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The electrohydrodynamics of a concentric compound drop migrating and deforming in
a plane Poiseuille flow under the influence of an arbitrarily orientated uniform electric field
is investigated using a double asymptotic approach with the electric Reynolds number and
capillary number as small perturbation parameters. The effect of viscosity, conductivity,
and permittivity ratios, the orientation of the applied electric field, and radius ratio is
thoroughly investigated, and the underlying physics is examined in terms of surface charge
distribution and shape deformation of the shell and core of the compound drop. For an
undeformable compound drop, we found that as the radius ratio increases, the magnitude
of lateral velocity due to charge convection increases for both the shell and core, while
the longitudinal velocity decreases. The intensity of the drop to lag behind the imposed
flow increases as the electric field strength increases. For deformable compound drops, it
is observed that the influence of the tilt angle of the applied electric field in altering the
direction of motion gets dampened out or minimized when the size of the core increases.
We also find that under the combined action of charge convection and shape deformation,
the increase in electric Reynolds number enhances the lateral velocity of both the shell
and the core drop while the longitudinal velocity decreases. However, it is found that the
magnitude of the lateral and longitudinal velocity of the shell and core drop increases
with an increase in the capillary number. Finally, by solving for the velocity field of an
eccentric compound drop under plane Poiseuille flow and subjected to an applied electric
field, we show that there is a critical eccentricity limit and critical time limit within which
the concentric and eccentric compound drop configurations produce similar results and
beyond which the increment or decrement in shell and core drop velocity is dictated by the
value of eccentricity.

DOI: 10.1103/PhysRevFluids.7.013703

I. INTRODUCTION

Ever since the pioneering work by Taylor [1], electric fields have been successfully employed
to control the dynamics of weakly conducting dielectric liquid and attracted significant attention
of researchers due to its appealing physics [2,3], as well as its relevance in a wide range of
technological applications, such as microfluidics [4–6], biological systems [7], natural phenomena
[8], atomization [9], to name a few. Several researchers [10–17] have investigated the deformation of
neutrally buoyant droplets in an otherwise quiescent medium under uniform or nonuniform electric
fields, considering leaky and conducting fluids, as well as in bounded and unbounded domains,
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using an approach similar to that of Taylor [1]. These studies were premised on the underlying
physics that, in addition to normal stresses, electrical property contrast between the droplet and the
surrounding medium causes the accumulation of free charges at the interface, resulting in tangential
stresses, which generate circulatory toroidal currents (also known as Taylor vortices) inside the
drop. The influence of interfacial velocity on the ensuing fluid flow due to a nonlinear coupling of
charge distribution has been investigated using various computational fluid dynamics approaches
(e.g., [18–21]). On the theoretical side, Bandopadhyay et al. [22] investigated the dynamics of a
drop sedimenting under gravity while being subjected to an electric field, using double asymptotic
expansions in the electric capillary number (CaE ) and electric Reynolds number (ReE ), that balances
the electric and viscous stresses. A similar problem was also studied by Yariv and Almog [23] for
arbitrary electric Reynolds numbers.

A “compound drop” or “double emulsion” (a smaller core drop encapsulated by a larger shell
drop, and the shell drop itself is suspended inside an immiscible medium) mimics several essential
physical features involved with lipid bilayer formation [24], oil recovery through porous structures
[25], phase separation [26], drug delivery [27], and raindrops [28,29]. Thus, many researchers have
investigated the dynamics of compound drops without any external electric forcing in creeping flow
[30,31], inertia [32], and under imposed uniaxial and biaxial extensional flows [25]. As the external
electric field has been proved to be an effective tool in altering the transportation of single droplets,
researchers have also recently examined the influence of external electric fields on the dynamics of
compound droplets.

Gouz and Sadhal [33] was the first to report on the electrohydrodynamic stability of eccentric
compound drops, translating under buoyancy in the creeping flow regime using a semianalytical
approach in conjunction with a leaky dielectric model for spherical drops in bipolar coordinates,
and concluded that stable equilibrium configurations are only attainable with the presence of an
electric field. By conducting a combined numerical and experimental investigation, Tsukada et al.
[34] showed that the degree of deformation and the flow strength correlated positively with both
the electric field strength and the volume ratio of the core phase to the shell phase of a compound
droplet. In the framework of leaky-dielectric theory and in the limit of small electric field strength
and fluid inertia, Behjatian and Esmaeeli [35] analytically studied the behavior of compound drop
and observed four possible flow patterns in and around the globule, in terms of the direction of
the external flow and the number of vortices (single vortex and double vortices) in the shell.
Soni et al. [36] used the phase-field method to understand the deformation dynamics of double
emulsion droplet in a uniform electric field and observed prolate-oblate, prolate-prolate and oblate-
prolate deformation. Subsequently, they also investigated the effect of alternating current (AC)
electric field on the dynamics of a compound drop [37,38]. Borthakur et al. [39] numerically
investigated the dynamics of deformation and pinch-off of a migrating compound droplet in a tube.
Furthermore, Borthakur et al. [40] showed that the ratio of electrical permittivity and conductivity
between the two phases plays a critical role in deciding the magnitude of deformation and orienta-
tion of the compound droplet subjected to the combined influence of electric field and shear flow.

Recently, Santra et al. [41,42] studied the pinch-off dynamics of a compound droplet subjected to
a transverse electric field in Poiseuille and confined shear flows, respectively. They found a deviation
of the inner droplet from the concentric position that finally leads to the pinch-off of the outer shell.
In another study, Santra et al. [43] examined the combined influence of electrohydrodynamics and
channel confinement on the transient behavior of a compound droplet. Under the assumption of
negligible fluid inertia and small shape deformation, the authors have also developed an asymptotic
model to predict the transient as well as the steady-state behavior of the compound droplet for the
limiting case of an unbounded suspending medium. However, none of the aforementioned literature
on compound drop considered the effect of surface charge convection in dictating the involved
electrohydrodynamics facets. Moreover, the electric and hydrodynamic stresses can lead to shape
deformation which can reversely alter the electrohydrodynamics characteristics of compound drops.
These two key determinants viz. shape deformation and charge convection have played a pivotal role
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in the rotation rate, effective shear viscosity, and normal stress difference of simple drops as reported
in previous studies [11,22].

The above discussion clarifies that it remains open for the researchers to bring out the confluence
of an electric field and an externally imposed background flow field in dictating the motion and
deformation of compound drop under the combined consideration of surface charge convection and
shape deformation, which is the main objective of the current study. Moreover, unlike prior works
[41,42] that only evaluated the effect of the capillary number (Ca) as a single perturbation parameter,
we adopt a twofold asymptotic approach with the electric Reynolds number (ReE ) and the capillary
number (Ca) as small perturbation parameters, and develop a three-dimensional formalism for a
compound drop migrating in a Poiseuille flow under the influence of an applied electric field.
Under the framework of negligible fluid inertia and small shape deformation, our study captures the
influence of an applied electric field direction, hydrodynamic and electric properties, and compound
droplet size in dictating the migration velocity of compound drop. Unlike the case of a single drop,
our study reveals that the radius ratio of the compound drop acts as a novel trigger in controlling
the deformation and migration of the drop under the confluence of other electrohydrodynamic
parameters.

The rest of the paper is organized as follows. The problem is formulated in Sec. II. The results
from the numerical simulations are discussed in Sec. III. Finally, conclusions are given in Sec. IV.

II. FORMULATION

A. Physical configuration

We investigate the electrohydrodynamics of a concentric leaky dielectric compound drop of
undeformed outer radius Ro and undeformed inner radius Ri in a plane Poiseuille flow configuration
under a uniform electric field [E∞ = Ec(Exex + Ezez )] applied in an arbitrary orientation quantified
by a tilt angle, θt = tan−1(Ex/Ez ) and Ex

2 + Ez
2 = 1. Here, Ec is the characteristic electric field;

Ex, ex and Ez, ez are the components of the electric field and the corresponding unit vectors in the x
and z directions, respectively. It is assumed that the droplet is far away from the walls. A schematic
diagram (not to scale) is shown in Fig. 1(a). The rigid and impermeable walls of infinite width
along the y and z directions are separated by a distance H in the x direction. Thus, the imposed
plane Poiseuille flow in a Cartesian coordinate system considering the drop centroid as origin can
be expressed as

V∞ = Vc(k0 + k1x + k2x2)ez, (1)

where, Vc is the characteristic velocity; k0 = 4(xd/H )(1 − xd/H ), k1 = 4(1 − 2xd/H )/H and k2 =
−4/H2. The outer and inner drop are assumed to move at velocities U2 and U3, respectively.

A spherical coordinate system (r, θ, φ) with its origin attached to the centroid of the compound
drop is employed. The fluids are assumed to be incompressible, Newtonian and immiscible. The
outermost phase (the suspending medium), the outer (shell region) and the inner (core region) phases
of the compound droplet are represented by fluid 1, fluid 2, and fluid 3, respectively, and we use these
numbers to denote the corresponding fluid and electrical properties, such as density (ρi ), viscosity
(μi ), electrical permittivity (εi ), and electrical conductivity (σi ), where i = 1, 2, and 3. We also
use subscript i j to represent the interface separating the ith and jth fluids. Thus, γi j represents the
surface tension at the interface separating the ith and jth fluids.

B. Nondimensionalization

We nondimensionalize the length by Ro; velocity by Vc; electric field by Ec; hydrodynamic stress
by τH

ref (≡μ1Vc/Ro); and electric stress by τE
ref (≡εEc

2). Similarly, the properties are scaled by the
corresponding properties of the suspending medium resulting in three different ratios, namely, the
viscosity ratio (λ1i = μi/μ1), conductivity ratio (R1i = σi/σ1), permittivity ratio (S1i = εi/ε1), and
radius ratio (K = Ri/Ro). The choice of the aforementioned nondimensional scheme results in three
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FIG. 1. (a) Schematic (not to scale) of a concentric compound drop with inner radius Ri and outer radius
Ro in a plane Poiseuille flow field (V∞) and under a uniform electric field E∞ oriented at an angle θt (termed
as tilt angle) with respect to the axial direction. Initially, the compound drop is placed at a transverse position
xd (measured from the bottom wall).

important dimensionless numbers, viz. the Capillary number (Ca = μ1Vc/γ12) which signifies the
relative magnitude of the viscous force relative to the surface tension force, the Mason number
(M = Roε1Ec

2/μ1Vc) which signifies the ratio of the electrical stress to the viscous stress and the
electric Reynolds number (ReE = ε1Vc/Roσ1) which is the ratio of the charge relaxation timescale
(ε1/σ1) to the convective timescale (Ro/Vc). The hydrodynamic Reynolds number for each phase,
as well as the hydrodynamic capillary number are assumed to be small enough that the Stokes equa-
tions hold and the drops remain spherical. The justifications to the assumptions considered in this
study are provided in Appendix A. In the next section, we will present the governing equations and
boundary conditions for the electrostatic and hydrostatic problem in the dimensionless form and
maintain the same dimensionless notation thereafter unless otherwise specified.

C. Governing equations and boundary conditions

1. Electrostatic

According to the leaky dielectric theory of Taylor [1], the electric potential (ψi) for the ith fluid
can be expressed as

∇2ψi = 0, (2)

which is solved using the following boundary conditions [44,45]. (i) The electric potential at a
distance far away from the droplet approaches the externally imposed electric potential (i.e., as
r → ∞, ψi → −E∞ · r). (ii) The electric potential is finite and bounded inside the core drop.
(iii) The continuity of the electric potential is maintained at the two deformed interfaces (i.e., at
r = r�i j , [ψi]�i j = [ψ j]�i j). Here, r�i j = 1 + fi j (θ, φ) denotes the radial position of the deformed
interfaces, where fi j (θ, φ) represents the deviation of the i jth interface from sphericity, �i j refers to
the interface of the ith and jth fluids and [ ]�i j symbolizes the evaluation of the bracketed quantity at
the interface i j. (iv) The interfacial charge conservation at the steady state is satisfied by the electric
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potential at the deformed i jth interface. Mathematically, it is given by

ni j · (R1 j∇ψ j − R1i∇ψi ) = −ReE∇s · (qs,i jV s,i j ) at r = r�i j, (3)

where R1i = δi1 + R12δi2 + R13δi3. Here, ni j = ∇(r − r�i j )/|∇(r − r�i j )| denotes the outward nor-
mal unit vector at the deformed interfaces of the droplet, ∇s = ∇i j − ni j (ni j · ∇i j ) is the surface
gradient operator, qs,i j = (S1 j∇ψ j − S1i∇ψi ) · ni j denotes the surface charge density, wherein
S1i = δi1 + S12δi2 + S13δi3, and V s,i j is the surface velocity.

2. Hydrodynamic

Under the creeping flow condition, the velocity and pressure fields are governed by the following
continuity and Stokes equation [46]

∇ · ui = 0, ∇pi = λ1i∇2ui, (4)

where ui and pi represent the velocity and pressure fields of phase i, respectively, and λ1i =
δi1 + λ12δi2 + λ13δi3. The hydrodynamic equations are solved using the following boundary con-
ditions. (i) The velocity field is uniform at a distance far away from the compound droplet, i.e.,
at r → ∞, ui = −U2. (ii) The velocity and pressure fields must be bounded inside the core drop.
(iii) The velocity is continuous across the interfaces of the compound droplet, i.e., at r = r�i j ,
[ui]�i j = [u j]�i j , and [ui · ni j]�i j = [u j · ni j]�i j = (U3 − U2) · n23δi2δ j3. (iv) At steady state, the
force acting at the interface due to the jump in hydrodynamic and electric stresses is balanced by
the capillary stress, which is mathematically given by

[
ni j · (

τH
j + MτE

j

) · ni j
]
�i j

− [
ni j · (

τH
i + MτE

i

) · ni j
]
�i j

= 1

Ca
(∇ · ni j ), (5)

where τH
i = −piI + λ1i[∇ui + (∇ui )T ] and τE

i = Si[E iE i
T − |E i|2I/2] are the viscous and electric

stress tensors, respectively.

