using the equations just presented, as an initial-boundary-value
problem, with the flag starting in the horizontal state with uniform flow velocity Uex at t = 0. The
flag’s position and tangent angle at its upstream edge (s = −1) are given a slight perturbation from
the horizontal state that is significant only near t = 0:

ζ (−1, t ) = i0.02(t/0.2)3e−(t/0.2)3
,

θ (−1, t ) = 0.02(t/0.2)3e−(t/0.2)3
, t � 0. (10)

We then compute the flag and flow for t > 0. For some (R1, R2) values, as t exceeds 1 the
flag deflection decays exponentially with time, and tends to the flat, horizontal state—a stable
equilibrium. For other (R1, R2) values, the flag deflection grows rapidly (sometimes exponentially)
with time, in which case the flat state is unstable.

In the following section, we characterize the large-amplitude dynamics of the flag (mode number,
dominant frequency, and amplitude) and how they depend on the parameters. We will see that in
some cases, the steady-state dynamics are periodic or chaotic with a deflection amplitude that is very
small compared to the flag length—much smaller than that in Fig. 1 in some cases. Although the
deflection amplitude is small, the initial instability has reached saturation due to nonlinear effects.

III. SIMULATION RESULTS

In Fig. 2, we show typical flag snapshots arranged approximately by their locations in (R1, R2)
space. The horizontal midpoints of the flags are located above the corresponding R1 (mass) values,
labeled on the horizontal axis at the bottom, and ranging from 10−4.5 to 102. The smaller values
correspond to flags with very small mass density, which could be less than that of the surrounding
fluid, depending on the flag thickness. Although the flag thickness is approximated as zero in the
flow plane, it is assumed to be small but nonzero in the physical parameters, corresponding to
nonzero mass density and bending stiffness. Above each R1 value, one to four sets of flag snapshots
are stacked in a vertical column, and the corresponding values of R2 (bending stiffness) are marked
by the positions of the colored dots below the column of snapshots, relative to the R2 axis on
the left side. The dots lie on a gray line that marks the range of R2 values simulated at that R1,
generally covering two to three orders of magnitude of R2 decreasing from the stability boundary,
but a smaller range at the smallest R1 value. In each column, the uppermost dot and uppermost set
of snapshots are close to the stability boundary, and periodic flapping generally occurs there. Lower
sets of snapshots correspond to periodic flapping in higher bending modes (10−1.5 � R1 � 10−0.5)
or, more commonly, chaotic flapping that can be up-down asymmetric in some cases (e.g., lower
sets of snapshots at R1 = 100 and 100.5).
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FIG. 2. Sets of flag snapshots at various combinations of flag mass (R1) and bending stiffness (R2). Each
set of snapshots is scaled vertically to enhance visibility. The true maximum and minimum vertical deflections
(relative to the horizontal scales of the flags) are shown by the black scale bars to the left of each set of
snapshots. Beneath each of column of flags is a column of dots of the same color, at the corresponding (R1, R2)
values.

Behind each colored snapshot is a set of many gray snapshots that indicates the overall flapping
motion or envelope. At small R1 (� 10−2), the envelope width grows almost monotonically from the
clamped end, with a profile that changes from linear or concave-down at larger R2 to concave-up at
smaller R2. At these smaller R2, the envelope width is relatively smooth compared to the individual
colored snapshots, which show an irregular series of spatial oscillations of varying amplitude, like
wave packets. The vertical deflections are scaled by a constant factor for each set of snapshots,
to make them more visible. The true maximum and minimum vertical deflections, relative to the
horizontal scales of the flags, are shown by the black scale bars to the left of the clamped leading
edges of each flag. The deflection amplitudes become progressively smaller as R1 decreases, and
are barely visible at the smallest R1.

At the largest R1, the flag undergoes small oscillations about a state with nearly vertical tangent
at the trailing edge. Here one would expect that flow separation would also occur on the outside
of the curved portion of the flag, violating the assumption that separation is confined to the trailing
edge. This may also occur for other cases with R1 � 101, where the deflections are large and in some
cases the tangent is directed upstream at the trailing edge. In general, viscous simulations would be
needed to know to what extent the trailing edge separation assumption is violated. In some cases,
viscous flag simulations have shown that the boundary layer can remain attached even with very
large amplitude flapping and an almost vertical tangent at the trailing edge at certain instants [25],
unlike for a static body fixed in a similar configuration.

Having presented examples of typical flag motions, in Fig. 3 we show how three main dynamical
quantities vary with R1 and R2 in the same region. The values are plotted as colored dots, one per
simulation. Figure 3(a) shows the dominant Fourier mode of the vertical deflection, time averaged.
We call this quantity the “mode number,” and it is

K ≡ arg maxK ′ |ŶK ′ |, where y(s) =
+∞∑

K ′=−∞
ŶK ′ei2πK ′s. (11)
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(a)

(c)

(b)

FIG. 3. Measures of flag dynamics across (R1, R2) space. (a) Mean mode number, defined by (11), the time
average of the dominant Fourier component of the flag deflection. (b) Mean flapping frequency, defined as
twice the reciprocal of the time-average duration between sign changes of the free end deflection. (c) Mean
flapping amplitude, defined as the root-mean-square deflection of the flag’s free end.

