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Prediction and measurement of leaky dielectric drop interactions
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Application of an electric field across the curved interface of two fluids of low but
nonzero conductivities, or “leaky dielectrics,” can give rise to electric stresses that drive
sustained fluid flow. In a uniform dc electric field of sufficiently weak magnitude, the
electric and velocity fields around an isolated, neutrally buoyant leaky dielectric drop at
zero Reynolds number are fore-aft and azimuthally symmetric about the applied field axis.
Consequently, the drop remains stationary. The presence of a second drop breaks these
symmetries, resulting in the relative motion of the drop pair. Recently, Sorgentone et al.
derived an analytical expression for the relative velocity of a pair of widely separated drops
of identical constitution, asymptotic in the inverse separation distance between the drop
centroids [C. Sorgentone, J. I. Kach, A. S. Khair, L. M. Walker, and P. M. Vlahovska,
Numerical and asymptotic analysis of the three-dimensional electrohydrodynamic interac-
tions of drop pairs, J. Fluid Mech. 914, A24 (2021)]. In the present work, we generalize
the theory of Sorgentone et al. to interactions of dissimilar drops (of different size or
constitution), and the pairwise additive interactions of three or more drops. We perform
experiments on silicone oil drops suspended in castor oil, and we compare to asymptotic
predictions of the drop pair trajectories. Experimental trajectories of drops with their line
of centers initially at an arbitrary angle to the field direction are shown to be qualitatively
predicted by our theory. We show results of experiments of dissimilar drops and of three
and four drops, again observing qualitative agreement with our theoretical predictions.

DOI: 10.1103/PhysRevFluids.7.013701

I. INTRODUCTION

The application of an electric field across the interface between low-conductivity (leaky di-
electric) fluids gives rise to stresses that can deform the interface and drive electrohydrodynamic
(EHD) flows [1,2]. EHD flows find applications in electrosprays [3,4], electrocoalescence [5,6],
electrorheology [7,8], microfluidics [9,10], the formation of Janus capsules [11], and have shown
promise in improving existing methods of inkjet printing [12–14]. Much of the literature on
electrohydrodynamics has focused on the deformation and breakup of drops [4,15–26]. In particular,
the dynamics of drops that deform to an oblate shape has garnered recent interest [27–30]. While
the dynamics of a single drop is well understood [26], many applications involve multiple drops. In
electrocoalescence, for example, it is important to predict the behavior of multiple drops in electric
fields weak enough to avoid breakup. To this end, the electrohydrodynamic interactions between
drops must be determined.

Due to the nonzero electrical conductivities of leaky dielectrics, a drop interface polarizes in
an electric field due to both free-charge accumulation and the permittivity mismatch between drop
and suspending phases. The resulting surface charge profile induces an electrical stress both normal
and tangential to the local interface, thus shearing the interface and driving flow in and outside of
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FIG. 1. Example of steady electric and velocity fields around a leaky dielectric drop in a uniform electric
field, where M = 2, R = 1/5, S = 1/3. In this example, the drop is slightly deformed to a prolate spheroid
with undeformed radius a, major axis L‖, and minor axis L⊥ with respect to the applied field direction.
The viscosity μ, conductivity σ , and permittivity ε of the drop phase are denoted with subscript d , and
the suspending phase properties are denoted with subscript s. Both the electric and flow fields have fore-aft
symmetry about the drop equator perpendicular to the applied field direction and are axially symmetric about
the poles in parallel to the applied field direction. Internal electric field lines are omitted, however the internal
field is uniform and parallel to the applied field direction.

the drop. Here, by a “weak” electric field it is meant that the capillary number Ca = μsUEHD/γ =
εsE2

∞a/γ � 1, where μs is the viscosity of the suspending fluid, UEHD = εsE2
∞a/μs is the velocity

scale of the EHD flow, E∞ is the strength of the applied field, εs is the absolute electrical permittivity
of the suspending phase, a is the undeformed drop radius, and γ is the surface tension of the
interface. Since UEHD depends inversely on viscosity, Ca is independent of viscosity, unlike for
a drop in an externally imposed flow field where the capillary number is inversely proportional to
viscosity. A neutrally buoyant drop at zero Reynolds number remains nearly spherical, deforming
to a spheroidal shape to leading order in Ca. Ignoring surface charge convection, the deformation of
a single drop can be described to leading order in Ca using the material property ratios of viscosity
M = μd/μs, conductivity R = σs/σd , and permittivity S = εd/εs, where subscripts d and s denote
the drop and suspending phases, respectively. The deformation parameter, a function of the length of
the major and minor axes of the drop (L‖ and L⊥, respectively), is given by the following expression
derived by Taylor [15]:

DT ≡ L‖ − L⊥
L‖ + L⊥

= 9 Ca

16(1 + 2R2)

[
3(2 + 3M )

5(1 + M )
R(1 − RS) + R2(1 − 2S) + 1

]
+ O(Ca2). (1)

Thus, drops can either deform to a prolate (DT > 0) or an oblate (DT < 0) spheroid, depending
solely on the properties of the fluids. An example of the steady deformation and electric and velocity
fields around a single leaky dielectric drop for M = 2, R = 1/5, S = 1/3 is shown in Fig. 1.

Due to the fore-aft and axial symmetry of the electric and flow fields in and outside a drop, a
single, freely suspended drop remains stationary. In the presence of a second drop, however, those
symmetries are broken, and the drops translate by action of the flow and nonuniform electric field
due to the presence of the other drop. When perfectly dielectric or conducting drops are suspended
in a dielectric medium, they interact only through dielectrophoresis (DEP), i.e., the force on a body
residing in an electric field gradient [31,32]. The electrostatic interaction of two dielectric spheres
arbitrarily placed in an electric field was calculated using a multipole reexpansion by Washizu
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and Jones [33], who found that the interaction of widely separated spheres matches closely with
a point-dipole approximation [34]. In both cases, there is a critical angle between the line of centers
connecting the drops and the applied field direction, � = 54.7◦, below which the spheres will attract
and above which they will repel. This is the basis for electrocoalescence, where these interactions
are exploited to augment the rates of collision and coalescence of water drops in oil [35,36]. When
the drop and suspending fluids are leaky dielectrics, the drops interact through EHD as well. This
was first addressed by Sozou [37], who calculated that the flow field around two drops can be
modified considerably depending on the drops’ separation distance using a multipole expansion
in bispherical coordinates; however, this calculation was restricted to the case of two identical,
spherical drops with the line connecting their centers aligned in the direction of the applied field.
Baygents, Rivette, and Stone [38] then demonstrated that leaky dielectric drops interact through
a combination of EHD and DEP. They employed a boundary integral method, which considered
the relative motion and deformation of identical drops aligned in the field direction. Their analysis
showed that for widely separated drops, the DEP force scales to leading order as O(a4/d4) while
the EHD flow scales to leading order as O(a2/d2), where a is the radius of the drops and d is the
separation distance of their centroids. Recently, Zabarankin [39] derived an analytical expression
via a multipole reexpansion for the velocities of nearly spherical but nonidentical drops aligned
in the direction of the electric field. This theory matched observations by Baygents et al. that
prolate-deforming drops may attract when drops are close and DEP dominates, yet they may repel
at larger separations where the EHD flow dominates. Furthermore, Zabarankin’s work introduced
the possibility that oblate-deforming drops with dissimilar permittivities and conductivities in an
inviscid suspending fluid could have a repulsive interaction, a behavior not reported in previous
studies.