D. Asymptotic perturbation analysis

As in many microfluidics applications, ReE � 1, Ca � Re2
E , CaReE , Ca2, it allows us to

consider Ca and ReE as perturbation parameters [11,45]. Thus, a double asymptotic expansion of
any pertinent variable,  can be expanded as

 = (0) + Ca(Ca) + ReE(ReE ) + O
(
Re2

E , CaReE , Ca2
)
, (6)

that can aid in linearizing the problem. Here, (0) is the leading-order term associated with the
ascent of the interfacial charge convection and shape deformation, (ReE ) denotes the first order
correction due to the charge convection and (Ca) indicates the first order correction due to the
shape deformation. However, the regular perturbation equations for pressure and stress need to be
modified as

pi = 1

Ca
p(1/Ca)

i + p(0)
i + Cap(Ca)

i + ReE p(ReE )
i + · · · · · · , (7)

τ i = 1

Ca
τ

(1/Ca)
i + τ

(0)
i + Caτ

(Ca)
i + ReEτ

(ReE )
i + · · · · · · , (8)

respectively. Here, we include the terms 1
Ca p(1/Ca)

i and 1
Ca τ

(1/Ca)
i to balance the Laplace pressure

across the interfaces of the compound drop [47].
The perturbation equation for the unknown shape of the deformed compound drop takes the

following form:

r�i j = 1 + fi j (θ, φ) = Ki
(
1 + Ca f (Ca)

i j + CaReE f (CaReE )
i j + Ca2 f (Ca2)

i j

) + · · · , (9)
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with Ki = δi1 + Kδi2. Here f (Ca)
i j , f (CaReE )

i j and f (Ca2 )
i j are the corrections to the deformed shape of the

compound drop at different orders of approximation. In perturbed form, the outward unit normal,
ni j and the curvature of the deformed i jth interface, ∇ · ni j can be expressed as [48–50]

ni j = ∇(r − r�i j )

|∇(r − r�i j )|
= er − Ca∇ f (Ca)

i j − CaReE∇ f (CaReE )
i j

−Ca2

[
∇ f (Ca2 )

i j + 1

2

(∇ f (Ca)
i j · ∇ f (Ca)

i j

)
er

]
, (10)

and

∇ · ni j = 2 − Ca(2 f (Ca) + ∇2 f (Ca) ) − CaReE (2 f (CaReE ) + ∇2 f (CaReE ) )

−Ca2{−2 f (Ca)( f (Ca) + ∇2 f (Ca) ) + 2 f (Ca2) + ∇2 f (Ca2)} − · · · (11)

Using the aforementioned perturbation scheme, the governing equations and boundary conditions
for the electrostatic (Sec. II C 1) and hydrodynamic (Sec. II C 2) problem transform into the follow-
ing forms at leading order, O(ReE ) and O(Ca).

1. Leading order

The governing equation for an electric field at leading order becomes

∇2ψ
(0)
i = 0, (12)

and it is subjected to the following boundary conditions:

ψ
(0)
1

∣∣
r→∞ → −E∞ · r, (13)

ψ
(0)
i

∣∣
r=Ki

= ψ
(0)
j

∣∣
r=Ki

, (14)

er · (
R1 j∇ψ

(0)
j − R1i∇ψ

(0)
i

)∣∣
r=Ki

= 0. (15)

The flow field satisfies the following governing equations at leading order

∇ · u(0)
i = 0, ∇p(0)

i = λ1i∇2u(0)
i , (16)

and they are subjected to the following boundary conditions:

u(0)
1

∣∣
r→∞ → V (0)

∞ − U (0)
2 , (17)

u(0)
i

∣∣
r=Ki

= u(0)
j

∣∣
r=Ki

, (18)

u(0)
i

∣∣
r=Ki

· er = u(0)
j

∣∣
r=Ki

· er = δi2
[(

U (0)
3 − U (0)

2

) · er
]
, (19)

er · (
τ

(0)
i − τ

(0)
j

)∣∣
r=Ki

· (I − erer ) = 0, (20)

er · (
τ

(0)
i − τ

(0)
j

)∣∣
r=Ki

· er = −(2 f (Ca) + ∇2 f (Ca)). (21)

2. O(ReE ): Effect of surface charge convection

The governing equation for an electric field at O(ReE ) takes the following form:

∇2ψ
(ReE )
i = 0, (22)

and it is subjected to the following boundary conditions:

ψ
(ReE )
1

∣∣
r→∞ → 0, (23)
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ψ
(ReE )
i

∣∣
r=Ki

= ψ
(ReE )
j

∣∣
r=Ki

, (24)

er · (
R1 j∇ψ

(ReE )
j − R1i∇ψ

(ReE )
i

)∣∣
r=Ki

= −∇s · (
q(0)

s,i jV
(0)
s,i j

)∣∣
r=Ki

. (25)

The flow field satisfies the following governing equations at O(ReE )

∇ · u(ReE )
i = 0, ∇p(ReE )

i = λ1i∇2u(ReE )
i , (26)

and they are subjected to the following boundary conditions:

u(ReE )
1

∣∣
r→∞ → −U (ReE )

2 , (27)

u(ReE )
i

∣∣
r=Ki

= u(ReE )
j

∣∣
r=Ki

, (28)

u(ReE )
i

∣∣
r=Ki

· er = u(ReE )
j

∣∣
r=Ki

· er = δi2
[(

U (ReE )
3 − U (ReE )

2

) · er
]
, (29)

er · (
τ

(ReE )
i − τ

(ReE )
j

)∣∣
r=Ki

· (I − erer ) = 0, (30)

er · (
τ

(ReE )
i − τ

(ReE )
j

)∣∣
r=Ki

· er = −(2 f (CaReE ) + ∇2 f (CaReE ) ). (31)

3. O(Ca): Effect of concentric compound drop deformation

The governing equation for an electric field at O(Ca) takes the following form:

∇2ψ
(Ca)
i = 0, (32)

and it is subjected to the following boundary conditions:

ψ
(Ca)
1

∣∣
r→∞ → 0, (33)

ψ
(Ca)
i

∣∣
r=Ki+Ca f (Ca)

i j
= ψ

(Ca)
j

∣∣
r=Ki+Ca f (Ca)

i j
, (34)

ni j · (
R1 j∇ψ

(Ca)
j − R1i∇ψ

(Ca)
i

)∣∣
r=Ki+Ca f (Ca)

i j
= 0. (35)

The flow field satisfies the following governing equations at O(Ca)

∇ · u(Ca)
i = 0, ∇p(Ca)

i = λ1i∇2u(Ca)
i , (36)

and they are subjected to the following boundary conditions:

u(Ca)
1

∣∣
r→∞ → −U (Ca)

2 , (37)

u(Ca)
i |r=Ki+Ca f (Ca)

i j
= u(Ca)

j

∣∣
r=Ki+Ca f (Ca)

i j
, (38)

u(Ca)
i

∣∣
r=Ki+Ca f (Ca)

i j
· ni j = u(Ca)

j

∣∣
r=Ki+Ca f (Ca)

i j
· ni j = δi2

[(
U (Ca)

3 − U (Ca)
2

) · ni j
]
, (39)

ni j · (
τ

(Ca)
i − τ

(Ca)
j

)∣∣
r=Ki+Ca f (Ca)

i j
· (I − ni jni j ) = 0, (40)

ni j · (
τ

(Ca)
i − τ

(Ca)
j

)∣∣
r=Ki+Ca f (Ca)

i j
· ni j = 2 f (Ca)

i j

(
f (Ca)
i j + ∇2 f (Ca)

i j

) − (
2 f (Ca2)

i j + ∇2 f (Ca2)
i j

)
. (41)

Note that the generic term of the form 
(Ca)
i |r=Ki+Ca f (Ca)

i j
used above represents the O(Ca) evalua-

tion of that generic quantity  of the ith phase at the deformed i jth interface (r = Ki + Ca f (Ca)
i j ) of

the compound drop. The terms of this form can be expanded using the Taylor series about r = Ki
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and by collecting the O(Ca) terms, we get


(Ca)
i

∣∣
r=Ki+Ca f (Ca)

i j
= 

(Ca)
i

∣∣
r=Ki

+ f (Ca)
i j

∂
(Ca)
i

∂r

∣∣∣∣
r=Ki

. (42)

4. Description of field variables

The solution of the governing Laplace equation for electric potential in the suspending medium
(i = 1), shell region (i = 2) and core region (i = 3) of the compound drop can be expressed in terms
of solid spherical harmonics as

ψ
(k)
1 = −E∞ · r+

∞∑
n=0

r−n−1
n∑

m=0

[
a(k)

−n−1,m cos (mφ) + â(k)
−n−1,m sin (mφ)

]
Pn,m(cos θ ), (43)

ψ
(k)
2 =

∞∑
n=0

rn
n∑

m=0

[
b(k)

n,m cos (mφ) + b̂(k)
n,m sin (mφ)

]
Pn,m(cos θ )

+
∞∑

n=0

r−n−1
n∑

m=0

[
b(k)

−n−1,m cos (mφ) + b̂(k)
−n−1,m sin (mφ)

]
Pn,m(cos θ ), (44)

ψ
(k)
3 =

∞∑
n=0

rn
n∑

m=0

[
c(k)

n,m cos (mφ) + ĉ(k)
n,m sin (mφ)

]
Pn,m(cos θ ), (45)

where k indicates the order of perturbations viz. 0, ReE and Ca. Pn,m(cosθ ) represents the associated
Legendre polynomial of degree n and order m with argument cosθ . The hydrodynamic problem is
solved using the Lamb’s general solution procedure [51] for Stokes equation, according to which
the velocity and the pressure fields at different order of perturbations (k = 0, ReE , and Ca) can be
expressed in the following form:

u(k)
1 = V (k)

∞ − U (k)
2 +

∞∑
n=1

[
∇ × (

rχ (k)(1)
−n−1

)

+∇φ
(k)(1)
−n−1 − n − 2

2n(2n − 1)
r2∇p(k)(1)

−n−1 + n + 1

n(2n − 1)
rp(k)(1)

−n−1

]
, (46)

p(k)
1 =

∞∑
n=1

p(k)(1)
−n−1, (47)

u(k)
2 =

∞∑
n=1

[
∇ × {

r
(
χ (k)(2)

n + χ
(k)(2)
−n−1

)} + ∇(
φ(k)(2)

n + φ
(k)(2)
−n−1

)

+
{

n + 3

2(n + 1)(2n + 3)λ2
r2∇p(k)(2)

n − n − 2

2n(2n − 1)λ2
r2∇p(k)(2)

−n−1

}

−
{

n

(n + 1)(2n + 3)λ2
rp(k)(2)

n − n + 1

n(2n − 1)λ2
rp(k)(2)

−n−1

}]
, (48)

p(k)
2 =

∞∑
n=1

(
p(k)(2)

n + p(k)(2)
−n−1

)
, (49)

u(k)
3 =

∞∑
n=1

[
∇ × (

rχ (k)(3)
n

) + ∇φ(k)(3)
n + n + 3

2(n + 1)(2n + 3)λ3
r2∇p(k)(3)

n

− n

(n + 1)(2n + 3)λ3
rp(k)(3)

n

]
, (50)
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p(k)
3 =

∞∑
n=1

p(k)(3)
n . (51)

Here p(k)(i)
n , φ(k)(i)

n , and χ (k)(i)
n represent the growing solid harmonics and p(k)(i)

−n−1, φ
(k)(i)
−n−1, and χ

(k)(i)
−n−1

are the decaying solid harmonics, the expressions of which are provided in Appendix B.
Moreover, the corrections to the deformed shape of the compound drop ( f (Ca)

i j , f (CaReE )
i j and

f (Ca2 )
i j ) can be expressed in spherical harmonic notations as

f (Ca)
i j =

∞∑
n=1

[
L(Ca)(i j)

n,m cos (mφ) + L̂(Ca)(i j)
n,m sin (mφ)

]
Pn,m(cos θ ), (52)

where L(Ca)(i j)
n,m and L̂(Ca)(i j)

n,m are the unknown coefficients.

5. Leading-order solution

At the leading order, we first employ the boundary conditions Eqs. (13)–(15) into (43)–(45) to
determine the coefficients a(0)

−n−1,m, â(0)
−n−1,m, b(0)

n,m, b̂(0)
n,m, b(0)

−n−1,m, b̂(0)
−n−1,m, c(0)

n,m, and ĉ(0)
n,m. Since the

electric field is decoupled from the velocity field in this case, it finally results in the following
expression for leading-order electric potential in the suspending medium, shell region and core
region of the compound drop.