The mode number K can be expressed as a wave number k via 2πK = k. Although the vertical
deflection is not a periodic function of s, it has wavelike features in many cases, e.g., in the left half
of Fig. 2. We find that the dominant Fourier component of y(s) on the flag has a wavelength close to
those of the oscillations on the flag. In Fig. 7 in the Appendix, we compare each flag snapshot in the
topmost sets of flag snapshots from the left seven columns in Fig. 2, 10−4.5 � R1 � 10−1.5, with the
corresponding dominant Fourier modes. The spacings between the peaks of the dominant Fourier
modes are seen to closely approximate the spacings for the flags’ deflection oscillations (black,
green, yellow, orange, and red in Fig. 7). We also considered using the spacing between deflection
peaks as a measure of the flag deflection mode. However, for the motions in Fig. 2 that are somewhat
chaotic, there are sometimes closely spaced peaks with just a small decrease in deflection between
them. Since the Fourier modes depend on the global shape of the deflection curve, they are less
sensitive to slight local perturbations than is the distance between deflection extrema. Figure 3(b)
shows the values of mean flapping frequency f . This is the reciprocal of the mean flapping period,
which is defined here as twice the mean duration between sign changes of the free end deflection.
Figure 3(c) shows the values of the mean flapping amplitude A, defined as the root-mean-square
deflection of the free end.

The upper boundary of the colored region in each panel is the stability boundary in R1−−R2

space. The boundary reaches a plateau for R1 � 101, and is upward sloping, with a variable slope at
smaller R1. Here, higher resolution studies have found that the boundary has a scalloped shape [57].
At the largest R1, the gray dots mark cases where the initial perturbation grew to a large amplitude,
but the flag motion then became very irregular, with stronger deformations than those in Fig. 2. The
computations failed to converge at a certain time step before a steady-state large amplitude motion
was reached, so steady-state quantities could not be calculated. This tends to occur at large R1 and
small R2.
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(a) (b)

(c) (d)

FIG. 4. Power law behaviors of measures of flag dynamics. (a) Mean flag mode number vs R2, for various
R1 (labeled by color; see legend at far right). (b) Mean flapping frequency vs R2, for various R1. (c) Flapping
amplitude (root-mean-square vertical displacement at the free end) vs R2, for various R1. (d) Flapping amplitude
vs R1, for various R2.

Figure 3(a) shows that as R1 decreases and as R2 decreases, the mean mode number generally
increases to a maximum of about 10 in the lower left portion of this region. On the right side, where
the mean mode number is less than 1, there are rapid changes from blue-green to dark-blue dots.
Here the deflection pattern does not have a regular series of oscillations (e.g., cases with R1 = 100.5

and 101 in Fig. 2), so at each time the dominant Fourier mode number is either 0 or 1. The time
average varies in the range [0, 1] as R2 decreases and the flag exhibits different types of periodic
and chaotic motions. Figure 3(b) shows that the mean frequency has a pattern of nearly monotonic
change with R1 and R2, similar to that of the mean mode number. At the largest R1, however, the
mean frequency continues to decrease, while the mean mode number saturates at an O(1) value.
This corresponds to slow flag oscillations in states with large deflections, as shown in the rightmost
columns of Fig. 2. Figure 3(c) shows that the root-mean-square (rms) amplitude is O(1) at large R1,
and progressively decreases to O(10−3) as R1 decreases to 10−4.5. At a fixed R1, and R2 decreasing
from just above the stability boundary value, the amplitude at first jumps to a nonzero value and
grows sharply, with a hysteretic transition to flapping [45,58]. The amplitude reaches a maximum
and then decreases in a series of complex transitions, as the flag flaps in higher modes and chaotic
states [46].

In Fig. 4, we plot the mode number, frequency, and amplitude values from Fig. 3 versus R2,
with a different color for each R1 value (shown at right). Figure 4(a) shows that the mean mode
number K scales approximately as R−1/4

2 for the smaller half of R1 values, [10−4.5, 10−1.5], ranging
from dark blue to light blue. The dots with different R1 values (different colors) mostly overlap in
this range, so the mode number is approximately independent of R1. Values are plotted with three
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FIG. 5. Flag deflections in the rest frame of the far-field flow. Plotted here are the topmost sets of flag
snapshots from the left seven columns in Fig. 2, with 10−4.5 � R1 � 10−1.5, with respect to x − t on the
horizontal axis (the rest frame of the fluid in the far field). Each set of snapshots is scaled vertically to make
the deflections visible.

different numbers of spatial grid points in the simulations, n = 121, 241, and 361 (except at the
smallest R1 = 10−4.5, where two n values, 361 and 481, were used). Although the largest n gives
the highest resolution, in some cases the simulations with smaller n ran for longer times, resulting
in a larger sample for the time averages. We plot the data for all the n values, with smaller dots
for smaller n, to show the degree of variation in these quantities as n varies in this range. At the
larger R1, i.e., [10−1, 102], the mean mode number values spread out to a large degree. This occurs
because the values are in the range of 1 or less, so they vary widely on a logarithmic scale but less
so in absolute magnitude. The region of K values less than one, i.e., [10−1 � R1 � 102], represents
the convergence to states with little or no spatial periodicity.

At small R1, Fig. 4(b) shows that the mean frequency agrees well with the mean mode number,
not just in the R−1/4

2 scaling but also in the magnitudes of the values. This corresponds to motions
that are traveling waves with nearly the same speed as the oncoming flow velocity. In Fig. 5, we
replot sets of snapshots at the seven smallest R1 in Fig. 2—those at the top, closest to the stability
boundary—with respect to (x − t ) in the horizontal direction, i.e., a frame that moves with the
far-field flow. The peaks of deflection align if they move at the same speed as the far-field flow. This
is approximately the case, more so as we move downward in the figure to smaller R1. In general,
the peaks move slightly leftward as they increase in this frame, and more so for the higher sets of
snapshots, at larger R1. Thus, in the original frame, fixed at the flag leading edge, the traveling wave
speed is slower than the flow speed, but approaches it as R1 becomes very small.