To study the EHD interactions of drops in two dimensions, Dong and Sau [40] performed
lattice Boltzmann computations, using a point-dipole approximation for the DEP interaction. At a
separation of d/a = 5 and Ca = 0.18, they noted that the critical angle of the EHD flow for circular
drops is similar to that of the point-dipole approximation for DEP. Mhatre et al. [41] compared
boundary integral simulations to experimental drop trajectories for two drops aligned parallel to
the field. Although they did not compare their simulations to experiments for drops misaligned
with the field, they did experimentally observe the existence of a critical �, above which drops
did not attract each other. More recently, Sorgentone et al. [42] considered three-dimensional EHD
drop interactions via asymptotic theory and boundary integral simulations. Accurate to O(a5/d5),
their asymptotic theory showed that leaky dielectric drops initially at an angle to the field may
align either parallel or perpendicular to the field direction depending only on the material properties
of the drop and suspending phase. An expression, denoted by �, was derived that quantifies the
competition between EHD and DEP. This expression, given again in Eq. (14), can be used to
determine the long-term behavior of the drop pair. Additionally, a derived expression for a critical
separation distance further quantified the competition between the DEP and EHD effects driving the
interaction.

In the present work, we first extend the theory of Sorgentone et al. to consider nonidentical
and multiple drops, widely separated. We then compare our calculations to experiments of two
or more drops, showing in particular that a pairwise additive approximation is capable of quali-
tatively predicting the trajectories of multiple leaky dielectric drops. In Sec. II, we formulate the
problem of interest. In Sec. III, the asymptotic theory for drop interactions is generalized to include
dissimilar drops and multiple drops. In Sec. IV, we outline the experimental method and discuss
the implications of the parameter � on practical systems. In Sec. V, we compare the theory to
experimental measurements of drop trajectories. We first compare the theory to measurements of
drop pair trajectories for identical drops, which qualitatively validate the calculations and illustrate
the importance of considering the combined effects of DEP and EHD in drop interactions. We then
compare the theory to experimental measurements of the trajectories of drops of different size,
and we discuss the dynamics of electrically dissimilar drops. Finally, we compare the theory to
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FIG. 2. Depiction of a coordinate system for two spherical drops of radius a. The centers of the drops are
separated by a distance d , with the angle between the line of centers and the applied field denoted as �.

experimental measurements of the interactions of three and four drops. In Sec. VI, we provide the
conclusions of our work.

II. PROBLEM FORMULATION

Consider two spherical, leaky dielectric drops suspended in an unbounded, density matched
fluid and subject to a uniform dc electric field E∞ pointing in direction Ê∞ = E∞/E∞. We
introduce the subscripts i and j to identify the drops, where i = 1, 2, j = 1, 2, and j �= i. The drop
phases (denoted by subscript d) and suspending medium (denoted by subscript s) have constant
and homogeneous properties of conductivity, permittivity, and viscosity, with ratios of material
properties Mi = μd,i/μs, Ri = σs,i/σd , and Si = εd,i/εs, respectively. The positions of the drops
evolve on the timescale τc = a/UEHD = μs/εsE2

∞. A schematic of the two-drop system is shown in
Fig. 2, where the centers of each drop, relative to an arbitrary origin, are denoted as x1 and x2.

The vector d = x2 − x1 points from the center of drop 1 to the center of drop 2 with associated
unit vector d̂. A second, right-handed unit vector �̂ is introduced to denote rotations of d̂. In effect,
�̂ describes rotations of the drop pair, where a positive � indicates a counterclockwise rotation of
drop 2 about drop 1.

We describe the combined electrostatic and hydrodynamic problems using the approach of
Melcher and Taylor [1]. We assume no free charge in the bulk, such that the potential inside and
outside the drops satisfies Laplace’s equation,

∇2φi = 0, ∇2φs = 0. (2)

The electric field is expressed as the negative gradient of the potential, E = −∇φ. Far from the
drops, the electric field approaches the imposed field, E∞, and the field is bounded at the centroid
of each drop. The capillary number is taken to be small, Ca � 1, such that the interface of the drops
can be assumed to be spherical. The potential is continuous across the surface of the drops, and the
surface charge density is given as

εs(∇φs · ni − S∇φi · ni ) = −q at ri = |x − xi| = a, (3)
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where ni is the outward pointing unit normal vector of the drops. Neglecting surface charge
convection and charge relaxation, current across the interface is conserved, satisfying

∇φi = R∇φs at ri = a. (4)

The assumption of no surface charge convection requires the electric Reynolds number, ReE =
ε2

s E2
∞/σsμs � 1. The charge relaxation timescales in and outside the drop are assumed to be small,

εd,s/σd,s � 1.
Assuming creeping flow of incompressible fluids, the velocity and pressure inside and outside

the drops are governed by the Stokes equations,

∇ · σi = μi∇2ui − ∇pi = 0, ∇ · σs = μs∇2us − ∇ps = 0, (5)

where σ = −pI + μ(∇u + (∇u)T ) is the hydrodynamic stress tensor, and I is the identity tensor.
The flow is quiescent far from the drops and bounded within. The velocity is continuous across the
interface, with no penetration of fluid across the boundary. The electric field acting on the developed
surface charge induces a tangential Maxwell stress at the surface, which drives the EHD flow. The
tangential stress balance is given as

[σs · ni − σi · ni] × ni = q∇φi × ni, ri = a, (6)

where ∇φi × ni is the tangential component of the electric field, which is continuous across the
interface. Solution of the above equations and boundary conditions gives the electric and flow fields
around each drop individually, which are then used with the method of reflections to determine the
interaction of widely separated drops.

III. ASYMPTOTIC APPROXIMATION OF PAIR INTERACTION

We generalize the methodology of Sorgentone et al. [42] to determine the interaction between
two widely separated, dissimilar, leaky dielectric drops. Via the method of reflections, a single
reflection of the electric and velocity fields around drop i as seen by drop j a distance d away is [43]

E i = E∞ − 1 − Ri

1 + 2Ri
E∞ · (I − 3d̂d̂ )

(ai

d

)3
+ O

((ai

d

)6)
, (7)

ui = 9

10

εsE2
∞ai

μs

Ri(RiSi − 1)

(1 + 2Ri )2(1 + Mi )
Ê∞Ê∞ :

[
(I − 3d̂d̂ )

(ai

d

)2
d̂ + 1

3
∇

(
I
(ai

d

)3
− 3d̂d̂

(ai

d

)3)]

+ O
((ai

d

)5)
. (8)

The electric and flow fields have fore-aft symmetry about the equator and axial symmetry about the
field direction, illustrated by the field lines and streamlines in Fig. 1, and a single drop undergoes
no translational motion. Upon addition of a second drop, that symmetry is broken. The disturbance
electric and velocity fields from one drop act on the other, and vice versa, resulting in translational
motion of the drops.