ψ
(0)
1 =

(
−r + ��

r2

)
(Ex sin θ cos φ + Ez cos θ ),

ψ
(0)
2 = 3�

(
r + ξ

r2

)
(2R12 + R13)(Ex sin θ cos φ + Ez cos θ ),

ψ
(0)
3 = 9r�R12(Ex sin θ cos φ + Ez cos θ ), (53)

where �, �, and ξ are functions of K, R12, and R13 having the following form:

� = K3
(
2R2

12 − 2R12R13 + R12 − R13
) − (

2R2
12 + R12R13 − 2R12 − R13

)
, (54)

� = 1/
[
2K3

(
R2

12 − R12R13 − R12 + R13
) − (

2R2
12 + R12R13 + 4R12 + 2R13

)]
, (55)

ξ = K3(R12 − R13)/(2R12 + R13). (56)

Using the solution for electric potentials, we can apply the relation, qs,i j = (S1 j∇ψ j − S1i∇ψi ) ·
er to determine the surface charge density at the two interfaces 12 and 23 as

q(0)
s,12 = −12(Ex sin θ cos φ + Ez cos θ )

[
− 1

12
+

{(
ξ − 1

2

)(
R12 + R13

2

)
S12 − �

6

}
�

]
, (57)

q(0)
s,23 = − 6

K3
(Ex sin θ cos φ + Ez cos θ )�

[
(K3 − 2ξ )

(
R12 + R13

2

)
S12 − 3S13R12K3

2

]
. (58)

Next, we proceed toward determining the leading-order velocity distribution using the boundary
conditions Eqs. (17)–(20). These boundary conditions cannot be directly applied in terms of the
growing and decaying solid spherical harmonics and therefore, we perform vectorial operations to
transform the boundary conditions into simpler forms. The details of this procedure are provided in
Refs. [46,52]. This yields a set of linear equations in terms of solid spherical harmonics which are
solved to obtain the coefficients A(0)(i)

n,m , Â(0)(i)
n,m , A(0)(i)

−n−1,m, Â(0)(i)
−n−1,m, B(0)(i)

n,m , B̂(0)(i)
n,m , B(0)(i)

−n−1,m, B̂(0)(i)
−n−1,m,

C(0)(i)
n,m , Ĉ(0)(i)

n,m , C(0)(i)
−n−1,m, and Ĉ(0)(i)

−n−1,m. However, in compact form, we represent the solution for the
velocity and pressure distributions within the core and shell regions and outside the compound drop
in terms of spherical harmonics as given in Appendix C.
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Once the velocity and pressure distributions inside and outside the drop are obtained, we can
determine the velocities of shell drop (U2) and core drop (U3), using the force-free condition
[47,53]. The force-free condition at leading order in nondimensional form can be written as

∇(
r3 p(0)(i)

−2

) = 0, (59)

where p(0)(i)
−2 = 1/r2[A(0)(i)

−2,0 P1,0 + A(0)(i)
−2,1 cosφP1,1 + Â(0)(i)

−2,1 sinφP1,1] with i = 2, 3. Solving Eq. (59)
will yield leading-order velocities for the shell and core of the compound drop as

U (0)
2,x = U (0)

2,y = 0, U (0)
2,z = f (K, λ12, λ13, xd ), (60)

U (0)
3,x = U (0)

3,y = 0, U (0)
3,z = f (K, λ12, λ13, xd ). (61)

The leading-order normal stress balance condition Eq. (21) would then be utilized to determine
the deformed shape of the compound drop. This provides nonzero coefficients (L(Ca)(i j)

n,m ) required to
represent the O(Ca) shape correction factor ( f (Ca)

i j ) of the deformed i jth interface of the compound
drop.

6. O(ReE ) solution

Toward obtaining the O(ReE ) solution, we first expand the term [−∇s · (q(0)
s,i jV

(0)
s,i j )] present in the

boundary condition Eq. (25) as [54]

∇s · (
q(0)

s,i jV
(0)
s,i j

) = 2
(
q(0)

s,i jV
(0)
s,i j · er

) + 1

sin θ

∂

∂θ

(
sin θq(0)

s,i jV
(0)
s,i j · eθ

) + 1

sin θ

∂

∂φ

(
q(0)

s,i jV
(0)
s,i j · eφ

)

=
∞∑

n=0

n∑
m=0

[Zn,m cos (mφ) + Ẑn,m sin (mφ)]Pn,m(cos θ ), (62)

where q(0)
s,i j and V (0)

s,i j (V (0)
s,12 = u(0)

2 and V (0)
s,23 = u(0)

3 ) are substituted from Eqs. (57), (58), and
Eqs. (C3)–(C5). Applying the orthogonality property of spherical surface harmonics, we find out
the nonzero Zn,m and Ẑn,m terms. Based on these nonzero terms, it is expected that the electric
potential in the suspending medium, i.e., the shell and core drops, governs by the expression given
in Appendix D.

Thereafter, we utilize the boundary conditions Eqs. (23)–(25) and determine the coefficients
a(ReE )

−n−1,m, â(ReE )
−n−1,m, b(ReE )

n,m , b̂(ReE )
n,m ,b(ReE )

−n−1,m, b̂(ReE )
−n−1,m,c(ReE )

n,m , and ĉ(ReE )
n,m that have nonzero values and

hence determine the O(ReE ) surface charge density.
In a similar way as the leading-order case, the force-free condition at O(ReE ) takes the form

∇(
r3 p(ReE )(i)

−2

) = 0, (63)

where p(ReE )(i)
−2 = 1/r2[A(ReE )(i)

−2,0 P1,0 + A(ReE )(i)
−2,1 cosφP1,1 + Â(ReE )(i)

−2,1 sinφP1,1] with i = 2, 3. Using the

expression for p(ReE )(i)
−2 , we determine the nonzero expressions for the coefficients A(ReE )(i)

−2,0 , A(ReE )(i)
−2,1

and Â(ReE )(i)
−2,1 . Thereafter, we employ Eq. (70) and evaluate the O(ReE ) velocities for shell and core

drops in the following form:

U (ReE )
2,x = U (ReE )

2,z = f (K, λ12, λ13, R12, R13, S12, S13, θt , xd ), U (ReE )
2,y = 0, (64)

U (ReE )
3,x = U (ReE )

3,z = f (K, λ12, λ13, R12, R13, S12, S13, θt , xd ), U (ReE )
3,y = 0. (65)

It is to be noted, however, that by considering a uniform background flow, the charge convection
will not affect the drop velocity in O(ReE ), and this has been mathematically shown in Appendix E.
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7. O(Ca) solution

As the boundary conditions for O(Ca) are applied at the deformed interface (r = Ki + Ca f (Ca)
i j )

and there is no applied electric field, hence shape deformation of the compound drop is responsible
for the induced electric field at this order. The nonzero harmonics are obtained using the bound-
ary conditions Eqs. (33)–(35). The expressions for the electric potential for O(Ca) are given in
Appendix F.

The evaluation of the O(Ca) velocity and pressure fields are rather cumbersome as the quantities
are to be determined at the deformed interfaces (r = Ki + Ca f (Ca)

i j ) of the compound drop and
details of this procedure can be found in Refs. [52,53]. Briefly stating, we employ the force-free
condition

∇(
r3 p(Ca)(i)

−2

) = 0, (66)

where p(Ca)(i)
−2 = 1/r2[A(Ca)(i)

−2,0 P1,0 + A(Ca)(i)
−2,1 cosφP1,1 + Â(Ca)(i)

−2,1 sinφP1,1] with i = 2, 3. We solve the

expression for p(Ca)(i)
−2 to determine the nonzero expressions for the coefficients A(Ca)(i)

−2,0 , A(Ca)(i)
−2,1 , and

Â(Ca)(i)
−2,1 . Following the procedure given in Refs. [52,53], we arrive at the O(Ca) velocities for shell

and core regions of the compound drop, which are given by

U (Ca)
2,x = U (Ca)

2,z = f (K, λ12, λ13, R12, R13, S12, S13, θt , xd ), U (Ca)
2,y = 0, (67)

U (Ca)
3,x = U (Ca)

3,z = f (K, λ12, λ13, R12, R13, S12, S13, θt , xd ), U (Ca)
3,y = 0. (68)

Finally, the combined effect of charge convection and shape deformation on the velocity of the shell
and core phases can be obtained by combining these two effects linearly as

U i = U (0)
i + ReEU (ReE )

i + CaU (Ca)
i . (69)

The solution obtained using the above formulation has been validated with that of Taylor [1],
Santra et al. [43], and Chan and Leal [48], which is discussed in Appendix G.

E. Leading-order analysis for eccentric compound drop

A schematic representation of the eccentric compound drop configuration is shown in Fig. 2.
A bispherical coordinate system (ξ, η, ϕ) with the origin as shown in the figure is considered.
The interfaces of outer and inner drops are expressed in bispherical coordinates as ξ = ξ1 =
cosh−1( 1+e2−K2

2e ) and ξ = ξ2 = cosh−1( 1−e2−K2

2eK ), respectively. Here, e represents the eccentricity
of the compound drop. The reference cylindrical coordinate system is related to the bispherical
coordinate system as follows [55]:

ρ = c
√

1 − ζ 2

cosh ξ − ζ
, z = c sinh ξ

cosh ξ − ζ
, ϕ=ϕ, (70)

where ζ = cosη and c = Ksinhξ1.
Following the irrotational nature of the electric field intensity (∇ × E i = 0), the electrostatic

problem can be reformulated by defining a scalar function ω, which is related to an electric field
intensity as follows [56]:

E i = −∇ψi = ∇ ×
(

ωi

ρ
îϕ

)
. (71)

As a result, Eq. (71) trivially satisfies the governing equation for electric potential [Eq. (12)].
Therefore, Eq. (71) in combination with ∇ × E i = 0 yields the governing equation for ω as

∇ × ∇ ×
(

ωi

ρ

)
îϕ = 0, (72)
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FIG. 2. A schematic representation of eccentric compound drop configuration moving under the action of
background Poiseuille flow and subjected to an imposed external electric field applied in the direction of flow.
A bispherical coordinate system (ξ, η, ϕ) is considered. The interfaces of outer and inner drops are expressed in
bispherical coordinates as ξ = ξ1 and ξ = ξ2, respectively. Here, e represents the eccentricity of the compound
drop.

where the gradient operator (∇) takes the form [57] ∇ = îηh1∂/∂η + îξh2∂/∂ξ + îϕh3∂/∂ϕ with
h1 = h2 = (coshξ − ζ )/c and h3 = (coshξ − ζ )/(c

√
1 − ζ 2). Further simplification of Eq. (72)

yields ε2ωi = 0, where ε2 in bispherical coordinates is given by [58]

ε2 ≡ (cosh ξ − ζ )

c2

[
∂

∂ξ

{
(cosh ξ − ζ )

∂

∂ξ

}
+ (

1 − ζ 2
) ∂

∂ζ

{
(cosh ξ − ζ )

∂

∂ζ

}]
. (73)

The general solution for ω can be expressed as [59]

ω = (cosh ξ − ζ )−
1
2

∞∑
n=0

[
dn cosh

(
n + 1

2

)
ξ + en sinh

(
n + 1

2

)
ξ

]
C

− 1
2

n+1(ζ ), (74)

where C
− 1

2
n+1 is the Gegenbauer polynomial of degree −1/2 and order (n + 1). Based on the boundary

conditions for the electric potential at the leading order, we choose suitable forms of ωi for the ith
fluid as follows [60]:

ω1 = ρ2

2
+ (cosh ξ − ζ )−

1
2

∞∑
n=0

[
dn sinh

(
n + 1

2

)
ξ

]
C

− 1
2

n+1(ζ ), (75)

ω2 = (cosh ξ − ζ )−
1
2

∞∑
n=0

[ fne(n+ 1
2 )(ξ−ξ2 ) + gne−(n+ 1

2 )(ξ−ξ2 )]C
− 1

2
n+1(ζ ), (76)

ω3 = (cosh ξ − ζ )−
1
2

∞∑
n=0

[hne∓(n+ 1
2 )(ξ−ξ2 )]C

− 1
2

n+1(ζ ). (77)

It is to be noted that the above forms of ωi are chosen because they satisfy the leading-order far-field
condition (ω1 → ρ2/2, as ξ, η → 0) and the boundedness condition (|ω3| < ∞, as ξ → ∞) in
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bispherical coordinates [60]. The remaining boundary conditions [Eqs. (14) and (15)] will take the
following form [33]:

∂ωi

∂ξ

∣∣∣∣
ξ=ξi

= ∂ω j

∂ξ

∣∣∣∣
ξ=ξi

, (78)

R1iωi|ξ=ξi
= R1 jω j |ξ=ξi

. (79)

To proceed with the solution of potential field, we need to transform the boundary conditions
Eqs. (78) and (79) into a set of linear algebraic equations using Eqs. (75)–(77), the orthogonality
property of Gegenbauer polynomial, the recurrence relations and a few well-known identities as
given in Jadhav and Ghosh [61]. This results in the equations given in Appendix I that can be solved
numerically for the unknown coefficients (dn, fn, gn, and hn for 0 � n � N ). Here, N is the total
number of terms in the series and it is chosen to truncate the series after N terms. For the sake of
accuracy in results, the choice of N is dependent on the value of eccentricity of the compound drop.
Further details of the numerical solution procedure of Eqs. (I 2)–(I 5) is given in Jadhav and Ghosh
[61]. Once the unknown coefficients and hence ωi are obtained, it can be related to the gradient of
electric potential through the following relations:

E (i)
ξ = − (cosh ξ − ζ )

c

∂ψi

∂ξ
= (cosh ξ − ζ )2

c2 sin η

∂ωi

∂η
, (80)

E (i)
η = − (cosh ξ − ζ )

c

∂ψi

∂η
= − (cosh ξ − ζ )2

c2 sin η

∂ωi

∂ξ
. (81)

Having solved for the electric potential field, we can now proceed toward solving the flow field
considering a special case of axisymmetric flow for the eccentric compound drop system subjected
to plane Poiseuille flow. This allows us to write the governing equation for the flow field of the
ith fluid as [57] ε4Si = 0, where Si is the Stokes stream function for the ith fluid and the general
solution for the same in bispherical coordinates can be expressed as [58]

Si = (cosh ξ − ζ )−
3
2

∞∑
n=0

�(i)
n (ξ )C

− 1
2

n+1(ζ ). (82)

In Eq. (82), depending on the satisfaction of far-field and boundedness condition, �(i)
n will assume

suitable forms as follows [44]:

�(1)
n = Dne(n− 1

2 )ξ + Ene(n+ 3
2 )ξ + f̃ne∓(n− 1

2 )ξ + g̃ne∓(n+ 3
2 )ξ , (83)

�(2)
n = Hne(n− 1

2 )ξ + Ine(n+ 3
2 )ξ + Jne∓(n− 1

2 )ξ + Kne∓(n+ 3
2 )ξ , (84)

�(3)
n = Lne∓(n− 1

2 )ξ + Mne∓(n+ 3
2 )ξ . (85)

Using the relations between the velocity components (uξ and uη ) and the stream function as follows
[44]:

u(i)
ξ = (cosh ξ − ζ )2

c2 sin η

∂Si

∂η
and u(i)

η = − (cosh ξ − ζ )2

c2 sin η

∂Si

∂ξ
. (86)

We can recast the leading-order far-field condition [Eq. (17)] in the following form [44]:

S1 = (cosh ξ − ζ )−
3
2

∞∑
n=0

[ f̃ne∓(n− 1
2 )ξ + g̃ne∓(n+ 3

2 )ξ ]C
− 1

2
n+1(ζ ) as ξ → 0. (87)
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Here, the constants f̃n and g̃n can be expressed as [44]

f̃n = − n(n + 1)c2

√
2(2n − 1)

[
(1 − U2) + 2c2

3R2
(n − 1)(n − 2)

]
, (88)

g̃n = n(n + 1)c2

√
2(2n + 3)

[
(1 − U2) + 2c2

3R2
(n + 2)(n + 3)

]
. (89)

We now recast the leading-order boundary conditions for the flow field [refer to Eqs. (18)–(20)] as
per the bispherical coordinate system at the interface (ξ = ξi ) as follows [33]:

u(i)
ξ = u( j)

ξ = δi2(U3 − U2) · îξ , (90)

u(i)
η = u( j)

η , (91)

λiτ
(i)
ξη − λ jτ

( j)
ξη = E (i)

η

4π

(
S1 jE

( j)
ξ − S1iE

(i)
ξ

)
. (92)

Using the expression for the shear stress component in bispherical coordinates and the orthogonality
property of the Gegenbauer polynomial, we can transform the boundary conditions Eqs. (90)–(92)
into a set of eight linear algebraic equations as given in Appendix J. These equations contain
eight unknowns (Dn, En, Hn, In, Jn, Kn, Ln, Mn) and they can be found out for each mode n using
appropriate numerical technique. For simplicity, we consider the number of modes for the flow
field to be the same as that considered for the potential field, i.e., n = N . Once the values of the
unknown coefficients in the flow field are determined, they can be individually expressed as a linear
combination of the shell and core drop velocities in the following way [44]:

�n = ϑ
(i)
1 [�, e(t ); n] + ϑ

(i)
2 [�, e(t ); n]U2 + ϑ

(i)
3 [�, e(t ); n]U3. (93)

Here, � = [D, E , H, I, J, K, L, M] and � is the parameter matrix which includes
λ12, λ13, R12, R13, S12, S13, and K . Using an overall force balance equation as follows:

Fshell = 4
√

2π

c

∞∑
n=0

(Dn + En) = 0, (94)

Fcore = 4
√

2π

c

∞∑
n=0

(Hn + In) = 0. (95)

Now we deduce two independent linear equations for U2 and U3 in the following form [31]:

ℵ21U2 + ℵ31U3 + ℵ1 = 0, (96)

ℵ22U2 + ℵ32U3 + ℵ2 = 0, (97)

where, ℵ21 = ∑N
n=0(ϑ (1)

2 + ϑ
(2)
2 ), ℵ31 = ∑N

n=0(ϑ (1)
3 + ϑ

(2)
3 ), ℵ1 = ∑N

n=0(ϑ (1)
1 + ϑ

(2)
1 ), and so on.

Equations (96) and (97) can be easily solved to determine the shell and core drop velocities.

III. RESULTS AND DISCUSSION

In this section, first, the dynamics of an undeformed concentric compound drop is discussed,
followed by the dynamics of a deformed concentric compound drop. Thereafter, the combined effect
of charge convection and shape deformation on the concentric compound drop is examined. Finally,
a brief discussion on eccentric compound drop under plane Poiseuille flow and subjected to an
electric field is also presented.
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A. Undeformed concentric compound drop

1. Interfacial charge distribution

We begin the presentation of our results by analyzing the charge distribution on the surface of
the shell and core regions of the compound drop due to the changes in physical and electrohy-
drodynamic parameters. The distributions of charges on the surface of the shell and core of the
compound drop are presented in Figs. 3 and 4, respectively. Following observations can be made
from these results. First, it is seen from the plots in the first row of Fig. 3 that the antisymmetry
in charge distribution on the surface of the shell drop is disturbed due to charge convection. The
disturbance is maximum when the tilt angle of the applied electric field is π/4 as in this case
the charge distribution becomes asymmetric about both the axial and transverse planes. However,
the antisymmetry in the distribution of charges on the surface of the core drop is disturbed (refer
to the plots in the first row of Fig. 4) in terms of the magnitude of positive and negative charges.
Also, the polarity of the charges on the surface of the shell drop is opposite to that on the surface
of the core drop. In other words, if negative charges accumulate at the north pole of the shell drop
then positive charges accumulate at the north pole of the core drop, irrespective of the tilt angle
of the applied electric field. Second, the disturbance in the antisymmetric distribution of charges
on the surface of the shell and core of the drop increases with the increase in the Mason number
(refer to the plots in the second row of Figs. 3 and 4). Thirdly, the disturbance in the antisymmetric
distribution of charges on the surface of the shell and core of the drop increases with the increase
in electric Reynolds number (refer to the plots in the third row of Figs. 3 and 4). Lastly, with the
increase in radius ratio of the compound drop, the disturbance in the antisymmetric distribution of
charges on the surface of the shell and the core of the drop also increases (refer to the plots in the
fourth row of Figs. 3 and 4). Moreover, the magnitude of charges on the surface of the core drop
increases as the radius ratio of the compound drop is increased.

To investigate the quantitative variation of surface charge density, we plot the polar variation
of the surface charges on the surface of the shell and core of the drop at two symmetrically
opposite locations about the axial plane (φ = π/4 and φ = 3π/4) and also for three different radius
ratio of the compound drop (K= 0.3, 0.5, and 0.7) considering the effect of charge convection in
Figs. 5(a) and 5(b). In this plot, the initial center of the compound drop is placed at an off-center
location (i.e., xd = 4) and the rest of the parameters are provided in the figure caption. It is clear
from this figure that the charge distribution on the surface of the shell and core of the drop are
asymmetric about the transverse plane (θ = π/2 plane) for both the values of φ under consideration.
Consequently, the asymmetric distribution in surface charge density about the transverse plane leads
to an asymmetric distribution of tangential electric force on the surface of the shell and core of the
drop as evident from Figs. 5(c) and 5(d). Another important aspect that can be drawn from Fig. 5
is that the magnitude of surface charge density (thus, the tangential electric force) increases with
the increase in the radius ratio of the compound drop. Additionally, the asymmetry in the charge
distribution on the shell and core surfaces about the transverse plane is also increased with the
increase in radius ratio of the compound drop.

2. Velocity in the cross-stream direction

Mandal et al. [44] showed that for a nondeformable single drop, the charge convection effect
can lead to considerable asymmetry in surface charge distribution about the axial plane that results
in nonzero velocity O(ReE ) in the transverse direction. Even in the case of compound drop (as
discussed in the previous section), the difference in the asymmetry of surface charge distribution is
observed for φ = π/4 and φ = 3π/4. This points to a critical alteration in velocity in the transverse
direction, and therefore, we investigate the variation of U (ReE )

2,x and U (ReE )
3,x with λ12 in Fig. 6 for

different values of K . For conditions when the viscosity of the fluid in the shell drop is very much
less than the viscosity of the suspending medium, i.e., λ12 � 1, the compound drop arrangement
resembles the behavior of a bubble encompassing a drop. As a result, the retardation due to charge
convection is maximum for both the shell and the core of the drop in such a situation. However,
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FIG. 3. The surface charge distribution (q(0)
s,12 + ReE q(ReE )

s,12 ) at the shell drop surface for different values of
tilt angle of the applied electric field (θt ), Mason number (M), electric Reynolds number (ReE ), and radius
ratio of the concentric compound drop (K). In panels (a)–(c) θt is varied with M = 1, ReE = 0.3, K = 0.5:
(a) θt = 0, (b) θt = π

4 , (c) θt = π

2 . In panels (d)–(f) M is varied with θt = π

4 , ReE = 0.3, K = 0.5: (d) M = 0.1,
(e) M = 0.5, (f) M = 2. In panels (g)–(i) ReE is varied with θt = π

4 , M = 1, K = 0.5: (g) ReE = 0, (h) ReE =
0.1, (i) ReE = 0.2. In panels (j)–(l) K is varied with θt = π

4 , M = 1, ReE = 0.3: (j) K = 0.3, (k) K = 0.5, (l)
K = 0.7. The rest of the parameters are R12 = 0.01, R13 = 1, S12 = 0.63, S13 = 1, λ12 = 0.35, λ13 = 1,

H = 10, and xd = 4 . Colorbar represents the magnitude of the dimensionless surface charge density.
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FIG. 4. The surface charge distribution (q(0)
s,23 + ReE q(ReE )

s,23 ) at the surface of the core drop for different
values of tilt angle of the applied electric field (θt ), Mason number (M), electric Reynolds number (ReE ),
and radius ratio of the concentric compound drop (K). In panels (a)–(c) θt is varied with M = 1, ReE = 0.3,
K = 0.5: (a) θt = 0, (b) θt = π

4 , (c) θt = π

2 . In panels (d)–(f) M is varied with θt = π

4 , ReE = 0.3, K = 0.5:
(d) M = 0.1, (e) M = 0.5, (f) M = 2. In panels (g)–(i) ReE is varied with θt = π

4 , M = 1, K = 0.5: (g) ReE =
0, (h) ReE = 0.1, (i) ReE = 0.2. In panels (j)–(l) K is varied with θt = π

4 , M = 1, ReE = 0.3: (j) K = 0.3,
(k) K = 0.5, (l) K = 0.7. The rest of the parameters are R12 = 0.01, R13 = 1, S12 = 0.63, S13 = 1, λ12 =
0.35, λ13 = 1, H = 10, and xd = 4 . Colorbar represents the magnitude of the dimensionless surface charge
density.
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FIG. 5. Variation of (a) qs,12(θ ), (b) qs,23(θ ), (c) Tθ,12(θ ), and (d) Tθ,23(θ ) for φ = π/4 and 3π/4 and for
different values of K . The rest of the parameters are R12 = 0.01, R13 = 1, S12 = 0.63, S13 = 1, λ12 = 0.35,
λ13 = 1, M = 1, ReE = 0.2, H = 10, and xd = 4.

FIG. 6. Variation of the lateral velocity due to charge convection U (ReE )
2,x and U (ReE )

3,x (shown in the inset)
with change in λ12 for different values of K . The rest of the parameters are R12 = 0.01, R13 = 1, S12 = 0.63,
S13 = 1, λ13 = 1, θt = π/4, M = 0.1, H = 10, and xd = 4.
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FIG. 7. Variation of the longitudinal velocity due to charge convection. Variations of
(a) (U (0)

2,z + ReEU (ReE )
2,z )/|V ∞| and (b) (U (0)

3,z + ReEU (ReE )
3,z )/|V ∞| with change in K for different values

of M. The rest of the parameters are R12 = 0.01, R13 = 1, S12 = 0.63, S13 = 1, λ12 = 0.35, λ13 = 1, θt = π/4,
H = 10 and xd = 4. Here, |V∞| = 0.96.

the reverse is true for λ12 � 1, as in this case, the viscosity of the fluid in the shell drop is much
higher than the viscosity of the suspending medium. Thus, the shell drop resembles the behavior of
a rigid sphere, making the compound drop almost immobile. Also, the magnitude of the transverse
component of velocity for both the shell and core drops being maximum for λ12 � 1 and minimum
for λ12 � 1 can be directly related to the internal circulation strength. As the drop internal viscosity
increases, the internal circulation strength becomes weaker, which in turn minimizes the intensity
of charge convection and hence reduces the drop velocity. Additionally, when the radius ratio of
the compound drop increases, the internal circulation strength and, as a result, the intensity of
charge convection increases due to the reduced annular space. Thus, we can see an increment in
the magnitude of U (ReE )

2,x and U (ReE )
3,x with the increase in K .

3. Velocity in the longitudinal direction

For a nondeformable drop, the component of velocity parallel to the direction of imposed flow,
i.e., z direction, is the summation of leading-order velocity and the velocity due to charge convection
(U (0)

i,z + ReEU (ReE )
i,z , i = 2, 3). To further understand the effect of the electric field on the alteration

of longitudinal drop velocity due to charge convection for a compound drop, we present the variation
of U (0)

i,z + ReEU (ReE )
i,z for the shell (i = 2) and core (i = 3) drop relative to the imposed background

flow (|V ∞|) owing to changes in K for different values of M in Figs. 7(a) and 7(b), respectively.
The values of the rest of the parameters are provided in the caption of this figure. It can be observed
that the value of [(U (0)

2,z + ReEU (ReE )
2,z )/|V ∞|] for the shell drop is less than unity, irrespective of the

values of K and M. This indicates that the shell drop lags behind the imposed flow. However, the
core drop might lag behind or rush ahead of the flow depending on the choice of K and M. Indeed,
the higher the electric field strength (i.e., higher is the value of M), the greater is the intensity
of the compound drop to lag behind the flow, as clearly depicted by the slope of the curves for
different values of M. To support this observation, we can recall the distribution of surface charges
in Fig. 3, which becomes largely asymmetric with the increase in the value of M. As a consequence,
the charge convection induced retardation also gets enhanced [see the variation of U (ReE )

i,z in the
insets of Figs. 7(a) and 7(b)]. As a result, the value of longitudinal velocity for a nondeformable
compound drop decreases as the Mason number increases. Furthermore, the longitudinal velocity
of a nondeformable compound drop decreases as the radius ratio increases. To explain the reason
behind such an observation, we can again recall the distribution of surface charges in Fig. 3 which
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FIG. 8. Mapping of (a) R(ReE )
2,z and (b) R(ReE )

3,z on ReE -K plane for R12 = 0.01, R13 = 1, S12 = 0.63, S13 = 1,
λ12 = 0.35, λ13 = 1, θt = π/4, M = 1, H = 10, and xd = 4.

becomes largely asymmetric with the increase in K and as a consequence, the charge convection
induced retardation also gets enhanced. Finally, when the core drop becomes sufficiently small
(K � 0.1), the compound drop arrangement behaves like a single drop and in such a situation,
the longitudinal velocity for a nondeformable compound drop becomes independent of K and
minimally influenced by M [44] and therefore, we observe approximately a constant value when
K = 0.1.