Returning to Fig. 4, the mode number [Fig. 4(a)] is approximately constant in R1 at small R1,
whereas the frequency [Fig. 4(b)] grows with R1, shown by the slight upward shift of the green lines
relative to the blue lines. By plotting the data with respect to R1 (not shown), we find that the growth
may be as large as R1/4

1 for R1 in the lower half of logarithmic range studied here. The frequency is
approximately constant with respect to R1 near R1 = 10−0.5, and decays with R1 at larger R1 values.
Figure 4(c) shows the flapping amplitude plotted with respect to R2. The data for a given R1 (a given
color) approximately follow an inverted U-shaped curve, reaching a peak at an R2 somewhat below
the stability boundary and then decreasing, as found in [46]. Figure 4(d) plots the same data with
respect to R1. The peak amplitudes at each R1 increase monotonically with R1, more rapidly than
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R1/2
1 at the smallest R1, then more slowly at larger R1. Figure 8 in the Appendix shows the data in

Fig. 4 plotted on separate axes for each R1 value, without the overlapping of data for different R1.
These plots show that the R−1/4

2 scaling of mode number applies well for 10−4 � R1 � 10−1.5, and
the same scaling of frequency applies in a somewhat larger range, 10−4 � R1 � 100.

Next, we discuss scaling law predictions from small-amplitude models, which allow for a
quantitative explanation of some of the scaling laws.

IV. SMALL-AMPLITUDE MODEL

Simple analytical results for the flag’s large-amplitude motion are difficult to obtain. A simplified
model that can be solved analytically is a linearized version of the problem for an infinite periodic
flag without a free vortex wake shed from the trailing edge, studied previously in [9,14]. The vortex
sheet wake is important, particularly for large-amplitude flapping which creates strong vorticity in
the wake. However, the coupled system of a finite flag and trailing wake is difficult to analyze
theoretically. Models that neglect the free wake or assume a doubly infinite wake have been
used extensively in previous theoretical studies of flapping flags [9,11,27,59,60]. Periodic models
were compared with experiments [9,11,39] and with the finite flag model [39,45], and reasonable
agreement was found in terms of the location of the stability boundary.

Linearizing Eqs. (1), (5), and (8) about the zero-deflection state, we obtain

∂t y + ∂xy = 1

2π
P
∫ ∞

−∞

γ (x′, t )

x − x′ dx′, (12)

∂tγ + ∂xγ = ∂x[p], (13)

R1∂tt y + R2∂xxxxy = −[p]. (14)

Solutions to (12)–(14) are given by sinusoidal traveling-wave eigenmodes of the form

y(x, t ) = ŷkei(kx+σ t ), γ (x, t ) = γ̂kei(kx+σ t ), [p](x, t ) = ˆ[p]kei(kx+σ t ), (15)

for each real k. Inserting the modes (15) into (12)–(14), and using the Hilbert transform formula

1

π
P
∫ ∞

−∞

eikx′

x − x′ dx′ = −i sgn(k)eikx, (16)

we obtain the dispersion relation for σ as a function of k,

σ = − 2k

R1|k| + 2
±

√
R1R2k6 + 2R2|k|5 − 2R1|k|3

R1|k| + 2
. (17)

We have a transition from a neutrally stable pair of modes with real σ to a stable-unstable pair when
the quantity under the square root is zero, i.e.,

R2 = 2R1

R1|k|3 + 2k2
, (18)

which gives the stability boundary for each k. For a given (R1, R2) value, the quantity under the
square root in (17) is negative for modes with a certain range of k centered at 0 (i.e., long waves)
that are unstable. Within the instability region, where σ = σR + iσI , we now compute kmax, i.e., the
value of k that maximizes the growth rate,

σI =
√

−R1R2k6 − 2R2|k|5 + 2R1|k|3
R1|k| + 2

, (19)

and the corresponding σI,kmax and σR,kmax [the first term on the right-hand side of (17)]. Squaring
(19) and maximizing it, we find that kmax is a root of a quartic polynomial and can be approximated
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FIG. 6. The two regimes of asymptotic scalings in the instability region for the spatially periodic, small-
amplitude model. The blue dash-dotted line R1 = R3

2 is approximately the location of the transition region
between the two regimes. In each regime, the scalings of the fastest growing mode’s wave number kmax,
corresponding growth rate σI,kmax , and angular frequency σR,kmax are listed. The light-blue and light-green
lines show examples of stability boundaries that correspond to k = 2π (light-green dashed line) and k = 1
(light-blue dashed line).

using the method of dominant balance. A formal version of the method leads to the same results as a
more informal approach that we state here. We note that there are two different asymptotic regimes,
depending on which of the first two terms under the square root in (19)—the stabilizing terms—is
dominant—i.e., on whether their ratio R1|k|/2 is small or large. The two terms in the denominator
also have this ratio, and thus one or the other is neglected in the same regimes. Neglecting the
appropriate terms when R1|k|/2 is small or large, we find

R1|k|/2 � 1 : kmax ∼
√

3

5
R1/2

1 R−1/2
2 ; σI,kmax ∼ 33/4

55/4
R5/4

1 R−3/4
2 ; σR,kmax ∼

√
3

5
R1/2

1 R−1/2
2 ,

(20)