To describe the interactions between drops, we introduce the notation Fji and Uji, where the
subscripts denotes the force or velocity on drop j due to its interaction with drop i. Approximating
each drop as a point dipole, the DEP force on drop j in the disturbance electric field of drop i is

Fji = P j · ∇E i|x=x j , (9)

where P j is the polarizability of drop j, P j = 4πεsa3
j

1−Rj

1+2Rj
E∞, and ∇E i|x=x j is the gradient of the

electric field around drop i evaluated at the center of drop j. The translational velocity of drop j,
considering the EHD and DEP interactions with drop i, as well as the drag on drop j, is then, via
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Faxén’s law for drops [44],

Uji =
(

1 + a2
j Mj

2(2 + 3Mj )
∇2

)
ui(x)|x=x j + 1

2πμsa j

1 + Mj

2 + 3Mj
Fji. (10)

Insertion of Eqs. (8) and (9) into (10) returns the velocity of each drop,

Uji = 9

5

εsE2
∞ai

μs

[
Ri(1 − RiSi )

(1 + 2Ri )2(1 + Mi )
P2(cos �)

(ai

d

)2
d̂

− Ri(1 − RiSi )

(1 + 2Ri )2(1 + Mi )

(
P2(cos �)d̂ + 1

2
sin(2�)�̂

)(ai

d

)4

−
(

3Mj

(2 + 3Mj )

Ri(1 − SiRi )

(1 + 2Ri )2(1 + Mi )
+ 20

3

(1 + Mj )

(2 + 3Mj )

(1 − Rj )

(1 + 2Rj )

(1 − Ri )

(1 + 2Ri )

)

×
(

P2(cos �)d̂ + 1

2
sin(2�)�̂

)(
a2

i a2
j

d4

)]
+ O

(
a2

i a3
j

d5

)
, (11)

where P2(cos �) is the second Legendre polynomial. Clearly, for nonidentical drops, the relative
velocity of the drop pair Ud = Uji − Ui j �= 2Uji, analogous to nonreciprocal interactions of phoretic
particles with different interaction potentials [45,46]. For dissimilar drops, the higher-order, i.e.,
O(a4/d4), interactions depend on properties from both drops i and j, as seen in Eq. (11). This is a
generalization of Eq. (4.8) in Sorgentone et al. [42], from which the orientation of an identical drop
pair can be predicted based solely on the material properties of the system. The expression presented
here, namely the second and third terms in Eq. (11), shows that the interactions of dissimilar drops
are more complex. When one drop is much larger than the other, Eq. (11) reduces to the EHD flow
profile around the larger drop, with the smaller drop effectively acting as a tracer in the EHD flow
of the larger drop. For drops of equal size but different constitution, the expression governing the
O(a4/d4) interactions of the drops becomes

� ji = 1

(2 + 3Mj )

(
2(1 + 3Mj )Ri(1 − RiSi )

(1 + Mi )(1 + 2Ri )2
+ 20

3
(1 + Mj )

(1 − Rj )(1 − Ri )

(1 + 2Rj )(1 + 2Ri )

)
, (12)

where � ji denotes the O(a4/d4) contribution to the velocity of drop j due to its interaction with drop
i. Equation (12) shows that two drops may align perpendicular to the electric field direction if their
conductivities are larger and smaller, respectively, than the suspending phase (i.e., Ri < 1 < Rj).
Thus, � ji, and therefore the total interaction of the drop pair, cannot be described using �i and � j

for interactions of identical drops of type i and j. For drops of identical size and constitution (i.e.,
when Mj = Mi, Rj = Ri, S j = Si, and a j = ai), Ud = 2Uji, and Eqs. (11) and (12) reduce to Eqs.
(4.7) and (4.8) for identical drops given by Sorgentone et al. [42],

Ud = 18

5

εsE2
∞a

μs

[
R(1 − RS)

(1 + 2R)2(1 + M )
P2(cos �)

( a

d

)2
d̂

− �

(
P2(cos �)d̂ + 1

2
sin(2�)�̂

)( a

d

)4
]

+ O
(( a

d

)5)
, (13)

and

� = 1

(2 + 3M )(1 + 2R)2

(
2(1 + 3M )R(1 − RS)

(1 + M )
+ 20

3
(1 + M )(1 − R)2

)
. (14)

Equations (11) and (13) can be reduced to pure dielectrophoresis of conducting drops by setting
S = 1/R, where the EHD interaction of O(a2/d2) is absent and the weaker DEP governs the
interaction of the drops to leading order of O(a4/d4). In this case, the charging timescales of the
drop and suspending phases match (εd/σd = εs/σs, or RS = 1), and the tangential electric stress
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on each side of the interface balances, eliminating the driving force for the interface to shear and
resulting in the EHD flow vanishing, exemplified by ui = 0 when RS = 1 in Eq. (8).

The relative velocity of the drop pair can be used to determine the trajectory of the drop pair via
the relations

dd

dt
= Ud · d̂ and d

d�

dt
= Ud · �̂, (15)

where d is the separation distance between the centroids of the drops, and � is the angle between
the drops’ line of centers and the electric field direction, equal to arccos (Ê∞ · d̂ ). The unit vectors
d̂ and �̂ are those pointing along the line of centers of the drops and perpendicular to the drops’
line of centers. Additionally, the position of each drop can be tracked individually as

dx j

dt
= Uji, (16)

which, while a trivial result, can be extended to predict the behavior of multiple drops, as follows.
When there are multiple drops, it is assumed that each drop moves due to pairwise interactions with
every other drop. The position of each drop can then be predicted by summing over the interactions
of that drop with all other drops. This yields the same expression as Eq. (16), but now including a
sum over i. The positions of the entire collection of drops can then be described as

dx j

dt
=

N∑
i �= j

Uji for j = 1, 2, . . . , N, (17)

where x j is the position of the jth drop, Uji is the velocity of drop j due to its interaction with drop
i, and N is the total number of drops in the system.

The trajectories of a set of two or more drops can be predicted via integration of Eq. (17). The
positions of the drops in time are hence calculated by numerically integrating Eq. (17) using a
forward Euler scheme with time step 0.001tc, where tc = μs/εsE2

∞ is the characteristic timescale
of the EHD flow. In the next sections, these calculated trajectories are compared to experimental
results in various scenarios, and theoretical results for other scenarios are shown as well.