Apart from being a function of K and M, U (ReE )
i,z is also a function of tilt angle (θt ) and hence, to

depict the critical dependence of an electric field strength and its angle of application, we define an
electric field contribution factor as

R
(ReE )
i,z = U (0)

i,z + ReEU (ReE )
i,z(

U (0)
i,z + ReEU (ReE )

i,z

)∣∣
E∞=0

, i = 2, 3, (98)

which quantifies the extent to which the longitudinal drop velocity for a nondeformable drop is
altered in the presence of an electric field. The parametric dependence of R(ReE )

i,z with i = 2, 3 on
θt and K is mapped in Figs. 8(a) and 8(b), respectively. Inspection of these plots reveals that the
longitudinal velocity of both the shell and core diminishes as K increases for all values of 0 � θt �
π/2. This result is consistent with the previous discussion. Secondly, we observe that increasing θt

from 0 to π/2 increases the longitudinal velocity of both the shell and core of the compound drop. It
is observed that changing the direction of the applied electric field has a considerable impact on the
antisymmetry in surface charge distribution, and that too significantly on the shell drop. This affects
the electrohydrodynamically induced flow and, as a consequence, the resultant interfacial stresses,
reducing the drag force on the drop that determines its velocity (Fig. 3).

We also present the effect of ReE and K in modifying the longitudinal drop velocity for a
nondeformable compound drop through a map of the parameter, R

(ReE )
i,z with i = 2, 3 on the

θt -K plane in Figs. 9(a) and 9(b), respectively. It demonstrates that when the influence of charge
convection decreases, the longitudinal velocity of the undeformed shell and core decreases. This
happens because the asymmetry in charge distribution is insignificant for lower values of ReE

(see Fig. 8). Thus, the resultant electrohydrodynamic flow, interfacial stresses, and drag force
are minimally influenced, resulting in a lower longitudinal drop velocity. However, as the charge
convection effect increases, the electrohydrodynamic flow generates more and more augmentation
in the longitudinal velocity for both the shell and core of the drop.
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FIG. 9. Mapping of (a) R(ReE )
2,z and (b) R(ReE )

3,z on θt -K plane for R12 = 0.01, R13 = 1, S12 = 0.63, S13 = 1,
λ12 = 0.35, λ13 = 1, ReE = 0.2, M = 1, H = 10, and xd = 4.

B. Deformable concentric compound drop

1. Velocity alteration in the cross-stream direction

The effect of viscosity ratio (λ12) on the alteration of compound drop velocity in the cross-stream
direction is depicted in Fig. 10. The change in viscosity ratio clearly indicates an alteration in the
direction of motion for both the shell and core of the drop. Note that the positive and negative values
of U (Ca)

i,x indicate the migration of the drop in the positive and negative x directions, respectively. It
can be seen in Fig. 10 that for λ12 � 1, the shell drop migrates along the negative x direction, but
for λ12 > 1, the shell drop moves in the positive x direction (albeit less as U (Ca)

2,x is close to zero).

Similarly, the electric field not only alters the magnitude of U (Ca)
3,x but also the direction of core

drop migration, as shown in the inset of Fig. 10. For conditions when the viscosity of the fluid
in the shell drop is very much less than the viscosity of the suspending medium, i.e., λ12 � 1,

FIG. 10. Variation of lateral velocity due to shape deformation U (Ca)
2,x and U (Ca)

3,x (shown in the inset) with
change in λ12 for different values of K. The rest of the parameters are R12 = 0.01, R13 = 1, S12 = 0.63, S13 = 1,
λ13 = 1, θt = π/4, M = 0.1, H = 10, and xd = 4.
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FIG. 11. (a) Variation of drop cross-sectional area perpendicular to the cross-stream direction (Ayz ) for the
shell drop (core drop as shown in the inset) with K for different values of M. (b) Schematic representation
of deformed drop shape (shown by black solid and dashed lines) for the corresponding case when K = 0.5.
(c) Variation of lateral velocity due to shape deformation for the shell drop with K for different values of
M. (d) Variation of lateral velocity due to shape deformation for the core drop with K for different values of
M. The inset of panels (c) and (d) depicts the variation of R

(Ca)
2,x and R

(Ca)
3,x with K for different M. Unless

otherwise mentioned, the rest of the parameters are R12 = 0.01, R13 = 1, S12 = 0.63, S13 = 1, λ12 = 0.35,
λ13 = 1, θt = π/4, H = 10, and xd = 4.

the compound drop arrangement resembles the behavior of a bubble encompassing a drop. As a
result, the deformation is maximum for both the shell and core drops and hence the magnitude of
cross-stream velocity is also higher for λ12 � 1. However, for λ12 � 1, the dynamics of the shell
drop resembles that of a solid sphere, resulting in less deformation and rendering the compound
drop practically immobile.

Toward explaining the effect of drop deformation on the alteration of velocity for both the shell
and core drops in the cross-stream direction, we look into the variation of the cross-section of the
drop perpendicular to the lateral direction (Ayz ). In Fig. 11(a), we present the variation of Ayz for
both the shell and the core drops due to change in K and M. It can be seen that, as the radius
ratio increases, the cross-section of the shell drop perpendicular to the lateral direction increases,
while the cross-section of the core drop decreases. Such a variation is supported by the deviation
of compound drop shape from sphericity as shown in Fig. 11(b). Although the drop shape is
dependent on the combination of R12 and S12, the considered values of electrical property ratios
for Fig. 11(b) produces oblate and prolate deformation patterns (with respect to the direction of the
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FIG. 12. Variation of R(Ca)
2,x and R

(Ca)
3,x with θt for different K . The rest of the parameters are R12 = 0.01,

R13 = 1, S12 = 0.63, S13 = 1, λ12 = 0.35, λ13 = 1, M = 0.5, H = 10, and xd = 4.

applied electric field) for the shell and core drops, respectively; this follows the theory proposed by
Taylor [1]. It has been observed that application of the electric field increases the cross-section of
the shell drop that undergoes oblate deformation while decreases the cross-section of the core drop
that undergoes prolate deformation. Moreover, the higher the radius ratio of the compound drop,
the lesser is the annular space, and therefore the stronger the electrohydrodynamically induced
flow and interfacial stresses. As a consequence, the effect of the electric field on the alteration
of drop cross-section increases substantially as the value of K increases. For higher values of M,
the effect of the electric field is much more pronounced, resulting in a greater alteration in the drop
cross-section perpendicular to the cross-stream direction.

The alteration of drop cross-section accordingly changes the flow resistance and this, in turn,
dictates the cross-stream velocity of the compound drop. The cross-stream velocities of the shell
and core drops due to change in K and M are presented in Figs. 11(c) and 11(d), respectively.
In tune with the variation of the drop’s cross-section perpendicular to the cross-stream direction,
the cross-stream velocity of the drop also augments quantitatively with the increase in K and M.
Interestingly, even for lower values of the radius ratio, the cross-stream velocity of the compound
drop increases in magnitude due to the decrement in K and increment in M. This can be attributed
to the amplified effect of the applied electric field on the cross-stream velocity when the radius ratio
is either very low or very high. For this, we define another electric field contribution factor as

R
(Ca)
i,x = U (Ca)

i,x(
U (Ca)

i,x

)∣∣
E∞=0

, i = 2, 3, (99)

and we present their variation with K and M in the insets of Figs. 11(c) and 11(d), respectively.
Furthermore, it can be observed that, at lower radius ratio, the shell drop accelerates, while it exhibits
retardation when the radius ratio is high. On the contrary, the opposite is true for the core drop.

Figure 12 depicts the variation of R(Ca)
i,x with θt and K for a compound drop initially placed at an

off-center location. The values of the rest of the parameters are provided in the figure caption. It can
be observed that the effect of tilt angle of the applied electric field in accelerating or retarding the
motion of compound drop gets dampened out or minimized when the size of the core drop increases
(i.e., as the value of K is increased). When the applied electric field is axial (θt = 0 or π ), the
Mason number has no effect in altering the compound drop velocity. It is also observed that, unlike
the case of a single drop where the effect of the Mason number in altering the deformation triggered
cross-stream velocity gets nullified for θt = 0 and π/2. This happens because when an electric
field is applied to a compound drop at an angle other than the imposed flow direction (positive
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FIG. 13. (a) Variation of relative projected area of the drop in the x-y plane (Axy,12/Axy,12,E∞=0 ) for the shell
drop with K for different values of M; the inset of this panel shows the variation of (Axy,12/Axy,12,E∞=0) with K
for the core drop. (b) Variation of (U (0)

2,z + CaU (Ca)
2,z )/|V ∞| with K for different values of M; the inset shows the

variation of R(Ca)
2,z with K . (c) Variation of (U (0)

3,z + CaU (Ca)
3,z )/|V ∞| with K for different values of M; the inset

shows the variation of R(Ca)
3,z with K . Unless otherwise mentioned, the rest of the parameters are R12 = 0.01,

R13 = 1, S12 = 0.63, S13 = 1, λ12 = 0.35, λ13 = 1, θt = π/4, Ca = 0.1, H = 10, and xd = 4.

or negative), the deformation-triggered cross-stream velocity is altered not only by hydrodynamic
effects, but also by the effects of the applied electric field.

2. Velocity alteration in the longitudinal direction

Next, we explore the alteration of deformed compound drop velocity in the longitudinal direction.
Before that, we analyze the possible variation of the drop cross-section perpendicular to the
longitudinal direction (Axy) in Fig. 13(a) where we present the variation of Axy for both the shell
and core drops due to change in K and M. It can be seen that as the radius ratio increases, the
cross-section of the shell drop perpendicular to the longitudinal direction exponentially decreases,
while the cross-section of the core drop exponentially increases. Furthermore, as in the previous
case, the effect of the electric field on the alteration in drop cross-section increases dramatically as
the value of K increases. Furthermore, when the value of M increases, the effect of the electric field
becomes more pronounced, resulting in a bigger change in the drop cross-section perpendicular to
the cross-stream direction.
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FIG. 14. Variations of (a) the lateral velocity due to the combined effect of charge convection and shape
deformation U2,x (U3,x as shown in the inset), and (b) the longitudinal velocity due to the combined effect of
charge convection and shape deformation U2,z (U3,z as shown in the inset) with change in λ12 for different values
of K . The rest of the parameters are R12 = 0.01, R13 = 1, S12 = 0.63, S13 = 1, λ13 = 1, θt = π/4, M = 0.1,
ReE = 0.1, Ca = 0.1, H = 10, and xd = 4.

The alteration of drop cross-section accordingly affects the flow resistance and this, in turn,
dictates the longitudinal velocity of the compound drop. It is important to note that the longitudinal
velocity of a deformed compound drop is the combined effects of leading-order velocity and
deformation-induced velocity. In Figs. 13(b) and 13(c), we present the longitudinal velocity of the
shell and core drops due to change in K and M, respectively. As the radius ratio of the compound
drop increases, the shell drop tries to rush ahead of the imposed flow. To explain the reason behind
such a variation, we define another electric field contribution factor as

R
(Ca)
i,z = U (0)

i,z + CaU (Ca)
i,z(

U (0)
i,z + CaU (Ca)

i,z

)∣∣
E∞=0

, i = 2, 3. (100)

The variation of R(Ca)
2,z indicates that the effect of an electric field on the longitudinal velocity gets

amplified when the radius ratio increases. This, in turn, changes the area of the deformed drop
shape, the drag force, and hence, the longitudinal velocity of the shell drop. However, it is found
that the core drop lags behind the imposed flow when the radius ratio is either very low or very
high. Although, the area of the core drop only increases at a higher radius ratio, however, it is
found from the variation of R

(Ca)
3,z that the effect of the electric field in altering the longitudinal

velocity of the core drop is predominant when the radius ratio is either very low or very high.
In particular, the retardation observed at lower radius ratios is primarily due to the effect of the
applied electric field in altering the leading-order velocity, while at higher values of K , the change
in the longitudinal velocity of the core drop is the result of the deformation-induced change in the
drag force. Furthermore, the deformation pattern (prolate deformation for shell drop and oblate
deformation for core drop) is the reason behind the fact that the longitudinal velocity of the shell
drop is higher than the imposed flow, while that of the core drop is generally lower than the imposed
flow velocity. Also, as the value of M increases, the affinity of the shell drop to rush ahead and the
core drop to lag behind the imposed flow increases.

