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Numerical investigation of a droplet impacting obliquely
on a horizontal solid surface
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Obliquely impacting of droplet on horizontal solid surface is studied numerically. The
impact velocity (v1), both the magnitude and direction, is varied to analyze its effect on
spreading area and droplet kinetics. The normal impact velocity (vn

1 ) is found to be the
main factor that influences the temporal variation of spreading area in droplet obliquely
impacting process. The influence of normal Weber number (Wen) on the restitution
coefficients (εn and εt) is also investigated. Within the same impact angle interval, the
normal restitution coefficient (εn) grows with small Wen and is with the general scaling
relationship of εn ∼ Wen

−1/4 for moderate Wen, which is similar to that in the droplet
normal impact process. The tangential restitution coefficient (εt) is found to vary around
a constant value and this observation has been analyzed from the view of both droplet
kinetics and dynamics. Moreover, we also study the influence of tangential velocity on
viscous dissipation and find that large tangential velocity would induce higher viscous
dissipation energy.
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I. INTRODUCTION

The impact of a droplet on solid surfaces is commonly encountered in nature and industry,
including rain effect [1], inkjet printing [2], and spray cooling [3], and is thus of great academic
and practical significance. Extensive works have focused on the normal impact in which the droplet
velocity is perpendicular to the solid surface. When the splash limit is not exceeded, the droplet
simply spreads over the surface until it reaches maximum radius. The spreading factor β, defined
by the ratio of the maximum and initial radius, has attracted many researchers. Two dimensionless
numbers are often employed to characterize this process, the Weber number (We) and the Reynolds
number (Re), which are defined by We = ρlu2

l D0/σ and Re = ρulD0/μl, where ρl, ul, and μl are
density, velocity, and dynamic viscosity of the droplet, respectively. D0 is the initial droplet diameter,
and σ is the surface tension coefficient. Based on the balance among the inertial, viscous, and
capillary contributions, numerous relations between spreading factor and impact parameters have
been established [4]. After spreading, depending on surface properties, the droplet could recede
or remain close to the maximum spreading shape. When the surface is (super) hydrophobic, the
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retraction could lead to partial or complete rebound. In this process, the contact time tc, during
which the drop stays in contact with the solid surface after impact, is another factor that arouses
many researchers’ interests. Besides, in some engineering application, the aim is to minimize tc,
like the anti-icing needs in the aviation field. It is found that the contact time only scales with
the inertia-capillarity time τ when the droplet experiences the impact-spread-recoil-rebound phase
on macroscopically flat superhydrophobic surfaces [5]. The inertia-capillarity time is defined by
τ =

√
ρlR3

0/σ , where R0 is the initial radius. The scaling, tc/τ = 2.2 ± 0.3, is notably irrespective
of the droplet kinetic properties and holds in a certain range of Weber number. However, this scaling
is not valid for other complex surfaces. For example, it is found that by adding a macrotexture
as a ridge on the flat surface, the contact time reduces by approximately 37% [6]. In addition,
a phenomenon called pancake bouncing [7] is also reported and it is demonstrated that this
unconventional bouncing could reduce the contact time by a factor of 4. The physics behind the
phenomenon has been widely studied [8,9].

During the droplet impact, the kinetic energy and surface energy would be exchanged and
some of the energy would be consumed by the viscous dissipation. To characterize the energy
loss after rebound, the restitution coefficient is defined by ε = v2/v1, where v1 is impact velocity
and v2 is rebound velocity. Thus, a higher Weber number would result in greater deformation and
more dissipation. For droplets impacting normally on superhydrophobic carbon nanotube array,
the restitution coefficient is proportional to We−1/4 at the range of 2 < We < 100 [10]. Aboud
and Kietzig [11] also obtained similar results for the droplet impact on inclined superhydrophobic
surfaces.

Droplet impact on the tilted surface has also been extensively studied since it displays some
unique features different from the impact on horizontal surfaces, such as the back and front
asymmetry deformation upon impingement. To specifically characterize the impact outcomes, the
normal Weber number is defined by Wen = ρl (ulcosαs)2D0/σ , where αs is the surface-inclined
angle. Yeong et al. [12] demonstrated that at low Wen, droplet impacting on the horizontal and tilted
surfaces behaved similarly. Nevertheless, at high Wen, the maximum spreading length is different
due to the asymmetric motion of droplet and the asymmetry effects would become more pronounced
as the inclination angle is increased. Due to inclination, the drop would slide tangentially across the
solid surface. Thus, the slide length L is also a focus in the process. Through experiments, Aboud
et al. [13] found that the increase of Wen would lead to a decrease in L/L0, where L0 is an idealized
sliding length. This decreasing outcome is attributed to the drag forces acting on the droplet during
the impact process. Yeong et al. [12] also reported that the surface inclination had no obvious
effect on the contact time. By contrast, Antonini et al. [14] obtained the opposite conclusion that an
increase in the inclination could promote the droplet rebound and shorten the contact time.

When the impact velocity increases to a critical value, splashing would occur and the threshold
would change with the inclination angle [15]. In the normal impact, the splashing would occur
when We

√
Re > K , where K is the splashing threshold. During the oblique impact process, the

asymmetry impact could lead to an azimuthal variation of the ejected rim and thus a different splash
threshold is derived. Bird et al. [16] have expanded the threshold for impact on horizontal surface
to inclined surface by incorporating the lamella’s spreading dynamics. Aboud et al. [15] proposed
a linear model which includes the critical velocity for splashing at a normal angle of incidence and
the tangential component of the impact velocity under the oblique circumstance. Both models agree
well with the experiments.