IV. MATERIALS AND METHODS

Experiments were performed in a 3D-printed acrylic cell of 2.8 cm width ×3.6 cm length ×7 cm
height developed by Sengupta et al. [47]. Two stainless-steel electrodes 35 mm wide are set 28 mm
apart. Voltages of 2, 3, 4, and 5 kV are applied to one electrode from a high-voltage power supply
(Gamma High Voltage Research, Inc.) with the other grounded, resulting in calculated electric field
strengths of 0.714, 1.07, 1.43, and 1.79 kV/cm, respectively, in the cell. A foot switch connected to
the voltage supply circuit allows for rapid and safe activation/deactivation of the electric field. Drops
of volume 1 μL (620 μm radius) are administered using a 25 μL glass syringe with a grounded 22 s
gauge stainless-steel needle (Hamilton). After insertion into the cell, drops are then placed in their
initial positions by moving nearby fluid using the grounded needle. The two walls adjacent to the
electrodes have circular windows, where drops are imaged using a camera (Point Grey Grasshopper)
with a 10× objective lens (Nikon) and a fiber optic back light (QVABL, Dolan-Jenner). The drops
are initially placed in the same focal plane. Via Eq. (11), drops positioned in the plane made by
the field direction and the line connecting their centers will only move within that plane. Visual
observations made during the experiments indicate that out-of-plane motion is small compared to
that in-plane. A schematic of the setup is shown in Fig. 3. Images are recorded at 7 frames per
second with LABVIEW. Drop positions and trajectories are analyzed in MATLAB with the function
imfindcircles; the data are smoothed for clarity by taking a moving average of the previous seven
data points, and data points spaced 1 s apart are shown.

The oils used are 350 cSt silicone oil (Sigma-Aldrich) and castor oil (Sigma-Aldrich). Prediction
of the interaction between drops requires accurate knowledge of the drop and suspending phase
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FIG. 3. Schematic of the experimental setup. Drops are initially placed in the same focal plane, where they
tend to remain throughout the experiment.

fluid and electrical properties. Electrical properties are taken from Lanauze et al. [23], wherein
electrical impedance spectroscopy was used [48], and the viscosities of the fluids are measured using
a concentric cylinder rheometer (DH-2, TA Instruments) at 20 ◦C. The densities are considered as
given by the supplier. These material properties are given in Table I.

For identical drops, the quantity 1 − RS and the expression for � in Eq. (14) are enough to
qualitatively predict how a given pair of drops will behave. The leading-order term in Eq. (13)
determines the relative velocity of the drop pair at large separation distances. This term is purely
electrohydrodynamic, since it vanishes if 1 − RS = 0. The sign of 1 − RS determines the direction
of this EHD interaction, where if 1 − RS > 0 (<0), Ud > 0 (<0), and widely separated drops will
repel (attract) when P2(cos �) > 0, or � < 54.7◦, and attract (repel) when � > 54.7◦. The shorter-
range O(a4/d4) contribution to the relative velocity is due to a combination of both EHD and DEP.
The expression � quantifies the interplay between EHD and DEP interactions, and can be used with
the sign of 1 − RS to predict whether a drop pair will come together or drift apart. From Eq. (13),
the only contribution to the drop pair orientation relative to the field is scaled by −�. As indicated
in Fig. 2, positive motion in the �̂ direction constitutes a rotation toward a perpendicular alignment
relative to the field. Thus, just by knowing the sign of �, the direction the drop pair aligns can be
predicted. Finally, to qualitatively approximate the dependence of the pair interaction on separation
distance, Sorgentone et al. introduced a critical separation distance, dc, solved by setting Ud = 0
and � = 0 or π/2. From Sorgentone et al. [42],

dc

a
=

√
(1 + 2R)2(1 + M )

R(1 − RS)
�. (18)

The critical separation distance dc gives the centroid separation where the effects of EHD and DEP
balance, and it is an equilibrium point where the drops do not move relative to each other. Above this
separation distance, long-range EHD interactions will dominate, and below this separation distance
the drop motion will be dominated by DEP. The combined use of 1 − RS, �, and dc to predict
the long-time behavior of a leaky dielectric drop pair can be visualized as a phase diagram for a
chosen value of one of the three material property ratios. For M = 1, the associated phase diagram

TABLE I. Material properties for a silicone oil drop suspended in castor oil. Here, ε denotes the relative
permittivity.

Fluid ε σ (S/m) μ (Pa s) ρ (kg/m3)

Castor oil 4.9 5.8 × 10−11 0.99 961
Silicone oil 2.8 2.0 × 10−12 0.39 970
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FIG. 4. Phase diagram for the behavior of a pair of equiviscous (M = 1), identical, leaky dielectric drops
with permittivity ratio S and conductivity ratio R, based on Eq. (4.8) from Sorgentone et al. [42]. The solid
black line denotes combinations of S and R for which � = 0 and the orientation of the drops is steady in time.
In the (blue) region above the black line, � < 0, such that material systems in that region will show drop pair
rotation toward � = π/2. Below the black line, � > 0. In the (orange) region between the lines of � = 0
and RS = 1, drop pairs will rotate toward parallel and attract when � < 54.7◦. In the green region below
RS = 1, drop pairs will rotate toward parallel, however whether they attract or repel at � < 54.7◦ depends on
the separation distance relative to dc for the given M, S, and R.

is shown in Fig. 4. For systems where � < 0, drop pairs rotate toward a perpendicular alignment
with the field. The line � = 0 never crosses RS = 1, thus systems where � < 0 will always have
RS > 1 and will repel when aligned perpendicular to the field. In these cases, dc/a is never greater
than 2, and drops will repel, however the error in prediction grows as drop separation decreases.
In the region where � > 0 and RS > 1, drops align parallel to the field and attract along their
alignment. Here, since 1 − RS < 0 while � is positive, dc is imaginary, and the interaction behavior
is directionally identical to pure DEP. When RS < 1, � is always positive, and drops align along
the field direction. In this region, whether the drops repel or attract in the field direction depends on
their separation distance relative to dc. At separations above dc drops will repel in the field direction,
while below dc they will attract, making dc in this case an unstable equilibrium position. Therefore,
the quantity 1 − RS, Eq. (14), and Eq. (18) can be used to determine how a pair of identical drops
will qualitatively behave under an electric field. For the system given in Table I, M = 0.39, R = 29,
and S = 0.57. Although the phase diagram in Fig. 4 is for M = 1, not much change is observed
when M = 0.39, placing the system of silicone oil drops suspending in castor oil in the orange
region of Fig. 4. Here, the product RS = 17 > 1 and � = 0.53 > 0. Thus, these drops are predicted
to align parallel to the field and attract one another.

In practicality, the material properties of systems where � < 0 are heavily constrained. As M
increases from unity for Fig. 4, the line for � = 0 on the right sight of the diagram increases in slope,
making the region of S and R for which � < 0 narrow quickly. In the EHD literature, the maximum
value of S is around 40, corresponding to water (ε ≈ 80) in oil (ε � 2) [16,49–51], thus narrowing
the accessible zone of the phase diagram in real systems. The dip at S = R = 1 remains unchanged
with M. Thus, fluid combinations with similar conductivities are seemingly feasible systems to
have � < 0. These systems, however, clearly must be immiscible, with distinct permittivities, as
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FIG. 5. (a) Centroid separation between two 350 cSt silicone oil drops in castor oil aligned parallel to
the field. (b) Centroid separation between two drops aligned perpendicular to the field. Error bars represent
a standard deviation of interpolated and time-averaged experiments. In both cases, sin(2�) = 0 and minimal
rotation of the drop pair is observed. E∞ = 1.79 kV/cm and a = 620 μm.

well as low capillary numbers and matched densities, such that the drops will not break up at field
strengths needed to observe their interaction, or settle on a timescale faster than their interaction.
These conditions are not wholly exclusive, however experimental evidence of interactions for drops
with � < 0 has not been reported as of this writing.