C. Combined effect of charge convection and shape deformation

In Fig. 14, we present the influence of viscosity ratio (λ12) on the alteration of cross-stream
velocity and longitudinal velocity of the shell and core drops due to the combined effect of charge
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FIG. 15. Variations of (a) |U2,x| (|U3,x| as shown in the inset), and (b) |U2,z|/|V ∞| (|U3,z|/|V ∞| as shown
in the inset) with change in ReE for different values of K . The rest of the parameters are R12 = 0.01, R13 = 1,
S12 = 0.63, S13 = 1, λ12 = 0.35, λ13 = 1, θt = π/4, M = 0.1, Ca = 0.1, H = 10, and xd = 4.

convection and shape deformation and for various radius ratio of the compound drop. It is found
that for λ12 � 1, the magnitude of the lateral velocity of both the shell and core drops is very
high because in this case, the compound drop arrangement behaves like a bubble. However, for
λ12 � 1, the compound drop arrangement behaves like a rigid sphere, and therefore, the effects
of charge convection and shape deformation are decreased, thus resulting in low magnitude of the
cross-stream velocity. Also, as the radius ratio increases, the magnitude of the cross-stream velocity
of the shell drop increases, while the cross-stream velocity of the core drop decreases. Moreover,
in the presence of charge convection, the alteration in the direction of lateral migration observed
due to the influence of shape deformation as illustrated in Fig. 10 is not apparent. This is because
the direction of lateral migration is dictated by the competition between the influence of charge
convection and shape deformation. In terms of the longitudinal velocity alteration, it can be seen
from Fig. 14 that the velocity decreases with the increase in the viscosity ratio. Additionally, the
longitudinal velocity is higher for lower values of K when λ12 � 1, but beyond a certain critical
value of λ12, the longitudinal velocity is higher for higher values of K for both the shell and core
drops.

Figure 15 depicts the variation in the magnitude of lateral and longitudinal velocity for both the
shell and core of the drop with different radius ratios due to change in ReE when the combined
effects of charge convection and shape deformation are taken into account. The rest of the param-
eters are provided in the figure caption. Considering a fixed Ca, it is seen that an increase in ReE

enhances the lateral velocity of both the shell and core drops, while the longitudinal velocity is
decreased. Such a variation is related to the orientation of charge distribution on the surface of the
shell and core drops as previously shown in Figs. 3 and 4. It is found that the lateral velocity of the
shell drop increases with the increase in K , while that of the core drop decreases with the increase in
K . However, the longitudinal velocity of both the shell and core drops decreases with the increase in
K . Furthermore, at lower values of ReE , the longitudinal velocity of the core drop is higher than the
free stream velocity, while depending on the value of K , the longitudinal velocity might be lower
than the free stream velocity beyond a certain value of ReE . Similarly, considering a fixed value
of ReE , when we vary Ca, then it can be observed in Fig. 16 that the magnitude of the lateral and
longitudinal velocity of the shell and core drops increases with an increase in Ca due to greater
deformation.
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FIG. 16. Variations of (a) |U2,x| (|U3,x| as shown in the inset) and (b) |U2,z|/|V ∞| (|U3,z|/|V ∞| as shown
in the inset) with change in Ca for different values of K . The rest of parameters are R12 = 0.01, R13 = 1,
S12 = 0.63, S13 = 1, λ12 = 0.35, λ13 = 1, θt = π/4, M = 0.1, ReE = 0.1, H = 10, and xd = 4.

Under the quasisteady-state approximation, we also determine the quasisteady-state droplet
trajectory by solving the following differential equations

dxd (t )

dt
= ReEU (ReE )

i,x + CaU (Ca)
i,x , (101)

dzd (t )

dt
= U (0)

i,z + ReEU (ReE )
i,z + CaU (Ca)

i,z , (102)

where, xd and zd represents the nondimensional transverse and axial position of the compound drop
centroid. With a suitable choice of the initial position of the compound drop, we can solve the above
equations using appropriate numerical techniques. The quasisteady-state trajectory of the shell and
core drop is plotted in Fig. 17 for different values of radius ratio and two different combinations
of conductivity and permittivity ratios, considering the initial centroid of the compound drop to
be located at an off-centre location, i.e., xd = 4. The rest of the parameters are provided in the

FIG. 17. Trajectory of the shell and core drop for different radius ratio and for (a) R12 = 0.01, S12 = 0.63,
and (b) R12 = 2, S12 = 0.5 using the concentric compound drop theory. The rest of the parameters are R13 = 1,
S13 = 1, λ12 = 0.35, λ13 = 1, θt = π/4, M = 0.1, ReE = 0.01, Ca = 0.01, H = 10, and xd (t = 0) = 4.
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FIG. 18. (a) Variation of shell and core drop velocity with R12 for different value of eccentricity of the
compound drop. The rest of the parameters are R13 = 1, S12 = 0.63, S13 = 1, λ12 = 0.35, λ13 = 1, H =
10, and K = 0.2. (b) Variation of shell and core drop velocity with λ12 for different value of eccentricity of the
compound drop. The rest of the parameters are R12 = 0.01, R13 = 1, S12 = 0.63, S13 = 1, λ13 = 1, H = 10,
and K = 0.2.

figure caption. Previously Mortazavi and Tryggvason [62] have shown that a single drop under
plane Poiseuille flow can either migrate toward the channel centreline or toward the wall depending
on the hydrodynamic properties. In the present study, we find that for R12 < S12, both the shell
and core drop migrate toward the channel wall, irrespective of the radius ratio. However, the core
drop traverses a greater distance toward the wall, resulting in very minimal eccentricity and within
the limit of valid concentric assumption. On the contrary, when R12 > S12, it is seen that the shell
drop migrates toward the channel centreline, while the core drop migrates toward the wall due to
asymmetric charge distribution and fluid circulation.

D. Eccentric compound drop under plane Poiseuille flow and an electric field

We have also briefly presented the results for the specific example of the axisymmetric motion
of eccentric compound drop under the action of background plane Poiseuille flow and subjected to
an externally imposed electric field applied along the flow direction as shown in the schematic
Fig. 2. We begin our discussion by presenting the variation of shell and core drop velocities
with conductivity ratio (R12) for two different values of eccentricity in Fig. 18(a). We find that
depending on the eccentricity value, the velocity of shell and core drop increases or decreases with
the increase in conductivity ratio. For lower eccentricity values, we observe a decrease in shell and
core drop velocity with the increase in conductivity ratio, while the reverse is the case for higher
ones of eccentricity. This happens because of the imbalance of fluid accumulation upstream and
downstream of the core drop due to the change in eccentricity. Moreover, we also find that the
effect of eccentricity on the velocity of the compound drop is nullified when the conductivity ratio
is significantly higher. This can be attributed to the decrement in asymmetric charge distribution
with the increase in conductivity ratio. We have also presented the variation of shell and core
drop velocities with viscosity ratio for different eccentricity values in Fig. 18(b). The rest of the
parameters are provided in the figure caption. Here also, we observe that depending on the value
of eccentricity, the velocity of shell and core drop either increases or decreases with the increase
in viscosity ratio due to the asymmetry in fluid accumulated upstream and downstream of the core
drop. Moreover, we also observe significant variation in velocity at lower values of viscosity ratio,
while at sufficiently higher viscosity ratio, the velocities tend to a finite value.
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FIG. 19. Variation of eccentricity with nondimensional time for different combinations of R12 and λ12

using the eccentric compound drop theory. The rest of the parameters are R13 = 1, S13 = 1, λ13 = 1, H = 10,
and K = 0.2.

Since the shell and core drop do not move with the same velocities hence, the eccentricity
would change with time. Considering the implicit time dependence, we determine the evolution
of eccentricity with time by numerically solving the following differential equation:

de

dt
= {U3[e(t ),�] − U2[e(t ),�]}. (103)

Based on the solution of Eq. (103), we have plotted the temporal variation of eccentricity for
different combination of conductivity ratio and viscosity ratio in Fig. 19 subjected to an initial
concentric configuration. From the evolution of eccentricity, it is clear that the concentric compound
drop maintains its stable position upto a certain time beyond which the eccentricity starts to increase.
This critical time of transition from stable to unstable position differs with the change in concomitant
electrical and hydrodynamic parameters. Furthermore, at a sufficiently longer time, the equilibrium
position is attained and the value of eccentricity becomes stagnant. Further details on the limit of
eccentricity and the critical time limit for the concentric assumption to remain valid is discussed in
Appendices A and H.

IV. CONCLUSIONS

The dynamics of a concentric compound drop migrating and deforming in a plane Poiseuille flow
under the influence of an arbitrarily orientated uniform electric field is investigated analytically
using regular perturbation theory. A double asymptotic approach is employed with the electric
Reynolds number (ReE ) and the capillary number (Ca) as small perturbation parameters to account
for the effects of charge convection and shape deformation and the governing equations for surface
charge distribution, deformed interface shape, and migration velocity of the shell and core drops are
derived. Under the single drop limit, the expressions of velocity and deformed interface obtained
using the current model agree with the combined analytical and experimental investigation of Taylor
[1] and the analytical study of Chan and Leal [48]. The underlying physics is thoroughly studied
by altering the hydrodynamic (λ12), electrical (R12, S12, θt ), and physical (K ) parameters for the
compound drop.

We found that when the tilt angle of the applied electric field is π/4, the disturbance in the
antisymmetric distribution of charges on the surface of the shell drop is maximum. However, in
terms of the magnitude of positive and negative charges, the antisymmetry in the distribution of
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charges on the surface of the core drop is disrupted. The antisymmetric charge distribution on
the surface of the shell and core drops increases with the increase in the Mason number, electric
Reynolds number, and radius ratio of the compound drop. The magnitude of charges on the surface
of the core drop increases as the radius ratio of the compound drop increases. Moreover, it is
observed that the polarity of the charges on the surfaces of the shell drop is opposite to that
on the surface of the core drop. In the case of a nondeformable compound drop, the maximum
retardation due to charge convection for both the shell and core drop occurs when the viscosity
of shell drop is much less than that of the suspending medium, i.e., λ12 � 1; the reverse happens
for λ12 � 1. We found that the magnitude of the lateral velocity (longitudinal velocity) due to
charge convection for both the shell and core drops increases (decreases) with the increase in radius
ratio; the longitudinal velocity of both the shell and core drops diminishes with increasing K for all
values of 0 � θt � π/2. It is observed that increasing the electric field strength (i.e., increasing M)
increases the lagging tendency of the shell drop behind the imposed flow.

In the case of a deformable compound drop without charge convection, it is found that the shell
drop migrates along the negative and positive x direction for λ12 � 1 and λ12 > 1, respectively.
For low radius ratios, the magnitude of the cross-stream velocity increases as K decreases and M
increases. The shell drop accelerates when the radius ratio is low and decelerates when the radius
ratio is high. The dynamics of the core drop, on the other hand, is exactly the reverse. When the size
of the core drop gets bigger, the effect of the tilt angle of the electric field on changing the direction
of motion of deformable compound drops is dampened. While the effect of the electric field on
longitudinal velocity increases as the radius ratio increases, its effect in altering the longitudinal
velocity of the core drop is predominant when the radius ratio is either extremely low or high.
Furthermore, when the value of M increases, the affinity of the deformable shell drop to rush ahead,
and the core drop to lag behind the imposed flow increases.

Under the combined action of charge convection and shape deformation, the longitudinal velocity
is higher for lower values of K for λ12 � 1, but beyond a certain critical value of λ12, the
longitudinal velocity is higher for higher values of K for both the shell and core drops. For a fixed Ca,
it is seen that increasing ReE enhances the lateral velocity and decreases the longitudinal velocity
of both the shell and core drops. However, for a fixed value of ReE , it is found that the magnitude
of lateral and longitudinal velocities of the shell and core drops increases with an increase in Ca.
Moreover, by determining the quasisteady-state compound droplet trajectory, we found that the
shell and core drop can either migrate along the same direction (i.e., toward the channel centreline
or toward the wall) or opposite direction depending on the combination of electrical conductivity
and permittivity ratios.

Finally, by solving for the velocity field of an eccentric compound drop under plane Poiseuille
flow and subjected to an applied electric field, we found that the concentric and eccentric com-
pound drop configurations show similar results up to an eccentricity value of less than 0.1 and a
dimensionless time interval of the order of 10.
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APPENDIX A: JUSTIFICATION OF THE ASSUMPTIONS

To justify the parametric space used in our simulations, let us consider the core drop and
the suspending medium to be castor oil (ρ1,3 = 960 Kg/m3, μ1,3 = 1.4 Pa s, ε1,3 = 4.45ε0,
σ1,3 = 10−10 S/m) with ε0 being the permittivity of free space, and the fluid in the shell drop to
be phenylmethylsiloxane-dimethylsiloxane (PMM) (ρ2 = 960 Kg/m3, μ2 = 0.5 Pa s, ε2 = 2.8ε0,
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σ2 = 10−12 S/m) having a surface tension γ = 5×10−3 N/m, as previously considered in the
experiments of Xu and Homsy [45]. Considering a compound drop with an outer radius of 3 mm and
subjected to an electric field strength of 5×105 V/m and background Poiseuille flow of centerline
velocity Vc = 1 mm/s will justify the assumptions considered in the present study in the following
way. These fluids are assumed to be Newtonian and immiscible. Considering these properties,
the charge relaxation timescale, ε1/σ1, is less than the convective timescale, Ro/Uc, rendering the
validity of the leaky dielectric theory. The aforementioned property values will result in Re ∼ 10−3,
allowing us to assume the Stokes flow. For this set of parameters, the capillary number, Ca ∼ 0.1.
Thus, the deviation of the drop interface shape from sphericity can be neglected. Moreover, it is
intuitive that the droplets would move, which would naturally lead to the temporal evolution of
the whole compound drop configuration. Therefore, we have assumed the flow to be quasisteady,
enabling us to neglect the temporal derivative on the left-hand side of the Navier–Stokes equations.
As a result, the fluid motion at a given time becomes a function of the instantaneous location of the
droplet. It should also be noted that the assumption of quasisteady flow while studying the creeping
motion of droplets is abundant in the literature [44,63,64]. Also, the aforementioned property values
will result in an electric Reynolds number (ReE = ε1Vc/Roσ1) of the order of 0.1 and Saville number
(Sa = ReE/CaE ) of the order of 0.005. As Sa � ReE , our assumptions of keeping the charge
convection term and dropping the current term are also justified.