R1|k|/2 � 1 : kmax ∼ (2R2)−1/3; σI,kmax ∼ 31/2

22/3
R−1/2

1 R−1/6
2 ; σR,kmax ∼ 2R−1

1 . (21)

If we plug the kmax approximations in (20) and (21) into R1|k|/2, we obtain R1R−1/3
2 � 1 and �

1, respectively, in the two regimes. Thus, R2 = R3
1, plotted as a blue dash-dotted line in Fig. 6,

approximately marks the transition between the two regimes.
In Fig. 6, the asymptotic approximations in each regime are listed, and the scalings match in

a neighborhood of the blue dash-dotted line. Also plotted are two examples of stability boundaries
(18), for two k values of order 1: k = 1 (light-blue dashed line) and k = 2π (light-green dashed line).
For any real k, the stability boundary is linear at small R1 and horizontal at large R1. If we imagine
that the finite flag is modeled by the infinite periodic flag with a range of allowed |k| down to a
prescribed nonzero minimum value that is comparable to the finite flag length (k = 2π corresponds
to a half period of a sine function on a flag of length 2, and k = 1 a smaller fraction of a period),
the stability boundary would have the same form as the dashed lines. These stability boundaries
show qualitative agreement with the shape of the stability boundary seen in large-amplitude viscous
and inviscid simulations and in experiments [9,39,45]. In these studies, the threshold value of
R2 for instability increases with R1 at small R1 and reaches a plateau for R1 � 1. Our nonlinear
simulation results in Fig. 3 show a stability boundary that is close to the light-blue dashed line for
R1 � 10−2. For smaller R1, the stability boundary in Fig. 3 has a slope that is variable but larger
than 1, corresponding to superlinear growth of the critical R2 with R1.
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We now compare the scalings of the wave number and frequency of the fastest growing mode
in the periodic flag model with the corresponding quantities in the nonlinear simulations. In our
previous work on flutter of membranes (with zero bending stiffness) [61,62], we found qualitative
similarities in how the membrane frequency and mode shapes vary with membrane mass and
stretching stiffness when oscillatory motions occur in both the linear and nonlinear regimes. For the
periodic flag, kmax scales as R1/2

1 R−1/2
2 at small R1, and R−1/3

2 at large R1. For the nonlinear model,
we found k = 2πK ∼ R−1/4

2 at small R1, and K ≈ 1 at large R1, where the large-amplitude flapping
motion is increasingly chaotic and the deflection is not well approximated by a sinusoidal function
as R2 decreases to small values. The angular frequency σR becomes equal to the wave number k at
small R1 in the periodic small-amplitude model and the same is true in the large-amplitude model
(using σR = 2π f and k = 2πK), corresponding to traveling waves that move at the speed of the
background flow. The waves of deflection are sinusoidal in the periodic model, and sinusoidal with
a monotonically growing envelope, from the clamped end to the free end, in the nonlinear model.
At large R1, the frequency scales as R−1

1 in the periodic model. By fixing R2 and varying R1 in
the large-R1 regime, a range of decaying behaviors is seen in the nonlinear model, sometimes as
rapid as R−1

1 . However, the dynamics are not well approximated by sinusoidal traveling waves, and
there is a limited range of stable large-amplitude motions for R1 > 101. For tethered membranes
(with stretching stiffness and zero bending stiffness) at large R1, the typical oscillation frequency
scales as R−1

1 in the linear regime, and changes to R−1/2
1 in the nonlinear regime [63]. Here the

membranes are stretched between tethers at their ends, so the dynamics are more stable than for the
flags with free ends, and the wider range of stable dynamics allows a scaling law to be measured
more precisely.

Approximate scaling laws

Having presented linearized solutions in the periodic case, we now consider more approximate
arguments, with nonlinear effects but without detailed flow solutions. In the limit of small amplitude,
Eloy et al. [58] computed a power series expansion in a weakly nonlinear approximation of
traveling-wave solutions of the same periodic potential flow model that gives rise to (12)–(14). They
found that the leading-order nonlinear term in [p] is O(|y|3), and is stabilizing, so it would result in
a finite-amplitude steady-state solution. Balancing the O(|y|3) term with R1∂tt y would predict that
the deflection amplitude y ∼ R1/2

1 . Because the amplitude is small even for the nonlinear solutions at
small R1, the weakly nonlinear approximation involving a power series expansion in y is reasonable.

We assume the linearized bending force term R2∂xxxxy in (14) is still the dominant bending force
term in the weakly nonlinear case because the nonlinear terms include higher powers of |y|, which
is small. The term R2∂xxxxy can balance the remaining terms in (14), which are independent of R2

at leading order, if we assume y varies on a typical x length scale ∼R−1/4
2 , so R2∂xxxxy ∼ y. In the

weakly nonlinear solution of [58], when R1, R2 → 0 but within the instability region, y is at leading
order a traveling wave Y (x − t ) that moves at the flow speed (as in the linear growth regime), so the
frequency has the same R−1/4

2 scaling as the typical wave number.