The theory presented in Sec. III relies on the assumptions that the capillary number, Reynolds
number, and electric Reynolds number are small. A typical capillary number in our experiments
is calculated to be Ca = 0.19, using an initial drop radius of 620 μm and a surface tension value
for castor oil and silicone oil of 4.5 mN/m from Salipante and Vlahovska [22]. Using outer phase
properties of castor oil, the Reynolds number Re = 5.24 × 10−4, and the electric Reynolds number
ReE = 1.05. An electric Reynolds number of 1.05 indicates the effect of surface charge convection
may not be negligible, however for the sake of qualitatively predicting drop interactions, we will
show that use of this assumption is reasonable, and in fact variation of ReE will be shown to have
little impact on the interaction dynamics in Sec. V A.

V. RESULTS AND DISCUSSION

A. Interaction of identical drops

Results are presented of two identical silicone oil drops suspended in castor oil subject to a uni-
form electric field. Via Table I, the material property ratios for this system are M = 0.39, R = 29,

and S = 0.57, thus Eq. (1) dictates that these drops will deform into oblate spheroids, where the
major axis is perpendicular to the field direction. Here, the product RS > 1, therefore drops aligned
at angles � < 54.7◦ to the field should attract and drops at angles � > 54.7◦ to the field should
repel. In the first set of experiments, drops are initially aligned parallel (� = 0◦) or perpendicular
(� = 90◦) to the field direction. The relative velocity and trajectory of the drop pair should then
only be a function of the centroid separation d of the drops. Figures 5(a) and 5(b) show the
separation distance of parallel and perpendicular aligned drops as a function of dimensionless time,
respectively, where time is nondimensionalized with τc = μs/εsE2

∞. Insets in the bottom corners
are pictures of the initial positions of the drops in one of the experiments included in each of
the presented datasets. In these experiments, precise repeated placement of the drops in the same
initial position is difficult. To analyze the data from experiments started at the same initial angle
but varying separation distances, we consider the fact that the interactions between the drops are
strongest (and therefore the most reproducible) the closer the drops are together. Since Re � 1,
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the flow is reversible, therefore the time axis of each experiment is shifted (without changing the
time increment between the data points) such that the slope of separation distance versus time for
each experiment reaches a minimum value at the same time, allowing a clear comparison of the
trajectories between experiments. These experimental trajectories are shown with the EHD theory
of Eq. (13) and the case of pure DEP (S = 1/R). The theoretical trajectories include a cutoff at
d/a = 2, where a hard-sphere interaction is imposed. Clearly, considering only DEP results in
a drastic underprediction of the rate of approach of the drop pair, which strongly suggests that
EHD interactions are present. When drops are attracting [Fig. 5(a)], a faster approach is predicted
compared to the experiments when starting at a separation distance d/a ≈ 5. Additionally, the drops
attain a minimum centroid separation of 1.8, which can be attributed to the oblate deformation
of the drops, whereas perfect spheres will reach a minimum separation of 2. Prediction of the
repulsive interaction between the drops, on the other hand, matches quite well with the measured
trajectories. The asymptotic theory here is accurate through O(a4/d4), and is therefore restricted
to descriptions of widely separated drops, so predicted and measured trajectories should become
increasingly disparate as drops come closer together. A comparison can be made to Figs. 7 and 8 in
Sorgentone et al., which show the asymptotic theory for identical drops along with boundary integral
computations. At separations as low d/a = 3.5, the theory and computations are nearly identical,
yet they diverge as separation distance decreases. The same divergence between the asymptotic
method of reflections and a more rigorous approach like the twin multipole reexpansion can be
seen in similar systems of conducting spheres in electrolyte [52]. While the asymptotic theory loses
accuracy with decreasing separation distance, the error in the measured trajectories is observed
to increase when drops are farther apart. This is attributed to the fact that when the drops are
relatively close together, their interaction velocity is strong compared to any interfering effects, such
as gravity, migrations due to field distorting impurities and charge carriers, or triboelectric charge.
When the drops are farther apart, the relative strength of interaction is abated compared to the
uncontrolled effects just stated, hence the widening of error bars at larger d/a in Fig. 5. Evidently,
then, there is a desirable experimental range for attractive interactions around d/a = 4–4.5, where
the pair interactions dominate in the system and the drops are separated enough for the theory to be
qualitatively relevant. In light of this fact, the asymptotic theory qualitatively predicts the observed
experimental trajectories quite well.

Admittedly, the electric Reynolds number of the suspending phase, ReEs = 1.05, is not small. The
drop phase value, ReEd = 25.52, is even larger, clearly in violation of the assumption that ReE � 1.
To determine the impact of ReE and surface charge convection on the drop trajectories, experiments
of parallel- and perpendicular-aligned drops were performed at various electric field strengths. The
effect of surface charge convection on the interaction velocities of the drops can be visualized by
normalizing the time over which the drops interact by τc, where E∞, and thus τc, now varies between
experiments. Results for drops with � = 0◦ are plotted in Figs. 6(a) and 6(b), and with � = 90◦ in
Figs. 6(c) and 6(d). Normalization of time by τc collapses the trajectories together, indicating that
the role of surface charge convection either has a small influence on the interactions at the separation
distances shown, or the effect similarly scales with E2

∞. It should be noted as well that Ca similarly
scales with E2

∞, however the maximum Ca achieved is 0.19, and as seen in the insets of Fig. 5 the
drops remain nearly spherical. Therefore, the collapse of the trajectories in Fig. 6 justifies the choice
of a 5 kV applied voltage, where the strongest possible interactions between drops can be induced
without observing a change in the dynamics of their interaction. Included in Figs. 6(b) and 6(d)
are dimensionless theoretical trajectories for attracting and repelling drops, respectively. There is a
slight overprediction of the perpendicular drop separations, however this is consistent with Fig. 5(b).
In both cases, the asymptotic theory performs reasonably well in predicting the normalized behavior
of the drops, demonstrating that the physics inherent in these pairwise interactions are captured, and
that using the largest voltage difference of 5 kV to conduct the experiments does not appreciably
impact the dynamics of the drops.