Regarding the assumption of stable compound drop, experiments performed by Ficheux et al.
[65], Utada et al. [66], Pal [67], Kim et al. [68] on the generation of double emulsions have shown
that using novel techniques, such as actuating biphase flow in narrow capillaries [68], one can
generate stable double emulsions, even when the shell-drop thickness is minimal (submicron range).
Moreover, the methods employed in these studies have further offered a high degree of control over
droplet sizes. With the aforementioned experimental stand, it is thus justified and practically feasible
to consider a stable compound drop configuration for our study. Lastly, the assumption of concentric
compound drop configuration while studying the creeping motion of a droplet has been considered
in the literature [25,30,31,35,38,43]. Practically, it has been shown by Bei et al. [69–71] through
laboratory experiments that the application of an electric field can produce a highly concentric foam
shell with ease. Bei et al. [69,70], Tucker-Schwartz et al. [72] observed that it is possible to create
a highly concentric compound drop at any value of the core dielectric constant in an electric field.
Later, Bei et al. [71] found that the quality of a concentric compound drop can be improved when
the strength of the applied electric field is high enough to overcome the electrostatic shielding.
Hence, having the scope of generating concentric compound drops through experimental strategies,
we have found it practically valid to assume compound drops to be concentric for our analytical
study.

Moreover, to confirm the validity of the assumption of compound drop to be concentric, we
define the relative velocity between the two drops as W = |(U2,z − U3,z )/U2,z|. It is quite clear that,
in general, the shell and the core drop might move with different velocities and therefore, for the
concentric drop approximation to remain valid, one must have e � 1, e being the eccentricity.
However, the eccentricity in the compound drop system would still increase at a linear rate as
follows: e(t ) = (U2,z − U3,z )t = WU2,zt . From this expression, it is quite clear that, even with
W � 1 and U2,z ∼ O(1), the eccentricity would become large for t ∼ O(W −1). This leads to the
conclusion that the concentric theory can be expected to furnish approximately correct results only
for low values of eccentricity (e), or, in other words, for t < W −1.

APPENDIX B: EXPRESSIONS FOR THE GROWING AND DECAYING
SOLID HARMONICS IN Eqs. (46)–(51)

The growing solid harmonics p(k)(i)
n , φ(k)(i)

n , and χ (k)(i)
n can be expressed as

p(k)(i)
n = λ1ir

n
n∑

m=0

[
A(k)(i)

n,m cos (mφ) + Â(k)(i)
n,m sin (mφ)

]
Pn,m(cos θ ), (B1)
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φ(k)(i)
n = rn

n∑
m=0

[
B(k)(i)

n,m cos (mφ) + B̂(k)(i)
n,m sin (mφ)

]
Pn,m(cos θ ), (B2)

χ (k)(i)
n = rn

n∑
m=0

[
C(k)(i)

n,m cos (mφ) + Ĉ(k)(i)
n,m sin (mφ)

]
Pn,m(cos θ ). (B3)

The decaying solid harmonics p(k)(i)
−n−1, φ

(k)(i)
−n−1, and χ

(k)(i)
−n−1 are given by

p(k)(i)
−n−1 = λ1ir

−n−1
n∑

m=0

[
A(k)(i)

−n−1,m cos (mφ) + Â(k)(i)
−n−1,m sin (mφ)

]
Pn,m(cos θ ), (B4)

φ
(k)(i)
−n−1 = r−n−1

n∑
m=0

[
B(k)(i)

−n−1,m cos (mφ) + B̂(k)(i)
−n−1,m sin (mφ)

]
Pn,m(cos θ ), (B5)

χ
(k)(i)
−n−1 = r−n−1

n∑
m=0

[
C(k)(i)

−n−1,m cos (mφ) + Ĉ(k)(i)
−n−1,m sin (mφ)

]
Pn,m(cos θ ), (B6)

where A(k)(i)
n,m , Â(k)(i)

n,m , A(k)(i)
−n−1,m, Â(k)(i)

−n−1,m, B(k)(i)
n,m , B̂(k)(i)

n,m , B(k)(i)
−n−1,m, B̂(k)(i)

−n−1,m, C(k)(i)
n,m , Ĉ(k)(i)

n,m , C(k)(i)
−n−1,m and

Ĉ(k)(i)
−n−1,m are the unknown coefficients.

APPENDIX C: EXPRESSIONS FOR THE LEADING-ORDER VELOCITY AND PRESSURE
DISTRIBUTIONS WITHIN THE CORE AND SHELL REGIONS AND OUTSIDE

THE COMPOUND DROP IN TERMS OF SPHERICAL HARMONICS

u(0)
1 = ∇ × (

rχ (0)(1)
−3

)+∇(
φ

(0)(1)
−4 + φ

(0)(1)
−3 + φ

(0)(1)
−2

)
+ r2

(
1

2
∇p(0)(1)

−2 − 1

30
∇p(0)(1)

−4

)
+ r

(
4

15
p(0)(1)

−4 + 1

2
p(0)(1)

−3 + 2p(0)(1)
−2

)
, (C1)

p(0)
1 = p(0)(1)

−2 + p(0)(1)
−3 + p(0)(1)

−4 , (C2)

u(0)
2 = ∇ × (

rχ (0)(2)
−3 + rχ (0)(2)

1 + rχ (0)(2)
2

)
+∇(

φ
(0)(2)
−4 + φ

(0)(2)
−3 + φ

(0)(2)
−2 + φ

(0)(2)
1 + φ

(0)(2)
2 + φ

(0)(2)
3

)
+ r2

λ2

(
1

2
∇p(0)(2)

−2 − 1

30
∇p(0)(2)

−4 + 1

5
∇p(0)(2)

1 + 5

42
∇p(0)(2)

2 + 1

12
∇p(0)(2)

3

)

− r
λ2

(
4

15
p(0)(2)

−4 + 1

2
p(0)(2)

−3 + 2p(0)(2)
−2 + 1

10
p(0)(2)

1 + 2

21
p(0)(2)

2 + 1

12
p(0)(2)

3

)
, (C3)

p(0)
2 = p(0)(2)

1 + p(0)(2)
2 + p(0)(2)

3 + p(0)(2)
−2 + p(0)(2)

−3 + p(0)(2)
−4 , (C4)

u(0)
3 = ∇ × (

rχ (0)(3)
1 + rχ (0)(3)

2

) + ∇(
φ

(0)(3)
1 + φ

(0)(3)
2 + φ

(0)(3)
3

)
+ r2

λ3

(
1

5
∇p(0)(3)

1 + 5

42
∇p(0)(3)

2 + 1

12
∇p(0)(3)

3

)

− r
λ3

(
1

10
p(0)(3)

1 + 2

21
p(0)(3)

2 + 1

12
p(0)(3)

3

)
, (C5)

p(0)
3 = p(0)(3)

1 + p(0)(3)
2 + p(0)(3)

3 . (C6)

013703-32



CHARGE CONVECTION AND INTERFACIAL DEFORMATION …

APPENDIX D: EXPRESSIONS FOR THE O(ReE ) ELECTRIC POTENTIAL
FOR THE SHELL AND CORE DROPS

ψ
(ReE )
1 = r−1a(ReE )

−1,0 + r−2(a(ReE )
−2,0 P1,0 + a(ReE )

−2,1 P1,1 cos φ
)

+r−3(a(ReE )
−3,0 P2,0 + a(ReE )

−3,1 P2,1 cos φ + a(ReE )
−3,2 P2,2 cos 2φ

)
+r−4

(
a(ReE )

−4,0 P3,0 + a(ReE )
−4,1 P3,1 cos φ + a(ReE )

−4,2 P3,2 cos 2φ + a(ReE )
−4,3 P3,3 cos 3φ

)
+r−5

(
a(ReE )

−5,0 P4,0 + a(ReE )
−5,1 P4,1 cos φ + a(ReE )

−5,2 P4,2 cos 2φ + a(ReE )
−5,3 P4,3 cos 3φ

)
, (D1)

ψ
(ReE )
2 = r−1b(ReE )

−1,0 + r−2
(
b(ReE )

−2,0 P1,0 + b(ReE )
−2,1 P1,1 cos φ

)
+r−3

(
b(ReE )

−3,0 P2,0 + b(ReE )
−3,1 P2,1 cos φ + b(ReE )

−3,2 P2,2 cos 2φ
)

+r−4
(
b(ReE )

−4,0 P3,0 + b(ReE )
−4,1 P3,1 cos φ + b(ReE )

−4,2 P3,2 cos 2φ + b(ReE )
−4,3 P3,3 cos 3φ

)
+r−5

(
b(ReE )

−5,0 P4,0 + b(ReE )
−5,1 P4,1 cos φ + b(ReE )

−5,2 P4,2 cos 2φ + b(ReE )
−5,3 P4,3 cos 3φ

)
+b0,0 + r

(
b(ReE )

1,0 P1,0 + b(ReE )
1,1 P1,1 cos φ

)
+r2

(
b(ReE )

2,0 P2,1 + b(ReE )
2,1 P2,1 cos φ + b(ReE )

2,2 P2,2 cos 2φ
)

+r3(b(ReE )
3,0 P3,1 + b(ReE )

3,1 P3,1 cos φ + b(ReE )
3,2 P3,2 cos 2φ + b(ReE )

3,3 P3,3 cos 3φ
)

+r4
(
b(ReE )

4,0 P4,1 + b(ReE )
4,1 P4,1 cos φ + b(ReE )

4,2 P4,2 cos 2φ + b(ReE )
4,3 P4,3 cos 3φ

)
, (D2)

ψ
(ReE )
3 = c(ReE )

0,0 + r
(
c(ReE )

1,0 P1,0 + c(ReE )
1,0 P1,1 cos φ

)
+r2

(
c(ReE )

2,0 P2,1 + c(ReE )
2,1 P2,1 cos φ + c(ReE )

2,2 P2,2 cos 2φ
)

+r3
(
c(ReE )

3,0 P3,1 + c(ReE )
3,1 P3,1 cos φ + c(ReE )

3,2 P3,2 cos 2φ + c(ReE )
3,3 P3,3 cos 3φ

)
+r4(c(ReE )

4,0 P4,1 + c(ReE )
4,1 P4,1 cos φ + c(ReE )

4,2 P4,2 cos 2φ + c(ReE )
4,3 P4,3 cos 3φ

)
. (D3)

APPENDIX E: ELECTROHYDRODYNAMIC FLOW OF A CONCENTRIC COMPOUND DROP
UNDER IMPOSED BACKGROUND UNIFORM FLOW

Instead of a background Poiseuille flow, if we consider the background flow to be uniform V∞ =
Vcez, then k0 = 1, k1 = 0, and k2 = 0. Substituting the same, the drop velocity at the leading order
is obtained as

U (0)
2,x = U (0)

2,y = 0, U (0)
2,z = 1, (E1)

U (0)
3,x = U (0)

3,y = 0, U (0)
3,z = 1. (E2)

Following the procedure outlined in Sec. II D 6, solving for the velocity field at O(ReE ) using the
above leading-order solution, we obtain

U (ReE )
2,x = U (ReE )

2,y = U (ReE )
2,z = 0, (E3)

U (ReE )
3,x = U (ReE )

3,y = U (ReE )
3,z = 0. (E4)
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APPENDIX F: EXPRESSION FOR THE O(Ca) ELECTRIC POTENTIAL
IN THE SHELL AND CORE DROPS

ψ
(Ca)
1 = r−2(a(Ca)

−2,0P1,0 + a(Ca)
−2,1P1,1 cos φ

)
+r−3

(
a(Ca)

−3,0P2,0 + a(Ca)
−3,1P2,1 cos φ + a(Ca)

−3,2P2,2 cos 2φ
)

+r−4
(
a(Ca)

−4,0P3,0 + a(Ca)
−4,1P3,1 cos φ + a(Ca)

−4,2P3,2 cos 2φ + a(Ca)
−4,3P3,3 cos 3φ

)
+r−5

(
a(Ca)

−5,0P4,0 + a(Ca)
−5,1P4,1 cos φ + a(Ca)

−5,2P4,2 cos 2φ + a(Ca)
−5,3P4,3 cos 3φ

)
, (F1)

ψ
(Ca)
2 = r−2

(
b(Ca)

−2,0P1,0 + b(Ca)
−2,1P1,1 cos φ

)
+r−3(b(Ca)

−3,0P2,0 + b(Ca)
−3,1P2,1 cos φ + b(Ca)

−3,2P2,2 cos 2φ
)

+r−4
(
b(Ca)

−4,0P3,0 + b(Ca)
−4,1P3,1 cos φ + b(Ca)

−4,2P3,2 cos 2φ + b(Ca)
−4,3P3,3 cos 3φ

)
+r−5

(
b(Ca)

−5,0P4,0 + b(Ca)
−5,1P4,1 cos φ + b(Ca)

−5,2P4,2 cos 2φ + b(Ca)
−5,3P4,3 cos 3φ

)
+r

(
b(Ca)

1,0 P1,0 + b(Ca)
1,1 P1,1 cos φ

)
+r2

(
b(Ca)

2,0 P2,0 + b(Ca)
2,1 P2,1 cos φ + b(Ca)

2,2 P2,2 cos 2φ
)

+r3(b(Ca)
3,0 P3,1 + b(Ca)