V. SUMMARY AND DISCUSSION

We have extended the study of large-amplitude (nonlinear) steady-state dynamics of flags to wide
ranges of values of flag mass and bending stiffness. This builds on the work of [46], which showed
a rich variety of dynamical behaviors as the flow velocity is varied at an intermediate value of flag
mass. They found that flapping amplitude and frequency vary over about a factor of 2 as the flow
velocity varies over a factor of 20, corresponding to a factor of 400 in the dimensionless bending
stiffness parameter that we have used. Here we find a wider range of variation of these quantities and
the flag mode number when the flag mass parameter is varied in addition to the bending stiffness.
We have shown that the dynamics of flags can be approximated fairly well by power law scalings in
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FIG. 7. Comparison between the dominant Fourier modes (blue) and flag snapshots (gray, green, yellow,
orange, and red) corresponding to the topmost sets of flag snapshots from the left seven columns in Fig. 2, with
10−4.5 � R1 � 10−1.5. These are also the snapshots in Fig. 5. In the left two columns, only the trailing halves
of the flags are shown to enhance visibility.

the limit of light, flexible flags. Here the mode number and frequency scale as R−1/4
2 , corresponding

to traveling waves that move at nearly the same speed as the oncoming flow. The flag deflection has
many spatial oscillation periods (almost 20 at the smallest R1 studied, 10−4.5) and a nearly monotone
envelope from the clamped end to the free end. As R1 → 0, the flapping amplitude (maximized over
R2) decreases approximately as R1/2

1 or faster, reaching values well below 1% of the flag length at
the smallest R1 studied here. We note that very small-amplitude flapping with high wave number and
frequency has been previously observed for the inviscid flow model with flags confined to very thin
channels, but with much larger values of R1 [51]. Here, as the channel walls move inward toward
the flag, the flag jumps from the unconfined modes shown in the present study to a series of higher
bending modes with higher flapping frequencies.

In the linearized periodic model, the solutions are sinusoidal traveling waves, with the unstable
region split into two subregions, depending on whether R1R−1/3

2 is small or large. At small R1R−1/3
2 ,

the fastest growing modes’ wave numbers and frequencies both scale as R1/2
1 R−1/2

2 , corresponding to
traveling waves that move at the oncoming flow speed, as in the nonlinear model, but with different
power laws. At large R1R−1/3

2 , the wave numbers scale as R−1/3
2 and the frequencies as R−1

1 . Our
nonlinear simulations do not have a traveling-wave character where we have simulation data at large
R1R−1/3

2 , but they do show a rapid decay of frequency with R1 similar to R−1
1 . We have considered

the effect of a weakly nonlinear stabilizing pressure term and described how an R1/2
1 scaling of

amplitude, and traveling-wave solutions with R−1/4
2 scalings of wave number and frequency, are

consistent with this case.
We briefly discuss how some of the quantitative and qualitative relationships we have observed

are consistent with physical effects. The strongest effect of the bending stiffness parameter R2 is to
penalize flapping in high-wave-number modes. In the linear growth regime, R2 decreases the growth
rate of high-wave-number modes most strongly. In the large-amplitude regime, larger values of R2
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FIG. 8. Plots of mean mode number (K), frequency ( f ), and amplitude (A) vs R2 (on horizontal axis). Each
column of three subpanels has the same R1 value (labeled at the top or bottom, in color). In the subpanels for
K and f with 10−4 � R1 � 100.5, black lines show the scaling R−1/4

2 . In the subpanels for A with 10−2 � R1 �
10−1, black lines show the scaling R1/4

2 .

result in a larger bending stiffness force, which can be decreased by flapping in lower-wave-number
modes, as occurs in Fig. 4(a). The flag presents a smaller resistance to the flow when it moves as a
traveling wave with a speed that is close to that of the oncoming flow, and this is particularly favored
at small R1 and R2, where the flag inertia and bending stiffness terms are small and therefore so must
be the fluid pressure loading on the flag. Therefore, the ratio of flapping frequency to mode number
(or of angular frequency to wave number) is close to the oncoming flow speed (unity), particularly
when R1 and R2 are small. Flapping amplitude varies nonmonotonically with bending stiffness. The
maximum-amplitude value of R2 may correspond to a resonantlike behavior, as was observed for
flexible foils oscillated at the leading edge [64–68].

The clearest effect of the flag mass parameter R1 is to decrease the flapping frequency at large
R1, where the flag inertia term strongly resists high-frequency motions. At small R1, the flag
mass is negligible compared to fluid mass, but is nonetheless essential to the initial instability.
The saturated flapping amplitude may grow with R1 because larger flag inertia allows the flag
to maintain its momentum for longer times against fluid resistance, resulting in larger transverse
deflections [69,70].

The results we have found are consistent with the previously published flag literature (experimen-
tal, computational, and theoretical), comprehensively summarized in [39], in terms of the stability
boundary location and the existence of transitions to higher flapping modes as the bending stiffness
is decreased. By varying the flag length in an experiment, [71] decreased R1 and R2 simultaneously
and saw transitions from flapping in a mode with one neck to modes with two, three, and four necks,
and then chaotic flapping. Here, R1 was decreased by a factor of four, remaining close to the O(1)
regime. The present paper extends the parameter space to much smaller values of R1 and R2, and it
would be interesting to know if these very small-amplitude flapping states, with more than 10 necks
in the flapping envelopes (e.g., on the left-hand side of Fig. 2), can be observed experimentally.
These occur at very small R1, and R2 close enough to the stability boundary that periodic rather than
chaotic flapping occurs.
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From a technological point of view, the flags with large mass and moderate stiffness—those that
flap with large amplitude—are most likely to be useful for harvesting energy from the flow. The
flags with smaller mass and bending stiffness flap with very small amplitudes and seem less useful
for energy harvesting. With their weak wakes and small effect on the surrounding flow, they could
be more useful as noninvasive flow sensors.