We now consider drops unaligned with the electric field direction. Drops with an angle � �= 0◦
and � �= 90◦ will rotate due to the O(a4/d4) EHD and DEP interactions of the drops, described by
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(b)(a)

(d)(c)

FIG. 6. Parallel and perpendicular drop trajectories for various applied voltages, with ReE = ε2
s E 2

∞/σsμs.
(a) Drops are aligned parallel to the field direction. (b) The same trajectories as (a), with time normalized by
τc. (c) Drops are aligned perpendicular to the field. (d) The same trajectories as (c), with time normalized by
τc. Trajectories collapse upon normalization of time by τc = μs/εsE 2

∞, indicating that the maximum voltage
tested of 5 kV will not appreciably alter the dynamics of the drop interactions compared to lower voltages.

the �̂ term in Eq. (13). The direction of the pair rotation can be predicted based on the discussion of
� in Sec. IV, and here the dynamics of drop pair rotations are shown experimentally. In performing
these experiments, similarly as discussed with Fig. 5, the drop interactions were stronger the closer
the drops started together, while more variability was observed at larger separation distances. Like
the experiments shown thus far, precisely matching initial conditions for the sake of comparison
between trials is difficult. Additionally, unlike with drops aligned parallel or perpendicular to the
field direction, normalizing the data between experiments starting at different initial positions proves
infeasible, since the velocities of drop pairs at similar separation distances but different angles
to the field (and vice versa) are not the same. In other words, drop pairs starting farther apart
may not “pass through” the same position as drops starting at a similar angle to the field but
closer together, rendering comparison of their trajectories impossible. Consider two experiments
where drops start at the same d0 but differ in �0 between runs. The two velocities scale with
the same a/d0, but values of the second Legendre polynomial, which also scale the interaction
velocity, are different. Thus, the angle that the drops’ line of centers makes with the field can
have a noticeable effect on the drop pair dynamics, exemplified in Fig. 7. Figures 7(a) and 7(b)
are the center-to-center and angular trajectories for a drop pair with d0 = 4.7 and �0 = 21◦, and
Figs. 7(c) and 7(d) correspond to a drop pair with d0 = 4.4 and � = 39◦. Even though the drop
pair in Fig. 7(a) starts at a larger initial separation distance than in Fig. 7(c), the drops closer
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FIG. 7. (a) Separation distance between the centers of drops unaligned with the field direction, and (b) angle
between the line of centers of the drops and the field direction, for drops initially placed with d0/a = 4.7 and
�0 = 21◦. (c) Separation distance and (d) angle between line of centers and field, for drops initially placed
with d0/a = 4.4 and �0 = 39◦. The vector between the drops points from the drop on the left to the one on the
right, and angles plotted are |�| (therefore always between 0◦ and 90◦).

together but starting at a larger � attract each other more slowly. The increased angle between the
drop pair and the electric field results in a reduced initial relative velocity, as P2( cos(21◦)) = 0.80,
while P2( cos(39◦)) = 0.41. Note that Eq. (13) is successful at predicting both the center-to-center
and angular initial trajectories of the drop pairs in Fig. 7; although seemingly large, the early
discrepancy in � between the experimental and theoretical trajectories in Fig. 7(b) is only about 3◦.
The prediction of � is seen to quickly diverge from the measured values at the same time that the
predicted and measured separation distances split. The failure of Eq. (13) to quantitatively capture
the dynamics of the drops at close distances is indicative of the method of reflections employed, and
should not obfuscate the qualitative success of the theory in predicting drop pair behaviors. That the
nature of interactions between arbitrarily positioned drops, and the timescale of their interaction,
can be predicted underscores the power of the asymptotic method of reflections. Experiments
are also performed of drops initially unaligned with the field at angles larger than � = 54.7◦. At
these angles, drop pairs will initially repel while still rotating toward the electric field direction and
decreasing �. Upon crossing � = 54.7◦, the center-to-center interaction switches from repulsive
to attractive, and the drops begin to approach each other. An example of this behavior is shown in
Fig. 8. The initial separation d0/a of the drops is just over 2, and the drops rotate toward parallel and
repel to a maximum of 2.9 where they reach an angle of � ≈ 54.7◦. At this moment, the centerline
velocity of the drops is no longer repulsive, and the drops approach each other until they are near
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FIG. 8. (a) Separation distance between the centers of drops unaligned with the field direction, and (b) angle
between the drops’ line of centers and the field direction. (c) Photos taken from the experiment showing the
progression of drop positions in time. At the initial time, �0 > 54.7◦, and drops initially repel. The vector
between the drops points from the drop on the left to the one on the right, and angles plotted are |�|.

contact. While these dynamics are captured with Eq. (13), the extent of repulsion and the timescale
of the interaction are not in quantitative agreement. This is entirely expected to be the case with an
asymptotic theory being only accurate through O(a4/d4). Over the course of the whole experiment,
the drops never reach a separation distance large enough where the error from neglected terms can
be accurately ignored, and thus comparison of the data shown in Fig. 8 to the EHD theory should
only be for qualitative consideration. Nonetheless, the ability to capture qualitatively the dynamics
of drop pairs unaligned with the electric field, even at small separation distances, with an asymptotic
theory for widely separated drops is remarkable.

B. Interaction of dissimilar drops

Here we consider the interaction of drops of different sizes and composition. When drops are
differing in size, the strength of interaction of the smaller drop acting on the larger one is no
longer the same as the larger drop acting on the smaller one. This is evident in the velocity
scale for drop j in the presence of drop i, U = εE∞ai/μs, scaling with the radius ai. Due to
these nonreciprocal interactions, the center of mass between the drops is not constant in time,
and the relative velocity of the drop pair must be modeled with the more general expression
Ud = |Uji − Ui j |, where Uji and Ui j are found via Eq. (11). We compare calculation of the trajectories
using Eq. (11) for two drops, one of radius a j = 620 μm (same size as the previous experiments)
and the other ai = 391 μm (a quarter the volume of drop j, or 0.25 μL), to that for identical
drops using an average radius in Eq. (13) in Fig. 9. As shown similarly for identical drops,
Eq. (11) predicts the interaction of the drops reasonably well at separation distances of around
d/aavg = 4 and larger. For comparison, the trajectory is shown for identical drops using the mean
size aavg = 505.5 μm of the two dissimilar drops. Both Eq. (11) for dissimilar drops and Eq. (13)
for identical, average-sized drops agree qualitatively with the experimental trajectory of the drops.
Only a slight difference is observed between the two predictions, which is expected upon briefly
comparing the differences in leading-order O(a2/d2) terms of the interaction velocities. With the
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FIG. 9. (a) Normalized separation distance d/aavg for drops of dissimilar size. The solid black line indicates
theoretical prediction of the separation distance from Eq. (11); the dotted black line indicates the prediction
for identical drops with Eq. (13) using an average radius of 505.5 μm. The inset shows the initial position
of drops when electric field is applied. (b) The angle between line of centers and the field direction shown
with corresponding values of the second Legendre polynomial. The largest angle observed between the line of
centers and the applied field is � ≈ 0.11, which gives a value of 0.98 for the second Legendre polynomial.