3,1 P3,1 cos φ + b(Ca)
3,2 P3,2 cos 2φ + b(Ca)

3,3 P3,3 cos 3φ
)

+r4
(
b(Ca)

4,0 P4,1 + b(Ca)
4,1 P4,1 cos φ + b(Ca)

4,2 P4,2 cos 2φ + b(Ca)
4,3 P4,3 cos 3φ

)
, (F2)

ψ
(Ca)
3 = r

(
c(Ca)

1,0 P1,0 + c(Ca)
1,1 P1,1 cos φ

)
+r2

(
c(Ca)

2,0 P2,0 + c(Ca)
2,1 P2,1 cos φ + c(Ca)

2,2 P2,2 cos 2φ
)

+r3
(
c(Ca)

3,0 P3,0 + c(Ca)
3,1 P3,1 cos φ + c(Ca)

3,2 P3,2 cos 2φ + c(Ca)
3,3 P3,3 cos 3φ

)
+r4(c(Ca)

4,0 P4,0 + c(Ca)
4,1 P4,1 cos φ + c(Ca)

4,2 P4,2 cos 2φ + c(Ca)
4,3 P4,3 cos 3φ

)
. (F3)

APPENDIX G: VALIDATION OF THE MODEL

In this section, we validate our analytical solution with the results of Taylor [1] for a neutrally
buoyant leaky dielectric single drop in the presence of a uniform electric field and without an
imposed background Poiseuille flow. For this, we substitute E∞ = ez and k0 = k1 = k2 = 0 in the
expressions for L(Ca)(i j)

n,m , which leads to the following expression for the deformed radius in the
single drop limit (K → 0):

r� = 1 + CaM

{
3

4

1

(R12 + 2)2

[
R2

12 + 1 − 2S12 + 3

5

(R12 − S12)(3λ12 + 2)

(λ12 + 1)

]
P2,0

}
. (G1)

Next, we consider the case of a single drop migrating and deforming under the action of a
background plane Poiseuille flow and without an externally imposed electric field. For this, we
substitute Ex = Ey = 0 in Eq. (69) in the expression of the compound drop velocity to get the
following expression for a droplet velocity in the single drop limit (K → 0):

U12 =
[

k0 +
(

λ12

3λ12 + 2

)
k1

]
ez

+ Ca

[(
−k1k2

210

)(
198λ5

12 − 1242λ4
12 − 7327λ3

12 − 6292λ2
12 + 1843λ12 + 2320

)
(3λ12 + 2)2(4 + λ12)(λ12 + 1)2

]
ex. (G2)
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FIG. 20. Variation of (Dz − Dx)/(Dz + Dx) using the concentric compound drop theory with CaE for the
outer and inner interface and comparison of the same with the analytical results of Santra et al. [43] for
R12 = 0.033, R13 = 1, S12 = 0.44, S13 = 1, λ12 = 1, λ13 = 1, and θt = 0.

Similarly, substituting the expressions for L(Ca)(i j)
n,m leads to the following expression for the

deformed radius in the single drop limit (K → 0) for a drop deforming under the action of a plane
Poiseuille flow and without an externally imposed electric field:

r� = 1 + Ca

{
1

24

(
19λ12 + 16

λ12 + 1

)
k1

}
cosφP2,1 −

{
1

40

(
11λ12 + 10

λ12 + 1

)
k2

}
P3,0

+
{

1

240

(
11λ12 + 10

λ12 + 1

)
k2

}
cos(2φ)P3,2. (G3)

Equations (G2) and (G3) are in agreement with the previously obtained solution by Chan and
Leal [48].

Additionally, we also consider the analytical work of Santra et al. [43] for a neutrally buoyant
compound drop in an unbounded suspending medium subjected to a uniform electric field. Using
our solution for deformed interface shape, we determine the variation of (Dz − Dx)/(Dz + Dx) with
CaE , where Dz is the length of the shell or core drop along the z direction and Dx is the length of
the shell or core drop along the x direction. From the results shown in Fig. 20, we find that the the
variation of (Dz − Dx)/(Dz + Dx) with CaE matches well with that of Santra et al. [43].

APPENDIX H: VALIDATION OF CONCENTRIC COMPOUND DROP THEORY

Previously, Mandal et al. [44] have shown that a good agreement is observed between the
eccentric compound drop solutions and the concentric compound drop solutions for values of
eccentricity e < 0.1. Based on our solution for U2,z and U3,z, we plotted the variation of eccentricity
with nondimensional time (t) for different values of radius ratio in Fig. 21. The property ratios and
other associated parameters are provided in the figure caption. From the plot, it is found that for
the nondimensional time range of the order of 10, the eccentricity of the compound drop does not
exceed the critical limit of 0.1, and hence, our solution is negligibly affected by the eccentricity up
to the aforementioned time limit. The variation of eccentricity with time is almost quantitatively
and qualitatively similar for R12 < S12 and R12 > S12, and therefore, we have presented only for one
case. Indeed, it is to be mentioned that when the compound drop is under the action of a background
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FIG. 21. Variation of eccentricity with nondimensional time for different radius ratio of the concentric com-
pound drop. The rest of the parameters are θt = π/4, R12 = 0.01, R13 = 1, S12 = 0.63, S13 = 1, λ12 = 0.35,

λ13 = 1, xd = 4, H = 10, M = 1, Ca = 0.1, and ReE = 0.1.

flow, then the velocities are large enough to be within the valid limit of concentric compound drop
theory. In this case, the eccentric compound drop theory [61,73] should be applied. In Figs. 19 and
21, we show how the aforementioned criterion for the validity of concentric compound drop theory
is supported quantitatively by our results.

APPENDIX I: ALGEBRAIC EQUATIONS FOR THE ELECTRIC POTENTIAL FIELD
USING ECCENTRIC COMPOUND DROP THEORY

The algebraic equations for the unknown coefficients are derived by substituting the expressions
for ωi into the boundary conditions Eqs. (78) and (79) and using the orthogonality property of the
Gegenbauer polynomials given by [73]

∫ 1

−1

C
− 1

2
n+1(x)C

− 1
2

k+1(x)

1 − x2
dx = 2δnk

n(n + 1)(2n + 1)
. (I1)

The linear algebraic equations which are intercoupled in terms of (n − 1)th, nth, and (n + 1)th mode
coefficients are as follows:

[−dn−1�4n + fn−1�5n − gn−1�6n](n + 1) + dnϒ1n − fnϒ2n + gnϒ3n

+[−dn+1�7n + fn+1�8n − gn+1�9n]n

= 4
√

2n(n + 1)c2e∓(n+ 1
2 )ξ1 sinh ξ1, (I2)

−[ fn−1 − gn−1 + hn−1](n + 1) + fnϒ4n − gnϒ5n + hnϒ5n − [ fn+1 − gn+1 + hn+1]n = 0, (I3)

−dn�1n + [ fn�2n + gn�3n]R12 = 4
√

2n(n + 1)c2e∓(n+ 1
2 )ξ1 , (I4)

[ fn + gn]R12 − hnR13 = 0, (I5)

where

�1n = sinh

(
n + 1

2

)
ξ1; �2n = e(n+ 1

2 )(ξ1−ξ2 ); �3n = e−(n+ 1
2 )(ξ1−ξ2 );
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�4n = cosh

(
n − 1

2

)
ξ1; �5n = e(n− 1

2 )(ξ1−ξ2 ); �6n = e−(n− 1
2 )(ξ1−ξ2 );

�7n = cosh

(
n + 3

2

)
ξ1; �8n = e(n+ 3

2 )(ξ1−ξ2 ); �9n = e−(n+ 3
2 )(ξ1−ξ2 );

ϒ1n = (2n + 1) cosh ξ1 cosh

(
n + 1

2

)
ξ1 − �1n sinh ξ1;

ϒ2n = [(2n + 1) cosh ξ1 − sinh ξ1]�2n; ϒ3n = [(2n + 1) cosh ξ1 + sinh ξ1]�3n;

ϒ4n = (2n + 1) cosh ξ2 − sinh ξ2; ϒ5n = (2n + 1) cosh ξ2 + sinh ξ2.

APPENDIX J: ALGEBRAIC EQUATIONS FOR THE HYDRODYNAMIC FIELD
USING ECCENTRIC COMPOUND DROP THEORY

Using Eqs. (82)–(89) together in the boundary conditions Eqs. (90)–(92), we can form the
following set of eight algebraic equations for each mode n:

Dn�
1
n + En�

2
n = �3

n

(
Qn�

4
n

(2n − 1)
− Q̂n�

5
n

(2n + 3)

)
− U2�

3
n

(
�4

n

(2n − 1)
− �5

n

(2n + 3)

)
, (J1)

Hn�
1
n + In�

2
n + Jn�

4
n + Kn�

5
n = 0, (J2)

(2n − 1)
{
(Dn − Hn)�1

n + Jn�
4
n

} + (2n + 3)
{
(En − In)�2

n + Kn�
5
n

}
= −�3

n

(
Qn�

4
n − Q̂n�

5
n

) + U2�
3
n

(
�4

n − �5
n

)
, (J3)

(2n − 1)2
{
(Dn − λ2Hn)�1

n − λ2Jn�
4
n

} + (2n + 3)2
{
(En − λ2In)�2

n − λ2Kn�
5
n

}
= �6

n

(
S12

R12
− 1

)[
(2n + 1)�7

n

2

{
c�1

n,k − c2�2
n,k − 1

c
�8

k�
3
n,k − 1

2c
�9

k�
4
n,k

}

+�10
n sinh ξ1

{
− c

2
�5

n,k + c2

2
�6

n,k + 1

2c
�8

k�
7
n,k + 1

2c
�9

k�
8
n,k

}]
+�3

n

(
(2n − 1)Qn�

4
n − (2n + 3)Q̂n�

5
n

) − U2�
3
n

(
(2n − 1)�4

n − (2n + 3)�5
n

)
, (J4)

Hn�
1
n + In�

2
n + Jn�

4
n + Kn�

5
n = (U2 − U3)�3

n

(
�4

n

(2n − 1)
− �5

n

(2n + 3)

)
, (J5)

Ln�
4
n + Mn�

5
n = (U2 + U3)�3

n

(
�4

n

(2n − 1)
− �5

n

(2n + 3)

)
, (J6)

(2n − 1)
{
Hn�

1
n + (Ln − Jn)�4

n

} + (2n + 3)
{
In�

2
n + (Mn − Kn)�5

n

} = 0, (J7)

(2n − 1)2
{
λ2Hn�

1
n + (λ2Jn − λ3Ln)�4

n

} + (2n + 3)2
{
λ2In�

1
n + (λ2Kn − λ3Mn)�4

n

}
= �6

n

(
S12R13

R12
− S13

)[
(2n + 1)�7

n

2

{
−1

c
�8

k�
3
n,k − 1

2c
�9

k�
4
n,k

}

+�10
n sinh ξ2

{
1

2c
�8

k�
7
n,k + 1

2c
�9

k�
8
n,k

}]
+(U2 − U3)(λ2 − λ3)�3

n

[
(2n − 1)�4

n − (2n + 3)�5
n

]
. (J8)

The notations used in Eqs. (J1)– (J8) have the following expressions:

�1
n = e(n− 1

2 )ξ , �2
n = e(n+ 3

2 )ξ , �3
n = n(n + 1)c2/

√
2, �4

n = e−(n− 1
2 )ξ ,
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�5
n = e−(n+ 3

2 )ξ ,

�6
n = n(n + 1)(2n + 1)

2π
, �7

n = fne(n+ 1
2 )(ξ−ξ2 ) − gne−(n+ 1

2 )(ξ−ξ2 ),

�8
k =

N∑
k=0

dk sinh

(
k + 1

2

)
ξC

1
2

k , �9
k =

N∑
k=0

dk sinh

(
k + 1

2

)
ξC

− 1
2

k+1,

�10
n = fne(n+ 1

2 )(ξ−ξ2 ) + gne−(n+ 1
2 )(ξ−ξ2 ),

Qn = 1 + 2c2

3R2
(n − 1)(n − 2), Q̂n = 1 + 2c2

3R2
(n + 2)(n + 3),

�1
n,k (ξ ) =

∫ 1

−1

xC
− 1

2
n+1C

− 1
2

k+1

(1 − x2)
dx, �2

n,k (ξ ) =
∫ 1

−1

C
− 1

2
n+1C

− 1
2

k+1

(cosh ξ − x)
dx,

�3
n,k (ξ ) =

∫ 1

−1

(cosh ξ − x)
3
2 C

− 1
2

n+1C
− 1

2
k+1

(1 − x2)
3
2

dx, �4
n,k (ξ ) =

∫ 1

−1

(cosh ξ − x)
1
2 C

− 1
2

n+1C
− 1

2
k+1

(1 − x2)
dx,

�5
n,k (ξ ) =

∫ 1

−1

xC
− 1

2
n+1C

− 1
2

k+1

(1 − x2)(cosh ξ − x)
dx, �6

n,k (ξ ) =
∫ 1

−1

C
− 1

2
n+1C

− 1
2

k+1

(cosh ξ − x)2 dx,

�7
n,k (ξ ) =

∫ 1

−1

(cosh ξ − x)
1
2 C

− 1
2

n+1C
− 1

2
k+1

(1 − x2)
3
2

dx, �8
n,k (ξ ) =

∫ 1

−1

C
− 1

2
n+1C

− 1
2

k+1

(cosh ξ − x)
1
2 (1 − x2)

dx.

It is important to note that ξ = ξ1 for Eqs. (J1)–(J4) and ξ = ξ2 for Eqs. (J5)–(J8). From the above
equations, it is clear that the flow field is coupled to the electric potential field by the occurrence of
the coefficients dk, fn, and gn, and hence the summation terms involved are truncated at the same
N as considered earlier.
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