When droplet impacts on flat or tilted surface, the impact velocity is aligned with gravity.
However, in nature, the direction of the droplet motion is not always the same as gravity when other
forces, such as wind, magnetic force, are involved. Thus, the droplet would obliquely impact the
surface. Sun et al. [17] examined the oblique impact of droplets on microstructured superhydropho-
bic surfaces and identified four possible types of bouncing. Schremb et al. [18] studied the influence
of temperature on the oblique droplet impact process. Zhu et al. [19] reported the nonspecular
reflection of droplet impingement onto solid surfaces with a dimple and utilized this phenomenon to
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enable versatile droplet manipulation. So far, the work concerning the droplet obliquely impinging
on horizontal surface is limited. There are many phenomena and mechanisms deserving further
investigation, such as the influence of the reflection process on the droplet morphology and kinetics,
how the impact angle affects energy exchange, and so on. In the present study, we will address and
investigate these questions using the numerical method. The rest of the paper is organized as follows:
the numerical method is described and validated in Sec. II. In Sec. III, the outcomes of the droplet
obliquely impacting on solid horizontal surface are presented. The velocity, both the magnitude
and direction, would be varied to study their effects on droplet deformation and kinetics, including
the droplet spreading area, tangential velocity of the mass center, and restitution coefficients. The
energy transfer is also studied. Finally, the concluding remarks are drawn in Sec. IV.

II. DESCRIPTION OF THE NUMERICAL METHOD

A. Governing equation and discretization

In multiphase flow simulation, various methods are employed to track the interface evolution
explicitly or implicitly, such as the front track [20], level set [21], and volume of fluid [22] methods.
Among these methods, the volume of fluid (VOF) is widely used due to its simpler implementation
and mass-preservation merits. In the VOF method, an indicator function called phase fraction, α, is
introduced and commonly defined as

α =
⎧⎨
⎩

0
0 < α < 1
1

if the cell is occupied by air
if the cell contains both air and liquid
if the cell is occupied by liquid

. (1)

And, the governing equation for α is

∂α

∂t
+ ∇ · (α�u) = 0, (2)

where �u is the velocity vector.
The governing equations are, for two-phase immiscible and incompressible flow,

∇ · �u = 0, (3)

∂ (ρ�u)

∂t
+ ∇ · (ρ�u�u) = −∇p + ∇μ[∇�u + (∇�u)T ] + ρ�g + �F , (4)

where p is the pressure, μ is the dynamic viscosity, ρ is density, �g is the gravity acceleration, and �F
accounts for the surface tension.

In the present simulation, the two immiscible fluids in each cell are considered as a single medium
with the physical properties calculated as the weighted averages based on the local value of the
volume fraction functions and the constitution properties. The volume-fraction averaged density
and viscosity in each cell are given as follows:

ρ = αρl + (1 − α)ρg, (5)

μ = αμl + (1 − α)μg, (6)

where ρl, ρg and μl, μg are densities and dynamic viscosities of liquid and air, respectively. It
could be seen that the physical properties vary in cells that are cut by the interface.

In the present study, the interFoam solver on the OPENFOAM platform is used to perform all
simulations. To constrain the interface diffusion in the simulation, Eq. (3) is modified as

∂α

∂t
+ ∇ · (�uα) + ∇ · (�urα(1 − α)) = 0, (7)
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where �ur = �ul − �ug is the relative velocity between the two fluids. �ur is evaluated at each
computation cell,

�ur = (min(Cαi|�u|, max(|�u|))) ∇αi∣∣∇αi

∣∣ , (8)

where Cαi is the compression coefficient, which determines the degree of compression. In the
present study, Cαi is equal to unity in all simulation cases. To keep the volume fraction field bounded,
Eq. (7) is solved by using the MULSE (Multidimensional Universal Limiter with Explicit Solution)
method, which is based on the method of flux-corrected transport [23,24].

In the interFoam solver, the effect of surface tension is considered by adding a source term �F in
the momentum equation. The surface tension force is evaluated according to the continuum surface
force model developed by Brackbill et al. [25], which reads

�F = σκ∇α, (9)

where κ is the mean curvature and evaluated as

κ = −∇ · �n. (10)

In Eq. (10), �n is the unit vector normal to the interface and far from the wall, which is defined as

�n = ∇α / |∇α|. (11)

At the solid surface, the unit vector �n is modified by the contact angle [26].
In OPENFOAM, the finite-volume method is employed to discretize the governing equations, which

subdivides the computational domain into discrete nonoverlapping elements. The variables are
located at the center of these elements. Due to the incompressibility of the flow, pressure and velocity
are coupled implicitly. PIMPLE algorithm is adopted to solve Eqs. (3) and (4) simultaneously
in the interFoam solver, which combines PISO (Pressure Implicit Split Operator) and SIMPLE
(Semi-Implicit Method for Pressure-Linked Equations) algorithms and allows the usage of a larger
time step [27].

B. Dynamic contact angle model

The contact angle θ0 is commonly adopted to characterize the wettability of a surface by a specific
liquid, which is defined as the angle enclosed by the tangent to the liquid-gas and the solid-liquid
interface at the three-phase sessile contact line. For the ideal surface under equilibrium conditions,
θ0 can be calculated by using Young’s equation if the surface energy density of each of the phase
interfaces is known. However, in most practical cases, the surfaces are not ideally smooth, for which
the contact angle hysteresis phenomenon should be considered. This means that the contact angle
varies over a certain range. The upper and lower limits of this range are known as the advancing
contact angle (θa) and the receding contact angle (θr). Thus, in this study, a dynamical contact angle
model called the Kistler model [28] is implemented in the interFoam to predict the droplet impacting
phenomenon. The Kistler model is commonly used and has been verified in many previous studies
[29,30]. In the model, the contact angle depends on the contact line velocity and can be evaluated
through the following expressions:

θdyn =
⎧⎨
⎩

fHoff
[
Ca + f −1

Hoff (θa )
]

θ0

fHoff
[
Ca + f −1

Hoff (θr )
]

if Ca > 0
if Ca > 0
if Ca > 0

, (12)

where fHoff is Hoffman function and is defined as follows:

f (x) = arccos
{

1 − 2tanh
[
5.16

( x

1 + 1.31x0.99

)0.706]}
, (13)
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FIG. 1. Schematic sketch of simulation. (a) Droplet obliquely impacts on the horizontal solid wall. D0 is
the initial diameter of the droplet. v1 is the impact velocity with the impact angle θ1. (b) Droplet impacts on and
rebounds from the solid surface. vn

1 and vt
1 are the normal and tangential components of the impact velocity.

vn
2 and vt

2 are the normal and tangential components of the rebound velocity. θ1 is the impact angle and θ2 is
the rebound angle. (c) Mesh used for the numerical simulation; the inner part enclosing the motion behavior is
refined. The red circle denotes the initial droplet. (d) The boundary conditions imposed on the computational
domain.

and f −1
Hoff is the inverse function of Hoffman function, Ca is the capillary number and is defined as

Ca = μlVcl

σ
, (14)

where Vcl is the contact line velocity and is calculated as the relative velocity between the solid wall
and the neighboring cell next to it.