APPENDIX: FLAG DYNAMICS DATA

Figure 7 compares the dominant Fourier mode with the corresponding flag snapshots for the
topmost sets of flag snapshots from the left seven columns in Fig. 2, with 10−4.5 � R1 � 10−1.5,
also the snapshots in Fig. 5.

Figure 8 shows the data from Fig. 4 on separate axes for each R1. For K and f , the black lines
show the scaling R−1/4

2 . The scaling applies fairly well for 10−4 � R1 � 10−1.5 and, in some cases,
with slightly larger R1. The amplitude values (A) generally have a maximum at an intermediate R2,
some distance below the stability boundary. For 10−2.5 � R1 � 10−1, a portion of the amplitude
data seems to follow a straight line, corresponding to a power law scaling. For reference only, the
black line shows the scaling R1/4

2 in three panels of A data, though we have no theoretical reason
for this scaling.

[1] A. Kornecki, E. H. Dowell, and J. O’Brien, On the aeroelastic instability of two-dimensional panels in
uniform incompressible flow, J. Sound Vib. 47, 163 (1976).

[2] E. H. Dowell, Nonlinear aeroelasticity, in New Approaches to Nonlinear Problems in Dynamics, edited by
P. J. Holmes (SIAM Publications, Philadelphia, 1980), pp. 147–172.

[3] L. Huang, Flutter of cantilevered plates in axial flow, J. Fluids Struct. 9, 127 (1995).
[4] J. Zhang, S. Childress, A. Libchaber, and M. Shelley, Flexible filaments in a flowing soap film as a model

for flags in a two dimensional wind, Nature (London) 408, 835 (2000).
[5] A. D. Fitt and M. P. Pope, The unsteady motion of two-dimensional flags with bending stiffness, J. Eng.

Math. 40, 227 (2001).
[6] Y. Watanabe, S. Suzuki, M. Sugihara, and Y. Sueoka, An experimental study of paper flutter, J. Fluids

Struct. 16, 529 (2002).
[7] L. Zhu and C. S. Peskin, Simulation of a flapping flexible filament in a flowing soap film by the immersed

boundary method, J. Comput. Phys. 179, 452 (2002).
[8] D. M. Tang, H. Yamamoto, and E. H. Dowell, Flutter and limit cycle oscillations of two-dimensional

panels in three-dimensional axial flow, J. Fluids Struct. 17, 225 (2003).
[9] M. Shelley, N. Vandenberghe, and J. Zhang, Heavy Flags Undergo Spontaneous Oscillations in Flowing

Water, Phys. Rev. Lett. 94, 094302 (2005).
[10] M. Argentina and L. Mahadevan, Fluid-flow-induced flutter of a flag, Proc. Natl. Acad. Sci. USA 102,

1829 (2005).
[11] C. Eloy, C. Souilliez, and L. Schouveiler, Flutter of a rectangular plate, J. Fluids Struct. 23, 904 (2007).
[12] B. S. H. Connell and D. K. P. Yue, Flapping dynamics of a flag in a uniform stream, J. Fluid Mech. 581,

33 (2007).
[13] C. Eloy, R. Lagrange, C. Souilliez, and L. Schouveiler, Aeroelastic instability of cantilevered flexible

plates in uniform flow, J. Fluid Mech. 611, 97 (2008).
[14] S. Alben, The flapping-flag instability as a nonlinear eigenvalue problem, Phys. Fluids 20, 104106 (2008).
[15] S. Michelin, S. G. Llewellyn Smith, and B. J. Glover, Vortex shedding model of a flapping flag, J. Fluid

Mech. 617, 1 (2008).
[16] A. Manela and M. S. Howe, The forced motion of a flag, J. Fluid Mech. 635, 439 (2009).
[17] M. J. Shelley and J. Zhang, Flapping and bending bodies interacting with fluid flows, Annu. Rev. Fluid

Mech. 43, 449 (2011).

013903-14

https://doi.org/10.1016/0022-460X(76)90715-X
https://doi.org/10.1006/jfls.1995.1007
https://doi.org/10.1038/35048530
https://doi.org/10.1023/A:1017595632666
https://doi.org/10.1006/jfls.2001.0435
https://doi.org/10.1006/jcph.2002.7066
https://doi.org/10.1016/S0889-9746(02)00121-4
https://doi.org/10.1103/PhysRevLett.94.094302
https://doi.org/10.1073/pnas.0408383102
https://doi.org/10.1016/j.jfluidstructs.2007.02.002
https://doi.org/10.1017/S0022112007005307
https://doi.org/10.1017/S002211200800284X
https://doi.org/10.1063/1.3000670
https://doi.org/10.1017/S0022112008004321
https://doi.org/10.1017/S0022112009007770
https://doi.org/10.1146/annurev-fluid-121108-145456


DYNAMICS OF FLAGS OVER WIDE RANGES OF MASS …

[18] T. Leclercq, N. Peake, and E. De Langre, Does flutter prevent drag reduction by reconfiguration?, Proc.
R. Soc. A 474, 20170678 (2018).

[19] T. Theodorsen, General theory of aerodynamic instability and the mechanism of flutter, Tech. Rep. No.
496 (NACA, Washington, DC, 1935).

[20] Y. C. Fung, An Introduction to the Theory of Aeroelasticity (Dover, New York, 1955).
[21] R. L. Bisplinghoff and H. Ashley, Principles of Aeroelasticity (Dover, New York, 2002).
[22] L. Zhu and C. S. Peskin, Interaction of two flapping filaments in a flowing soap film, Phys. Fluids 15,

1954 (2003).
[23] L. Ristroph and J. Zhang, Anomalous Hydrodynamic Drafting of Interacting Flapping Flags, Phys. Rev.