drop sizes given above, the leading-order terms can be used to estimate how different predictions
from Eq. (13) for identical, average-sized drops will be compared to predictions for dissimilar
drops using Eq. (11). The leading-order relative velocity of identical, average-sized drops scales as
2a3

avg/d2
0 , while the leading-order relative velocity of a dissimilar drop pair scales as a3

i /d2
0 + a3

j/d2
0 ,

giving the ratio of the two relative velocities, respectively, as 2a2
avg/(a3

i + a3
j ). From this expression,

the predicted leading-order velocity for identical, average-sized drops will always be slower than
that predicted for dissimilar drops, which coincides with the faster predicted approach of dissimilar
drops observed in Fig. 9. To highlight the nonreciprocal EHD interactions of the drop pair, a parallel
initial configuration of the drops is chosen in order to minimize the effect of gravitational settling
on the pair dynamics. We find that although there is some slight vertical misalignment of the
drops, due to the larger drop settling faster than the smaller one, the drop pair only briefly reaches
a maximum rotation of � ≈ 6◦, shown in Fig. 9. Calculation of the reduction in the interaction
velocity because of this brief off-parallel alignment shows only a 2% difference in the calculated
value [P2( cos(6.3◦)) = 0.98 versus P2( cos(0)) = 1], hence the effect of gravitational settling can
be reasonably neglected. While a more precise calculation should include gravitational effects on
the drop pair, Fig. 9 shows that the asymptotic theory is able to capture the EHD component of the
interactions involved even when drops are of different sizes.

Unlike for differences in size shown above, small variations in material properties between the
drops can lead to starkly different pair interactions. As first noted by Zabarankin [39] for drops
whose line of centers is parallel to the applied field, and here for drops in arbitrary orientations
via Eq. (11), two oblately deforming drops may repel along the axis of the electric field if their
conductivity ratios are larger and smaller than unity (i.e., Ri > 1 > Rj). This counterintuitive result
is indicative of the fact that the interactions between materially dissimilar drops cannot simply be
predicted by knowing the interactions for identical drops of each type. This repulsive interaction
results from the direction of the polarizability of the drops, determined by the Clausius-Mossotti
factor (1 − R)/(1 + 2R) [34]. For identical drops, the Clausius-Mossotti factors are the same, and
thus the DEP force on each drop along the field axis is attractive. However, drops having Clausius-
Mossotti factors of opposite sign will instead experience a repulsive DEP force along the field axis.
For drops with high viscosity ratios (effectively rigid particles), or when the ratio RS ∼ 1, the DEP
interaction dominates and the drop pair will have a steady-state configuration such that the drops
are in contact and aligned perpendicular to the field direction.
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The interactions between drops become more complex when EHD is accounted for. Unlike with
DEP, the EHD interactions of the drops are nonreciprocal, such that the center of mass of the drop
pair moves in time. Additionally, as with Eq. (18) for identical drops, a critical separation distance
for dissimilar drops, where DEP and EHD balance, exists as well. This critical separation distance
can be written as

dc =
√√√√ (α ji + αi j )a2

i a2
j + βia4

i + β ja4
j

βia2
i + β ja2

j

, (19)

where

α ji = 3Mj

(2 + 3Mj )

Ri(1 − SiRi )

(1 + 2Ri )2(1 + Mi )
+ 20

3

(1 + Mj )

(2 + 3Mj )

(1 − Rj )

(1 + 2Rj )

(1 − Ri )

(1 + 2Ri )

and

βi = Ri(1 − RiSi )

(1 + 2Ri )2(1 + Mi )
. (20)

Here, α ji denotes the prefactor for the a2
i a2

j term in the velocity of drop j due to the presence of
drop i given in Eq. (11), and βi denotes the prefactor for the a2

i and a4
i terms in the velocity of drop

j due to the presence of drop i. As with Eq. (18), for real values of Eq. (19), the behavior of the drop
pair will be drastically different depending on if d0 < dc or d0 > dc. The importance of considering
EHD in the interactions of electrically dissimilar drops is showcased via computed trajectories in
Fig. 10. Figure 10 shows three cases exemplifying the behavior described above. Here, Si (blue) =
S j (red) = 1, Ri = 10, and Rj = 1. The viscosity ratio and the initial position of the drops are varied
between cases. Figure 10(a) shows the spacial trajectories of the dissimilar drops just described,
where both drops have a viscosity ratio of M = 106. Thus, DEP interactions dominate the behavior
of the drop pair, and a symmetrical interaction where the drops eventually align perpendicular to the
field direction and make contact at their equators is observed. In Fig. 10(b), initial conditions of the
pair remain the same, however the drops are now equiviscous with the suspending phase, and EHD
plays a considerably larger role. While the ending configuration of the drop pair is the same as for
the nearly rigid-particle case of Fig. 10(a), the center of mass of the pair moves in time. The paths
taken by the drops illustrate the nonreciprocity of their interaction. Importantly, the time required
for the drop pair to reach its minimum separation distance is more than halved when EHD is present,
as shown in Fig. 10(d). Here, the DEP interaction of the drops drives the pair toward a perpendicular
alignment with an initial repulsion, while the effect of the EHD interaction suppresses that initial
repulsion, allowing the dynamics of the drop pair to occur at a closer separation distance where they
will be stronger. The competition between EHD and DEP is made clear in Fig. 10(c), where the
initial separation of the drops d0/a = 5.4 is larger than the critical separation dc/a = 5.1. Thus, the
long-range EHD interaction dominates, and the drops are driven toward a perpendicular alignment
where they repel instead of attract. Hence, as shown in Fig. 10(d), the drop pair will continue to repel
after rotating above �c without making contact. Figure 10 exemplifies the complexity in dissimilar
drop interactions under an applied field. The interplay between EHD and DEP effects results in
dynamics of the drop pair that cannot simply be predicted based on the identical interactions of
each drop phase.

C. Interaction of multiple drops

Pairwise interaction calculations are commonly used to approximate the behavior of large-scale
systems of drops or particles in various contexts [36,46,53–55]. To validate the use of a pairwise
theory for systems of more than two drops, we compare the model to experiments of three and
four identical drops. In Figs. 11 and 12, the center-to-center and angular components of Eq. (17)
are shown alongside the trajectories of multiple drops. Qualitative agreement is observed between
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FIG. 10. Trajectories of drops in the plane made by the line connecting the centers of the drops and the
field direction. In all cases, Sblue = Sred = 1, Rblue = 10, Rred = 0.1. (a) M = Mblue = Mred = 106, d0/a = 4.1,
�0 = 29◦. (b) M = 1, d0/a = 4.1, �0 = 29◦. (c) M = 1, d0 = 5.4, �0 = 22◦. (d) Plots of separation distance
vs time for the cases (a) (solid line), (b) (dashed line), and (c) (dot-dashed line). For cases (b) and (c), dc/a =
5.1.

the pairwise theory and the three-drop experiment shown in Fig. 11. The success in capturing the
separation distances and angles of the vectors d12, d23, and d13 [indicated in Fig. 11(c)] shows that
the evolution of the triangle made by the centers of the drops can be predicted up to around 48 s
when a doublet between drops 2 and 3 is formed. After formation of the doublet, while still shown
for the sake of comparison, the theory is inapplicable, as any lubrication effects that would arise
upon near-contact of the drops are ignored, as well as higher-order terms that would increase the
accuracy of the model as the drops become close. In any case, the three-body dynamics of this
system are successfully captured. To explain this, it is noted that while Eq. (13) is valid for remote
separations, higher-order terms for both EHD and DEP come in O(a/d )3 smaller than the terms
they are reflected from. Three-body interactions scale similarly, provided the drop sizes are similar,
where a third drop of radius a3 would interact with drop 2 at leading order O(a3/d )2, which would
then reflect to drop 1 at O(a2

3a3
2/d5) [43]. Thus, by only considering terms up to O(a/d )4, three-body

interactions can be ignored, and the pairwise theory of Eq. (17) is accurate to the same order for
systems of three drops as it is for a drop pair.