C. Geometry and simulation parameters

The setup of the three-dimensional simulation is sketched in Fig. 1(a). Consider a liquid
drop with a diameter D0, density ρl, and dynamic viscosity μl, impacting on solid surface at
an angle θ and a speed v1. The surrounding gas has density ρg and dynamic viscosity μg.
The liquid-gas surface tension coefficient is σ . The material physical properties are listed in
Table I.
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TABLE I. Material physical properties.

Physical material Value

Liquid density ρl 997.05 kg m–3

Gas density ρg 1.185 kg m–3

Liquid kinematic viscosity vl 0.89 × 10–6 m2 s–1

Gas kinematic viscosity vg 1.549 × 10–5 m2 s–1

Surface tension coefficient σ 0.072 N m–1

The droplet is initially placed on a solid surface without air beneath it. The initial velocity field
is assigned by

�u0 =
{

0 if α = 0
v1(sinθ�j − cosθ �k) if α = 0

. (15)

The diameter of the droplet is fixed with D0 = 2 mm. The normal and tangential components of
the impact velocity vn

1 and vt
1, as shown in Fig. 1(b), are varied to study the influence on droplet

dynamics. All simulations are run on the computational domain of 5D0 × 5D0 × 5D0. To save the
grid resources, the grid is only refined in the part enclosing the motion behavior before the start of
the simulation, as shown in Fig. 1(c). The no-slip boundary condition is imposed for solid wall and
the outflow condition is imposed on other boundaries, as shown in Fig. 1(d).

D. Validation

The simulation of droplet impacting on the superhydrophobic substrate is performed to test the
accuracy of the present numerical approach with the experiment data. In the the experiment, the
impact process is monitored with a high-speed camera (Phantom M110). The impacting drop is
released from a needle which is connected with a pump. The superhydrophobic surface is coated
with silanized silica nanoparticles using commercialized Glaco (Soft99) and the postbaking is
performed. The impact velocity is 0.3 m s−1, and the corresponding Weber number is equal to
2.5. Figure 2 shows the comparison of the experimental and numerical results. It is observed that
the numerical droplet profile agrees well with the experiment.

Four meshes with different grid sizes are used to test the grid independence. The grid size is
listed in Table II. It is noted that these grid sizes would only be employed in the region where the
mesh is refined.

FIG. 2. Comparison of experimental (top) and numerical (bottom) results for droplet normal impact on
solid surface. Droplet diameter equals 2.0 mm and the impact velocity is 0.3 m s−1. The equilibrium, advancing,
and receding contact angles have the same value of 155°. Scale bar: 1 mm.
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TABLE II. Four meshes with different grid size.

Simulation tests Grid size in the refined part

Case 1 220 × 220 × 220
Case 2 300 × 300 × 300
Case 3 330 × 330 × 330
Case 4 360 × 360 × 360

In Fig. 3(a), the dimensionless spreading diameter D∗ = D/D0 is plotted as a function of dimen-
sionless time t∗ = t/τ for different simulation cases and the experiment results. Good agreement
exists between the experiment data and the numerical results and the characteristic transition states
are accurately captured. For example, at around t∗

max = 0.87, the droplet reaches the maximum
diameter (the experiment result D∗

max = 1.0 and the numerical result D∗
max = 1.1). After t∗

max, the
droplet begins shrinking. At around t∗ = 1.62, the shrinking rate decreases to nearly zero and the
spreading diameter keeps fixed for around 0.23 dimensionless time. After t∗ = 1.85, the droplet
shrinks again until the droplet detaches from the rigid surface at t∗ = 2.6. These typical moments
predicted in our simulations are well consistent with those observed in the experiment. The slight
difference between the predicted and experiment diameters may be attributed to the measurement
error and the condition discrepancy between the simulation and experiment environment.

A mesh independence study is also analyzed. The relative error (RE) caused by the mesh size
can be written as

RE =
∣∣Dmax

i − Dmax
4

∣∣
Dmax

4

× 100%, (16)

where Dmax
i is the maximum diameter in the ith case (i = 1, 2, 3). Figure 3(b) shows the relative

error versus the mesh resolution. It is concluded that when the grid size is smaller than that of the
second case, the relative error is below 1% and the resolution of the mesh has negligible influence
on the simulation results. Therefore, in the following study, the mesh resolution in the second case
is employed.

To further validate the simulation results, the maximum drop-spreading factor ξmax (ξmax =
Dmax/D0) is also analyzed and compared with the theoretical models. Different theoretical models

FIG. 3. (a) Comparison of simulation and experiment results: the normalized spreading diameter (D/D0)
vs the dimensionless time (t/τ ); (b) the relative error vs the mesh resolution.
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FIG. 4. Droplet normal impact on a hydrophobic surface. (a) Comparison of the numerically predicted
maximum spreading factor (ξmax) with the droplet diameter of 2.0 mm. The present simulation results (black
square) are compared to the models of Pasandideh-Fard et al. [31] (red line), Clanet et al. [32] (green line),
and Roisman [33] (blue line). (b) Numerically predicted spreading time with different We. (c) The simulation
of the restitution coefficient with different We (red square and blue triangle).