Lett. 101, 194502 (2008).
[24] S. Alben, Wake-mediated synchronization and drafting in coupled flags, J. Fluid Mech. 641, 489

(2009).
[25] S. Kim, W.-X. Huang, and H. J. Sung, Constructive and destructive interaction modes between two tandem

flexible flags in viscous flow, J. Fluid Mech. 661, 511 (2010).
[26] J. Lee, D. Kim, and H.-Y. Kim, Contact behavior of a fluttering flag with an adjacent plate, Phys. Fluids

33, 034105 (2021).
[27] J. Mougel and S. Michelin, Flutter and resonances of a flag near a free surface, J. Fluids Struct. 96, 103046

(2020).
[28] W.-X. Huang and H. J. Sung, Three-dimensional simulation of a flapping flag in a uniform flow, J. Fluid

Mech. 653, 301 (2010).
[29] F. Tian, X. Lu, and H. Luo, Onset of instability of a flag in uniform flow, Theor. Appl. Mech. Lett. 2,

022005 (2012).
[30] S. Banerjee, B. S. H. Connell, and D. K. P. Yue, Three-dimensional effects on flag flapping dynamics,

J. Fluid Mech. 783, 103 (2015).
[31] D. Kim, J. Cossé, C. Cerdeira, and M. Gharib, Flapping dynamics of an inverted flag, J. Fluid Mech. 736,

R1 (2013).
[32] A. Goza, T. Colonius, and J. E. Sader, Global modes and nonlinear analysis of inverted-flag flapping,

J. Fluid Mech. 857, 312 (2018).
[33] J. W. Park, J. Ryu, and H. J. Sung, Effects of the shape of an inverted flag on its flapping dynamics, Phys.

Fluids 31, 021904 (2019).
[34] A. Giacomello and M. Porfiri, Underwater energy harvesting from a heavy flag hosting ionic polymer

metal composites, J. Appl. Phys. 109, 084903 (2011).
[35] S. Michelin and O. Doaré, Energy harvesting efficiency of piezoelectric flags in axial flows, J. Fluid Mech.

714, 489 (2013).
[36] X. Wang, S. Alben, C. Li, and Y. L. Young, Stability and scalability of piezoelectric flags, Phys. Fluids

28, 023601 (2016).
[37] K. Shoele and R. Mittal, Energy harvesting by flow-induced flutter in a simple model of an inverted

piezoelectric flag, J. Fluid Mech. 790, 582 (2016).
[38] D. M. Tang, D. Levin, and E. H. Dowell, Experimental and theoretical correlations for energy harvesting

from a large flapping flag response, J. Fluids Struct. 86, 290 (2019).
[39] Y. Yu, Y. Liu, and X. Amandolese, A review on fluid-induced flag vibrations, Appl. Mech. Rev. 71, 010801

(2019).
[40] K. Shoele and R. Mittal, Computational study of flow-induced vibration of a reed in a channel and effect

on convective heat transfer, Phys. Fluids 26, 127103 (2014).
[41] S. G. Park, B. Kim, C. B. Chang, J. Ryu, and H. J. Sung, Enhancement of heat transfer by a self-oscillating

inverted flag in a Poiseuille channel flow, Intl. J. Heat Mass Transf. 96, 362 (2016).
[42] A. Glezer, R. Mittal, and S. Alben, Enhanced forced convection heat transfer using small scale vorticity

concentrations effected by flow driven, aeroelastically vibrating reeds, Tech. Rep. No. AFRL-AFOSR-
VA-TR-2016-0339 (AFOSR, Arlington, VA, 2016).

[43] A. Rips, K. Shoele, A. Glezer, and R. Mittal, Efficient electronic cooling via flow-induced vibrations, in
33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), 2017, San Jose, CA,
USA (IEEE, Piscataway, NJ, 2017), pp. 36–39.

013903-15

https://doi.org/10.1098/rspa.2017.0678
https://doi.org/10.1063/1.1582476
https://doi.org/10.1103/PhysRevLett.101.194502
https://doi.org/10.1017/S0022112009992138
https://doi.org/10.1017/S0022112010003514
https://doi.org/10.1063/5.0037049
https://doi.org/10.1016/j.jfluidstructs.2020.103046
https://doi.org/10.1017/S0022112010000248
https://doi.org/10.1063/2.1202205
https://doi.org/10.1017/jfm.2015.516
https://doi.org/10.1017/jfm.2013.555
https://doi.org/10.1017/jfm.2018.728
https://doi.org/10.1063/1.5079579
https://doi.org/10.1063/1.3569738
https://doi.org/10.1017/jfm.2012.494
https://doi.org/10.1063/1.4940990
https://doi.org/10.1017/jfm.2016.40
https://doi.org/10.1016/j.jfluidstructs.2019.02.018
https://doi.org/10.1115/1.4042446
https://doi.org/10.1063/1.4903793
https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.043


SILAS ALBEN

[44] R. K. B. Gallegos and R. N. Sharma, Heat transfer performance of flag vortex generators in rectangular
channels, Intl. J. Therm. Sci. 137, 26 (2019).

[45] S. Alben and M. J. Shelley, Flapping States of a Flag in an Inviscid Fluid: Bistability and the Transition
to Chaos, Phys. Rev. Lett. 100, 074301 (2008).

[46] M. Chen, L.-B. Jia, Y.-F. Wu, X.-Z. Yin, and Y.-B. Ma, Bifurcation and chaos of a flag in an inviscid flow,
J. Fluids Struct. 45, 124 (2014).