Comparison of the pairwise additive theory to experiments of four drops, as shown in Fig. 12,
also shows qualitative agreement. However, while the evolution of the system is captured in this
case, considerably faster dynamics are predicted compared to those observed experimentally. For
instance, the formation of a drop 2–3 doublet is predicted to occur about twice as fast as seen in the
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FIG. 11. (a) Separation distance between drop pairs for the three-drop system. (b) Rotational dynamics
between drop pairs for the three-drop system. Angles plotted are |�|. The vertical dotted line indicates
the moment drops 2 and 3 form a doublet, after which the theory is formally inapplicable. The kinks in
the theoretical trajectories occur upon predicted formation of the doublet. (c) Photos of the initial and final
configuration of drops, with a schematic identifying the vectors plotted in (a) and (b).

experiment, and a similar difference in timescale is observed between the theoretical predictions of
the trajectories between the other drops. Considering the quality of agreement in Fig. 11, a likely
source of the observed discrepancy in timescale is considered. Based on the observed increase in
magnitude of the vector connecting drops 1 and 4, it is possible that the distances from drop 1 to
drops 3 and 4, and likewise drop 4 to drops 1 and 2, are large enough such that the interactions along
those vectors are small compared to noise from impurities or errant charge in the bulk. Thus, the
interactions between drops 1 and 3, drops 1 and 4, and drops 2 and 4 that would in sum be attractive
enough to pull drops 1 and 4 together are screened, and the pair of drops 1 and 2 initially repels
with minimal interference from the other drops. Combined with the clockwise rotation of the pair of
drops 1 and 2 and counterclockwise rotation of the pair of drops 3 and 4, respectively, drops 1 and 4
are driven apart. As a result, as the pair of drops 1 and 2 and the pair of drops 3 and 4 rotate toward
parallel, their center-to-center attraction get stronger, slowing the time it would take for drops 2 and
3 to meet. Provided this is the case, the fact that the dynamics of four drops is qualitatively predicted
bodes well for prediction of n-body systems of drops, which we plan to address in future work.
These results thus show that Eqs. (11), (13), and (17) provide a framework for the approximation of
the behavior of large-scale systems of leaky dielectric drops using low-cost simulations compared
to more expensive boundary integral codes or multipole expansions incorporating large numbers of
terms.

VI. CONCLUSIONS

The three-dimensional interactions of leaky dielectric drops are analyzed using asymptotic
analysis and experiments. The theory presented by Sorgentone et al. [42] is generalized to consider
dissimilar and multiple drops. The interaction parameter � is examined, the sign of which is
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FIG. 12. (a) Separation distance between drop pairs within the four-drop system. (b) Rotational dynamics
between drop pairs within the four-drop system. Angles plotted are |�|. Here the experiment is stopped upon
formation of the doublet between drops 2 and 3, however the theoretical prediction of doublet formation occurs
at about 48 s. (c) Photos of the initial and final configuration of drops, with a schematic identifying the vectors
plotted in (a) and (b).

predictive of the direction that a drop pair will rotate relative to the field direction. In discussing
the possibility of exploring the phase space of � in practical systems, it is noted that inherent
physical limits on S immediately reduce accessible regions of the � phase diagram. Constraints
of immiscibility, high surface tension, comparable densities, and similar conductivities in concert
make practical realization of predicted yet so far experimentally unobserved drop pair behaviors
unlikely in relevant applications.

The theory for identical drops of Sorgentone et al. is compared to experiments of silicone oil
drops suspended in castor oil, and it is shown that the physics dominant in leaky dielectric drop
interactions are captured. The theory is found to accurately predict the trajectories of drop pairs
at separation distances as low as 3.5 radii; however, noise in experimental measurements of drop
pair interactions may dominate over interaction dynamics at separations larger than 5 radii. Results
are shown exemplifying the importance of the angle the drop pair makes with the field direction
in determining how quickly drops will attract or repel. Drops are shown to not always interact in a
monotonic manner, and the positions of drops at long times are heavily dependent on their initial
placement. We find that the theory is successful in qualitatively predicting the dynamics observed
in the experiments.

The theory of Sorgentone et al. is generalized to consider the asymmetric interactions of widely
separated dissimilar drops, and systems of multiple drops through a pairwise additive approxi-
mation. Neglecting gravitational effects, it is shown that the theory is capable of predicting the
trajectories of drops of different sizes. Simulated trajectories of drops of electrically dissimilar drops
are also shown. These nonreciprocal interactions nontrivially impact the predicted trajectories of a
drop pair. In cases of three and four drops, a summation of pairwise interactions between drops
is shown to qualitatively predict the evolution of the many-body systems. The error in ignoring
three-body interactions is of a similar scale to that of the truncation error of O(a5/d5) in the pairwise
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theory, allowing the use of the pairwise theory to predict the interactions of multiple drops. Although
a more rigorous consideration of drop interactions via twin multipole reexpansions or boundary
integral computations may provide more accurate resolution of drop interactions at close distances
[39,42,52], the simple theory presented here provides a means for qualitatively accurate descriptions
of drop interactions at comparatively minuscule computational cost.

While the theory was able to capture the qualitative behavior of drops, our methods can be
improved, and a more accurate prediction of drop interactions can be made. Experimentally,
we were unable to fully control for migration of the drops or be sure of no errant charges. To
mitigate these issues, the needles and oil in the cell were grounded before the experiment and
when the drops were inserted and moved, however this was not enough to fully eliminate these
effects. It has been suggested that the migration of leaky dielectric drops in a steady field could
be electrophoretic in nature [56], and thus could be avoided using an ac field. In terms of the
model, we introduce inaccuracy by considering nondeforming drops and ignoring the possibility for
charge convection, which we know is relevant at the field strengths used in this study. Additionally,
emulsion surfaces are rarely clean, and the presence of surface active species can impact the EHD
deformation and interactions of drops [57–59]. Nonetheless, in predicting the interactions of drops
in various scenarios using a simple asymptotic theory, a considerable step is taken toward modeling
more complex many-body systems. Analogies to our methodology exist in electrocoalescence [36],
electrorheology [53], active matter [46,55], and electrokinetics [54], where many-body simulations
show a rich depth of behavior not yet quantified for leaky dielectric materials.
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