have been proposed in the literature. Pasandideh-Fard et al. [31] proposed that the expression of ξmax

is predicted as: ξmax ∼
√

We+12
3(1−cosθa )+4WeRe−1/2 , where θa is the advancing contact angle. In the model

of Clanet et al. [32], the spreading factor is calculated in another form ξmax ∼ We1/4. The third the-
oretical prediction is derived by Roisman [33] and its form is ξmax ∼ 0.87Re1/5 − 0.4Re2/5We−1/2.
Figure 4(a) plots the maximum spreading factor versus Weber number. The range of the Weber
number is 15 ∼ 65 and is achieved by varying the impact velocity. It is observed that the models of
Pasandideh-Fard et al. [31] and Clanet et al. [32] display similar results with a maximum difference
only up to 4.56%. The simulation result is close to the two models and bears a stronger agreement
with Pasandideh-Fard et al. [31]. Pasandideh-Fard et al.’s model [31] considered the effects of the
Weber and Reynolds numbers as well as the contact angle. Note that the contact angle has great
effects on the maximum spreading area [34], which, however, is not included in Clanet et al.’s and
Roisman et al.’s models. This could explain the relatively larger discrepancies between the present
simulation and these two models.

Pasandideh-Fard et al. [31] compared the model with the experiment results and found that when
the Reynolds number is higher, the model agrees well with the experiment results. However, when
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the Reynolds number is lower, the discrepancies become larger. This is because the assumption of
a thin boundary layer is no longer valid at lower Reynolds number. This tendency also agrees well
with our simulation result, as indicated in Fig. 4(a).

The contact time tc is also predicted and analyzed using numerical simulations. It has been
mentioned that tc is independent of impact velocity and satisfies the scaling tc ∼ βτ , where τ is
the inertial-capillarity time. Thus, for a constant-diameter droplet impacting at varying velocity, tc
is expected to stay unchanged. Figure 4(b) plots the simulation results of the relationship between
tc/τ and We. In all the cases, the diameter of the droplet maintains constant. As expected, the contact
time is independent of the impact velocity, which is proportional to τ with the coefficient β being
about 2.7.

Moreover, the restitution coefficient is analyzed to validate the simulation results. The rebound
velocity v2 is calculated as

v2 =
∑

i miui

M
, (17)

where mi and ui are the mass and velocity of the liquid in one computational element on the rebound,
respectively, and M is the total mass of the liquid. The Weber number is within the range of 1.1 <

We < 11.74, during which the droplet is kept intact and no breakup occurs. The simulation results
are plotted in Fig. 4(c). The simulation is performed with two droplet sizes (D0 = 2.0 and 2.5 mm)
and each size has the similar trend with We.

In the low range of We, the restitution coefficient increases with We. When the droplet impacts
on the solid surface, a boundary layer forms near the solid surface and the boundary layer thickness
δ is inversely proportional to

√
Re [31]. Thus, smaller velocity would lead to larger δ. The viscous

dissipation mainly occurs within the boundary layer. Since the viscous dissipation function φ

can be estimated as φ ∼ μ(V1
δ

)2, φ would be negligible for smaller impact velocity. The energy
conservation equation (before and after impact) could be simplified as E1

k + E1
s = E2

k + E2
s , where

Ek and Es are the kinetic and surface energy and the superscripts 1 and 2 represent the impact

and detach moment, respectively. This equation could be modified into E2
k

E1
k

= 1−E2
s −E1

s

E1
k

. In addition,

small We would result in slight surface area difference before and after impact and E2
s −E1

s could

be assumed constant. Thus, E2
k

E1
k

(=ε2) increases with E1
k (= 1

2 Mv2
1 ) for small We, which indicates

that ε increases with We within the low range of We. Within the moderate range of We, the viscous
dissipation energy dominates the surface energy and the restitution coefficient ε would decrease
with We. This decline agrees with the experiment results [10,11,35] that ε and We has the correlation
ε ∼ We−1/4. It is noted that in our simulation that the droplet size has an influence on the correlation
coefficient. Thus, it is reasonably assumed that the restitution coefficient may not only depend on
We but also some other parameters that include droplet diameter. This needs further study and is out
of the scope of the present study.

Note that the spurious interfacial currents commonly exist in two-phase simulation, especially
when the density ratio between the two phases is large. Herein, the spurious currents are discussed
in detail under the present occasion. Figure 5 plots the velocity magnitude |u| contour for the droplet
normal impact velocity of 0.3 m s−1. We focus on the upper right part of the droplet, which is circled
by the yellow square. At the time t = 0.4 and 1.4 ms, this part should be still undisturbed and
maintain the initial velocity of 0.3 m s−1. Thus, the occurrence of the spurious interfacial currents
can be easily detected in this part if |u| significantly deviates from 0.3 m s−1. Since the air and liquid
phases are continuous and there is no slip on the interface, the velocities of air and liquid phases
near the interface in the yellow square box should have the same value. However, the variation in the
velocity magnitude in this part does indicate that the spurious interfacial currents occur around the
interface and are distributed nonuniformly. Four particular points (P1 to P4) are marked in the regions
with the spurious interfacial currents in the right panel of Fig. 5(a). The corresponding velocity
magnitudes of these four points are denoted by U1, U2, U3, and U4, respectively. Note that these
four points are located in the air phase, with the values of U1 = 0.515 m s−1, U2 = 0.184 m s−1,
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FIG. 5. The snapshots of droplet normal impacting on a solid surface at (a) t = 0.4 ms and (b) t = 1.4 ms.
The yellow dashed square box in each left panel is enlarged in the corresponding right panel. The initial impact
velocity is 0.3 m s−1.

U3 = 0.598 m s−1, and U4 = 0.67 m s−1. For comparison, a point (P5) is also marked in the water
phase, with the corresponding velocity magnitude U5 = 0.3 m s−1. It demonstrates that the spurious
interfacial currents oscillate around 0.3 m s−1, with the overshoots U1, U3, U4, and the undershoot
U2. It can be concluded that the velocity of the spurious interfacial current is of the same order
of magnitude as the real one. Figure 5(b) plots the |u| contour at t = 1.4 ms. The point P6 in the
region with the spurious interfacial currents has the velocity magnitude of U6 = 0.69 m s−1, which
is also of the same order of magnitude as the initial impact velocity. It should be emphasized that the
spurious interfacial currents mainly exist in the air phase [24]. In addition, the gas density is much
smaller than the liquid one. These two features can minimize the adverse effects of the spurious
interfacial currents.