[47] S. Alben, Simulating the dynamics of flexible bodies and vortex sheets, J. Comput. Phys. 228, 2587
(2009).

[48] T. F. H. Runia, K. Gavrilyuk, C. G. M. Snoek, and A. W. M. Smeulders, Cloth in the wind: A case study
of physical measurement through simulation, in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Seattle, WA, 2020 (IEEE, Piscataway, NJ, 2020), pp. 10498–10507.

[49] W. Bi, P. Jin, H. Nienborg, and B. Xiao, Estimating mechanical properties of cloth from videos using
dense motion trajectories: Human psychophysics and machine learning, J. Vision 18, 12 (2018).

[50] D. House and D. Breen (eds.), Cloth Modeling and Animation (AK Peters/CRC Press, Natick, MA, 2000).
[51] S. Alben, Flag flutter in inviscid channel flow, Phys. Fluids 27, 033603 (2015).
[52] P. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, 1992).
[53] R. Krasny, Desingularization of periodic vortex sheet roll-up, J. Comput. Phys. 65, 292 (1986).
[54] S. Alben, Regularizing a vortex sheet near a separation point, J. Comput. Phys. 229, 5280 (2010).
[55] T. Y. Hou, J. S. Lowengrub, and M. J. Shelley, Boundary integrals methods for multicomponent fluids

and multiphase materials, J. Comput. Phys. 169, 302 (2001).
[56] S. Alben, The attraction between a flexible filament and a point vortex, J. Fluid Mech. 697, 481 (2012).
[57] K. Shoele and R. Mittal, Flutter instability of a thin flexible plate in a channel, J. Fluid Mech. 786, 29

(2016).
[58] C. Eloy, N. Kofman, and L. Schouveiler, The origin of hysteresis in the flag instability, J. Fluid Mech.

691, 583 (2012).
[59] J. W. Miles, On the aerodynamic instability of thin panels, J. Aeronaut. Sci. 23, 771 (1956).
[60] C. Q. Guo and M. P. Païdoussis, Stability of rectangular plates with free side-edges in two-dimensional

inviscid channel flow, J. Appl. Mech. 67, 171 (2000).
[61] C. Mavroyiakoumou and S. Alben, Large-amplitude membrane flutter in inviscid flow, J. Fluid Mech.

891, A23 (2020).
[62] C. Mavroyiakoumou and S. Alben, Eigenmode analysis of membrane stability in inviscid flow, Phys. Rev.

Fluids 6, 043901 (2021).
[63] C. Mavroyiakoumou and S. Alben, Dynamics of tethered membranes in inviscid flow, J. Fluids Struct.

107, 103384 (2021).
[64] S. Alben, Optimal flexibility of a flapping appendage at high Reynolds number, J. Fluid Mech. 614, 355

(2008).
[65] S. Michelin and S. G. L. Smith, Resonance and propulsion performance of a heaving flexible wing, Phys.

Fluids 21, 071902 (2009).
[66] H. Masoud and A. Alexeev, Efficient flapping flight using flexible wings oscillating at resonance, in

Natural Locomotion in Fluids and on Surfaces, edited by S. Childress, A. Hosoi, W. W. Schultz, and J.
Wang (Springer, New York, 2012), pp. 235–245.

[67] F. Paraz, L. Schouveiler, and C. Eloy, Thrust generation by a heaving flexible foil: Resonance, nonlinear-
ities, and optimality, Phys. Fluids 28, 011903 (2016).

[68] G. A. Tzezana and K. S. Breuer, Thrust, drag and wake structure in flapping compliant membrane wings,
J. Fluid Mech. 862, 871 (2019).

[69] S. Alben and M. Shelley, Coherent locomotion as an attracting state for a free flapping body, Proc. Natl.
Acad. Sci. USA 102, 11163 (2005).

[70] S. Alben, An implicit method for coupled flow-body dynamics, J. Comput. Phys. 227, 4912 (2008).
[71] E. Virot, X. Amandolese, and P. Hémon, Fluttering flags: An experimental study of fluid forces, J. Fluids

Struct. 43, 385 (2013).

013903-16

https://doi.org/10.1016/j.ijthermalsci.2018.11.001
https://doi.org/10.1103/PhysRevLett.100.074301
https://doi.org/10.1016/j.jfluidstructs.2013.11.020
https://doi.org/10.1016/j.jcp.2008.12.020
https://doi.org/10.1167/18.5.12
https://doi.org/10.1063/1.4915897
https://doi.org/10.1016/0021-9991(86)90210-X
https://doi.org/10.1016/j.jcp.2010.03.044
https://doi.org/10.1006/jcph.2000.6626
https://doi.org/10.1017/jfm.2012.78
https://doi.org/10.1017/jfm.2015.632
https://doi.org/10.1017/jfm.2011.494
https://doi.org/10.2514/8.3653
https://doi.org/10.1115/1.321143
https://doi.org/10.1017/jfm.2020.153
https://doi.org/10.1103/PhysRevFluids.6.043901
https://doi.org/10.1016/j.jfluidstructs.2021.103384
https://doi.org/10.1017/S0022112008003297
https://doi.org/10.1063/1.3177356
https://doi.org/10.1063/1.4939499
https://doi.org/10.1017/jfm.2018.966
https://doi.org/10.1073/pnas.0505064102
https://doi.org/10.1016/j.jcp.2008.01.021
https://doi.org/10.1016/j.jfluidstructs.2013.09.012