The above agreement between the simulation results and the experiments or theoretical predic-
tions confirms the validity of our numerical simulation for analyzing droplet obliquely impacting
on horizontal solid surface.

III. RESULTS

A. Droplet obliquely impacting on horizontal surface

In this section, droplet obliquely impacting on horizontal solid surface is simulated. The problem
has been described in Figs. 1(a) and 1(d). In the simulation, two sizes of droplet would be used,
D0 = 2.0 and 2.5 mm. vn

1 varies from 0.2 to 0.6 m s−1 and vt
1 from 0.1 to 0.5 m s−1, yielding the

range of We from 1.38 to 21.18, which is sufficiently small to keep the droplet intact. Figure 6
shows obliquely impacting process (vn

1 = 0.5 m s−1, vt
1 = 0.5 m s−1). Figure 6(a) is the side view

of the process. The arrows indicate the flow direction and the color represents the magnitude of
the velocity. It could be observed that the entire process also experiences an impact-spreading-
retraction-rebounding process. However, due to the presence of vt

1, the droplet would bounce
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FIG. 6. Exemplary time sequence of droplet obliquely impacting solid surface (vn
1 = 0.5 m s−1,

vt
1 = 0.5 m s−1). (a) Side view of the droplet motion. It can be observed that the droplet experiences an

impact-spreading-retraction-rebounding process and would bounce asymmetrically on the y-z plane due to
the presence of vt

1; (b) Top view of the droplet motion. The projection of droplet surface on the x-y plane is
noncircular and the trajectory of the droplet centroid is in the same plane (I-I) in the entire motion process.
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FIG. 7. Instantaneous isosurfaces with α = 0.5 for five cases. Case 1: vn
1 = 0.25 m s−1, vt

1 =
0.1 m s−1; case 2: vn

1 = 0.45 m s−1, vt
1 = 0.1 m s−1; case 3: vn

1 = 0.50 m s−1, vt
1 = 0.1 m s−1; case 4: vn

1 =
0.55 m s−1, vt

1 = 0.1 m s−1; case 5: vn
1 = 0.60 m s−1, vt

1 = 0.1 m s−1; an air cavity with cylinder shape is
formed in cases 2, 3, 4, and 5 and the air cavity would reach the solid surface only in cases 3, 4, and 5.

asymmetrically on the y-z plane. The asymmetry would influence the flow structure in ambient air
and the drop itself. For example, due to the relative motion between the droplet and air, air vortices
occur along the droplet surface (as labeled vortex 1, vortex 2, and vortex 3). These vortices are so
small that they have little influence on the droplet motion.

From the top view in Fig. 6(b), the projection of droplet surface on the x-y plane is not fully
circular while sliding on the surface due to the existence of vt

1. In addition, the droplet keeps
symmetrical on the x-z plane and vt

1 has a little influence on the x position of the droplet centroid.
Thus, the trajectory of the droplet centroid is in the same plane (I-I) in the entire motion process.

Figure 7 plots the translucent isosurfaces with α = 0.5 for five cases with the corresponding vn
1

of 0.25, 0.45, 0.50, 0.55, and 0.60 ms–1, respectively. vt
1 is fixed at 0.1 ms–1 for all five cases. It

is observed that a capillary wave generates at the bottom of the droplet when the droplet initially
contacts the solid surface. This wave would propagate along the droplet surface and deform the
droplet into conical shape. As the droplet continues spreading, the wave would travel to the droplet
surface center and form a cylindrical air cavity if the magnitude of impact velocity vn

1 is sufficiently
large (e.g., cases 2, 3, 4, and 5) [34–37]. As vn

1 increases, the air cavity would reach the solid surface
(e.g., cases 3, 4, and 5) and the contact area between the droplet and the solid surface reduces. In
the retraction stage, the air cavity would also shrink. The top of the cavity would retract faster than
the bottom because the bottom of the cavity would be retarded by the viscous force near the surface.
Due to the faster recoil rate and the narrower diameter at the middle part of the cavity, a pinch-off
would occur at this position. As a result, the pinch-off would leave a bubble entrapped on the solid
surface and a liquid jet emitted upward. In the later stage of the rebounding, the bubble would be
released into the air.

Due to the noncircular contact area, the diameter is not appropriate to reflect the interaction
between the droplet and the solid surface. Thus, temporal variation of spreading area (S) is inves-
tigated. Figure 8 demonstrates the relationship between the normalized spreading area S∗ = S/S0

(S0 is the surface of the initial droplet) and the normalized time t∗ = t/tc. In Fig. 8(a), vt
1 and

the droplet diameter are kept fixed (vt
1 = 0.1 m s−1, D0 = 2.0 mm), and vn

1 varies from 0.35 to
0.60 m s−1. It could be figured out that the t∗ ∼ S∗ curve is different with vt

1. In the spreading
phase, S∗ grows with t∗ and the cases with larger vn

1 have higher growth rates. Similarly, when
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FIG. 8. Temporal variation of normalized droplet spreading area S∗. (a) vt
1 and droplet diameter is fixed. vn

1

varies from 0.35 to 0.60 m s−1. In the spreading phase, S∗ grows and the rate increases with vn
1 . Instead, in the

retraction phase, S∗ declines faster with larger vn
1 ; (b) vn

1 is 0.60 m s−1. For the same droplet size, S∗ has similar
behavior over the normalized time t∗, irrespective of vt

1. The inset shows that there is a spike on the t∗ ∼ S∗

curve, which is due to the disappearance of the air cavity.

the droplet begins retracting, S∗ starts falling and the cases with larger vn
1 fall faster. This faster

decline could be attributed to the occurrence of the cylindrical air cavity, which emerges for larger
vn

1 . Figure 8(b) plots the temporal variation of the normalized droplet spreading area S∗ for the cases
with the same vn

1 but different vt
1. The results indicate that the cases with the same droplet size have

a similar t∗ ∼ S∗ relationship, irrespective of vt
1. Thus, it could be concluded that vn

1 is the main
factor that influences the temporal variation of spreading area during the oblique impact process for
the droplet of the same size.

It is noticed that there is a spike on the t∗ ∼ S∗ curve as indicated by the zoomed-in area in
Fig. 8(b). Therefore, the spreading area would experience an increasing period in the retraction
phase, which is due to the disappearance of the air cavity shown in Fig. 7. Figure 9 plots the velocity
fields and phase distributions when the droplet is about to leave the surface. In the later stage,
the left part of the droplet would firstly detach from the surface, as indicated by the red arrow in
Fig. 9(a). The air would be expelled out from the bottom of the droplet surface due to the inertial
force imposed by the adjacent liquid phase, which is marked in the yellow circle in Figs. 9(a) and
9(b). Thus, the part of the droplet separated by the air would contact the solid surface, which enlarges
the spreading area.

Another interesting observation is the temporal variation of the tangential part of the mass center
velocity vt . Figure 10 plots the normalized tangential velocity (v∗

t = vt/v
t
1) versus the normalized

time (t∗ = t/tc). It is found that v∗
t decreases linearly with t∗. It is noted that the slope k is equal

to (atc)/vt
1, where a is the effective acceleration when the droplet moves on the solid surface.

Figure 10(a) plots the cases with a constant vt
1. It could be observed that the normalized tangential

velocity of the same droplet diameter lies on the same fitting line (fitting line 1 and fitting line 2).
The slope is −0.285 and −0.312, respectively. Figure 10(b) plots the t∗ ∼ vt

∗ curves for the cases
with the same vn

1 for each droplet size, which shows that the rate of decline is slightly different
for each vt

1 and the average slope of the fitting lines is about −0.285. The mechanism behind this
phenomenon involves the interplay between the interfacial deformation of the impacting droplet and
the forces acting on the droplet, which will be analyzed qualitatively in Sec. III B.

B. Restitution coefficient

From the energy standpoint, the droplet impacting and rebounding are characterized by the
exchange of kinetic and surface energy. In this process, some energy would be consumed by the
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FIG. 9. The later stage for the droplet detaching from the solid surface. It could be observed that the
left part of the droplet leaves the solid surface firstly and the air would be expelled out from the bottom of
the droplet surface due to the inertial force imposed by the adjacent liquid phase. (a) t∗ = 0.74 ms; (b) t∗ =
0.76 ms; (c) t∗ = 0.78 ms; and (d) t∗ = 0.80 ms.

viscous losses or transferred into modes of vibration in the rebounded droplet. Due to the net loss
in energy, the velocity of the rebounded droplet (v2) is always less than its initial velocity (v1).
Thus, the restitution coefficient, defined as the ratio of v2 and v1, is always used to represent the loss

FIG. 10. Temporal variation of vt . The solid symbols represent the cases with D0 = 2.0 mm and the hollow
ones represent the cases with D0 = 2.5 mm. The dashed lines are the fitting lines. (a) vt

1 is kept constant at
0.1 m s−1, and vn

1 and the droplet size are varied; (b) for each droplet size, vn
1 is kept constant at 0.6 m s−1 and

vt
1 is varied.
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FIG. 11. Droplets obliquely impact on the horizontal solid surface. The solid symbols represent the cases
with D0 = 2.0 mm and the hollow ones represent D0 = 2.5 mm. (a) Wen ∼ εn relationship. The star represents
the normal impact and other symbols represent the obliquely impacting with different impact angle θ1.
(b) Wen ∼ ‘εt relationship. εt scatters around 0.68 for all cases.

of energy. For convenience and clearness, two restitution coefficients are defined in this study, the
normal restitution coefficient εn and the tangential restitution coefficient εt :

εn = vn
2/v

n
1 , εt = vt

2/v
t
1, (18)

where vn
1 and vt

1 are the normal and tangential components of the impact velocity, and vn
2 and vt

2
are the normal and tangential components of the rebound velocity, as shown in Fig. 1(b).

1. Normal restitution coefficient

Similar to the normal droplet impact, the relation between Wen and εn is plotted in Fig. 11(a).
The star indicates droplet normal impacting on solid surface. The solid symbols represent the cases
with D0 = 2.0 mm and the hollow ones represent the cases with D0 = 2.5 mm. Depending on the
impacting angle, all simulation cases could be categorized into five groups and every group has an
interval of 15°. It could be observed that in the low range of Wen, εn increases with Wen, like that in
the droplet normal impact. For moderate Wen, εn decreases and the relationship εn ∼ Wen

−1/4 still
works approximately for each interval. Regarding the cases with the same Wen, εn declines with the
impacting angle θ1, as shown in the cases encircled by the red box in Fig. 11(a). It is noted that
vt

1 increases with the impact angle θ1. Thus, it could be inferred that vt
1 would change the energy

transfer among the kinetic energy, surface energy, and viscosity dissipation energy, which will be
analyzed in Sec. III C.

2. Tangential restitution coefficient

The relationship between εt and Wen is plotted in Fig. 11(b). It is observed that εt scatters around
0.68. In fact, this value is related to the slope of the t∗ ∼ v∗

t curve in Sec. III B. Accordingly, in
the period that the droplet is contact with the solid surface, the tangential velocity decreases linearly
with the time:

vt
1 − vt

2

tc
= a, (19)

where a is the effective acceleration. According to the definition of tangential restitution coefficient,
Eq. (19) could be modified into

εt = 1 + atc
vt

1

= 1 + k, (20)
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where k is exactly the slope of the t∗ ∼ v∗
t curve. The average of k is about −0.285 and conse-

quently εt approximates 0.715, which agrees well with the above observation.
The variation of tangential coefficient with Wen could also be qualitatively analyzed from a

dynamical view. Considering a droplet with constant size and a small Re, the shear force and
the tangential velocity follow the relationship Fs ∼ vt [38] in the whole sliding process. Thus,
the average shear force could be expressed as

−→
Fs = k−→vt , where k is assumed to be a constant

coefficient. In addition, the tangential component of the velocity vt is assumed to be linear within
the contact period. With this assumption,

−→
Fs could be modified as

�Fs = k

(
vt

1 + vt
2

2

)
. (21)

By applying the impulse theorem
−→
Fs �t = M(vt

1 − vt
2 ), where �t equals contact time tc and has

nothing to do with the velocity, and M is the droplet mass, Eq. (21) can be rewritten as

εt = vt
2

vt
1

= M/tc − k/2

M/tc+k/2
. (22)

Equation (22) indicates that the tangential restitution coefficient only depends on M, tc, and k,
which are assumed to be constant for the same droplet size. Thus, for the droplet with the constant
size, εt would be fixed irrespective of the initial velocity.

3. Relation of θ1 ∼ θ2

The reflection of droplet could enable versatile droplet manipulation, e.g., trapping, shedding,
and on-demand coalescence of droplets [19]. This manipulation demands a better understanding
of the traits of droplet reflection. Droplet reflection is analogous to light reflection, which obeys
the reflection law. In this part, we examine whether droplet reflection within the present parameter
range satisfies the laws [19]: (i) the incident droplet, the reflected droplet, and the surface normal
lie in the same plane, (ii) the incident angle θ1 is equal to the reflected (rebound) angle θ2, and
(iii) the reflected droplet and the incident droplet are on the opposite sides of the normal. The first
and the third laws are satisfied according to the observation in Sec. III A. However, during oblique
impact, the droplet reflection would deviate from specular reflection because the tangential velocity
of the droplet is decelerated when the drop is sliding on the solid surface. The detailed relationship
between θ1 ∼ θ2 is investigated in this section.

Based on the definition of restitution coefficients and Fig. 1(b), the relationship θ1 ∼ θ2 is written
as

θ2 = arctan

(
vt

2

vn
2

)
= arctan

(
εt

εn
· vt

1

vn
2

)
= arctan

(
εt

εn
· tan(θ1)

)
(23)

Equation (23) shows that the θ1 ∼ θ2 relationship is dependent on the ratio of εt and εn.
When the ratio is larger than unity, the rebound angle is larger than the impact angle and vice
versa. For convenience, Figure 12 plots the θ1 ∼ θ2 relation at different normal impact velocities
with D0 = 2.0 mm. The black arrow indicates the direction along which Wen increases. The black
dashed-dotted line is a reference line with the slope equal to unity. It could be observed that θ2 is
approximately linear with θ1 and the slope depends on Wen. To clarify the impact of Wen on the
slope of θ1 ∼ θ2 curve, the relation is split into two figures, Figs. 12(a) and 12(b). In Fig. 12(a),
Wen is within the range of 1.1 ∼ 2.5, where the slope decreases with Wen. In Fig. 12(b), Wen is
within the range of 2.5 ∼ 11.74 and the slope increases with Wen.

Equation (23) implies that the εt ∼ Wen and εn ∼ Wen relationships are the main factors behind
the above opposite trend. These two relationships have been analyzed in Secs. II D and III B 2.
εt scatters around a constant value for all considered Wen because the shear force is linearly
proportional to the tangential velocity for small Re. εn increases with Wen within the low range
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FIG. 12. Relationship between θ2 and θ1. (a) The range of Wen is 1.1 ∼ 2.5. The slope of θ1 ∼ θ2 curve
declines with Wen. (b) The range of Wen is 2.5 ∼ 11.74. The slope of θ1 ∼ θ2 curve increases with Wen. The
black arrow indicates the direction along which Wen increases. The dashed-dotted line is a reference line with
the slope equal to unity.

of Wen owing to the small amount of viscous dissipation. As a result, the ratio εt/εn decreases with
Wen within the low range of Wen. Within the moderate range of Wen, εn declines due to larger
viscous dissipation and the ratio εt/εn increases with Wen. This opposite trend between εt/εn and
Wen has an impact on the slope of θ1 ∼ θ2 according to Eq. (23). As a result, between Wen = 1.1
and 2.5 the behavior converges towards specular reflection while above Wen = 2.5 the trend is
inverse. This opposite trend results from the competition between the shear stress induced by the
tangential velocity vt

1 and the viscous force developed in the boundary layer during the droplet
spreading and retracting processes.

Figure 11 demonstrates that within the considered range of Wen, the tangential restitution
coefficient εt is larger than the normal restitution coefficient εn. Thus, the ratio between εt and
εn is larger than unity. With Eq. (23), it could be inferred that θ2 is larger than θ1, which is expected
in Figs. 12(a) and 12(b). It concludes that the second droplet reflection law is violated. However,
this violation could offer the opportunity to navigate the droplet even more freely [19].

C. Energy analysis

In this section, the influences of vt
1 on the temporal variation of surface energy (SE), kinetic

energy (KE), and viscous dissipation energy (VDE) is investigated. The gravity potential energy is
negligible due to the small size of the droplet. KE is calculated as

∮
0.5ρlv

2d� and SE is equal
to σS, where � is the droplet volume and S is the liquid interface area. The energy by viscous
dissipation is defined as

VDE =
∫ t

0

∫ �

0
φd�dt, (24)

where φ is the viscous dissipation function and calculated as

φ = μ

[
2

(
∂ux

∂x

)2

+2

(
∂uy

∂y

)2

+2

(
∂uz

∂z

)2

+
(

∂ux

∂y
+ ∂uy

∂x

)2

+
(

∂uy

∂z
+ ∂uz

∂y

)2

+
(

∂uz

∂x
+ ∂ux

∂z

)2]
,

(25)

where ux, uy, and uz are the x, y, and z components of the liquid velocity u, respectively.
Figure 13(a) plots the time evolution of the normalized kinetic energy [KE∗ = KE/KE0, where

KE0 is equal to
∮

0.5ρl (vn
1 )2d�], the normalized surface energy (SE∗ = SE/SE0, where SE0 is
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FIG. 13. Time evolution of (a) the normalized kinetic energy, (b) the normalized surface energy, and (c)
viscous dissipation function within the droplet during the period that the droplet is contact with the solid
surface. (d) the y component of the liquid velocity along the central line of the droplet at t∗ = 0.3. The droplet
initial diameter D0 is 2.0 mm.

the initial droplet surface energy and calculated as the initial droplet surface area times the surface
tension coefficient), and the viscous dissipation function integrated within the droplet. The droplet
initial diameter D0 equals 2.0 mm. In the early stage (t∗ = 0 ∼ 0.1), due to the sudden velocity
change of the droplet in the surface vicinity, the viscous dissipation function rises rapidly, which
results in the decline of KE∗ and SE∗. With the spreading of the droplet, KE∗ continues to decrease
and the reduction energy transfers into SE∗ and VDE. It is also figured out that at the same moment
(t∗ = 0.4), all the cases reach the maximum spreading area. After spreading, the retraction occurs
and it would return part of SE∗ into KE∗ and consequently cause the rise of KE∗ (t∗ = 0.4 ∼ 0.6).
During the time t∗ = 0.6 ∼ 1.0, KE∗ would keep decreasing due to the growth of SE∗ and the
energy dissipated by the viscosity. In this period, it is noted that there are valleys on the t∗ ∼ SE∗
curves as shown in Fig. 13(b). It is partially contributed to the disappearance of the air cavity, as
explained in Sec. III A. When the air cavity disappears, a small part of the air-water interface would
contact the solid surface, which induces the decline of droplet surface area and SE∗.

In Fig. 13(c), it could be observed that larger vt
1 would intensify the viscous dissipation function

at the spreading stage. This conclusion could be solidified by Fig. 13(d), which plots the y compo-
nent of liquid velocity (uy) in the droplet along the central line at t∗ = 0.3. It could be observed that
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FIG. 14. The streamlines (left) and velocity field (right) for the oblique impact case (vn
1 = 0.5 m s−1, vt

1 =
0.1 m s−1) at different instantaneous time: (a) t∗ = 0.32, (b) t∗ = 0.36, (c) t∗ = 0.4, (d) t∗ = 0.42, (e) t∗ =
0.48, and (f) t∗ = 0.5.

near the solid surface the ratio �uy/�h grows with vt
1. According to Eq. (23), this growth would

intensify the viscous dissipation function and consequently more kinetic energy could be dissipated
by viscous force. Thus, it could explain the observation in Sec. III B 1 that for the same vn

1 , larger vt
1

would cause more VDE and consequently smaller vn
2 , which results in the smaller normal restitution

coefficient.
To further examine the temporal change of the viscous dissipation, Fig. 14 plots the streamlines

(left part) and the velocity field (right part) at different instantaneous times for the oblique impact
case with vn

1 = 0.5 m s−1 and vt
1 = 0.1 m s−1. It could be observed that the vortex flow exists due

to the competition between the surface tension force and the inertial force. At the spreading stage,
the flow would spread radially due to the inertial force. However, the surface tension force, which
has the tendency to minimize the surface area, would inhibit the flow. Afterwards, a vortex would
develop beneath the upper surface of the droplet and build up until the droplet reaches the maximum
spreading area (around t∗ = 0.4). In the spreading stage, the cylindrical air cavity is formed and the
vortex exists just beneath the upper surface of the droplet. When the cylindrical air cavity becomes
pronounced (t∗ = 0.36, 0.4, and 0.42), the vortex would move with the flow and along the surface
from the droplet periphery to the center and eventually be trapped near the bottom surface. In the
above process, flow circulation always exists within the droplet, which accounts for all above-zero
viscous dissipation function values and the plateau between t∗ = 0.2 ∼ 0.6 in Fig. 13(c).

IV. CONCLUDING REMARKS

Obliquely impacting of the droplet on horizontal flat solid surface is investigated numerically
with interFoam solver in this study. The impact velocity is varied, both its direction and magnitude,
to study its influence on droplet spreading area and the restitution coefficients.

By analyzing the relationship t∗ ∼ S∗, it is observed that the normal velocity is the main factor
that influences the spreading area, irrespective of the tangential velocity and the droplet size.
Another observation about droplet kinetics is that the relationship t∗ ∼ v∗

t is linear and the slope
is slightly different for all cases.
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The restitution coefficient is decomposed into the normal restitution coefficient εn and the
tangential restitution coefficient εt . Within the same impact angle interval, εn grows with small
Wen and the general scaling relationship of εn ∼ Wen

−1/4 holds in the moderate range of Wen. For
the same vn

1 , larger vt
1 leads to higher viscous dissipation and more kinetic energy is transferred into

internal energy. Therefore, for the same vn
1 , larger vt

1 results in smaller εn. Within the range of Wen

investigated in the present study, it is also found that εt changes slightly and varies around 0.68 in
all cases, independent of Wen and θ1. This phenomenon is analyzed from kinetic and dynamic view
and is related to the slope of t∗ ∼ v∗

t relationship.
The relation of θ1 ∼ θ2 is also analyzed. For the same Wen, θ2 is linear with θ1. Due to the

different monotonicity of εt and εn, the influences of Wen on the slope of the θ1 ∼ θ2 curve could
be divided into two ranges. Over the low range of Wen, the slope decreases with Wen. Over the
moderate range of Wen, the slope grows with Wen. In addition, because the ratio between εt and εn

is larger than unity, θ2 is always larger than θ1.
In the energy analysis of droplet obliquely impacting, it is found that near the solid surface the

ratio �uy/�h grows with vt
1. This growth intensifies viscous dissipation function and consequently

more kinetic energy could be dissipated by viscous force. This explains the observation that for the
same vn

1 , larger vt
1 results in smaller εn.
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