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Chiral pattern in nonrotating spherical convection
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When the Rayleigh number is low, Rayleigh-Bénard convection in a nonrotating spheri-
cal shell with central gravity has symmetric solutions in terms of three-dimensional discrete
rotation. All the known patterns with the regular polyhedral symmetries accompany reflec-
tion symmetry. We found an alternative type of steady convection in a nonrotating spherical
shell by computer simulations. The pattern has the discrete rotational symmetry of a regular
tetrahedron with no reflection symmetry. The convection consists of six pairs of spiral rolls
placed on 12 faces of a spherical dodecahedron. Depending on the winding of the spirals,
there are two possible configurations that are mirror images of one another.
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I. INTRODUCTION

Rayleigh-Bénard convection in a nonrotating spherical layer [1–3] provides a venue of pattern
formation that is finite but free of borders. In order to classify the spherical patterns, here we refer to
the five finite subgroups of SO(3) [4] as the cyclic group (C), the dihedral group (D), the tetrahedral
group (T ), the octahedral group (O), and the icosahedral group (I). Among them, we are interested
in the regular polyhedral groups, T , O, and I . Solutions are known for all of them: T [5,6], O [3,6–
8], and I [3,9].

The pattern formation on spherical surfaces in general as a bifurcation problem has been studied
in detail [10]. Expanding a physical variable on the surface by the spherical harmonics of degree �,
Y m

� , for −� � m � �, the problem is described by a system of equations of the order of 2� + 1. The
degree of freedom of the system, D(�), is uniquely determined for each subgroup of the assumed
symmetry by the trace formula [11]. When D(�) = 1, an equivariant bifurcation lemma [12] tells
that there exists a unique equilibrium solution branch. Branches and their stabilities for even � up to
12, including D(�) � 2 cases, are investigated by Matthews [10].

In this paper, we focus on the reflection symmetry, another symmetry of a nonrotating sphere. In
theoretical models dealing with spherical pattern formation based on the reaction-diffusion equation,
chiral solutions naturally appear as spiral patterns on spheres [13–16]. Also in the spherical shell
convection system, a chiral solution with spiral pattern has been found [17,18]. This solution is a
single-arm spiral in which a long roll covers the entire spherical shell with both ends on antipodal
points. It can be right- or left-handed winding. The solution has dihedral symmetry D; that is, it is
symmetric when flipped around an axis perpendicular to the diameter through the antipodal points
[13]. In the planar convection system, multiple spiral patterns, called spiral defect chaos [19–21],
are known to appear, but they are not chiral because the numbers of opposite windings are the same
when no rotation is externally applied [22].
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We report in this paper a class of steady, chiral, and symmetric solutions in a nonrotating spherical
shell. It has the discrete rotational symmetry of group T .

II. BASIC EQUATIONS AND METHOD

We numerically integrated the time development of the fluid equation until we obtained steady
solutions. This approach was challenging in terms of both computation and visualization, because
multiple simulation jobs with different parameters, each requiring sufficiently long integration in a
diffusion timescale, have to be executed.

We assumed that an ideal gas is confined in a spherical shell layer between inner and outer
spheres of radii ri and ro, respectively. We normalized the length by ro = 1.0 and set ri = 0.945.
The shell depth was d = ro − ri = 0.055.

We used the mass density ρ, the mass flux density f , and the pressure p as basic variables and the
flow velocity v = f /ρ and the normalized temperature T = p/ρ as subsidiary variables. We solved
the time development of the variables by using the following equations:

∂ρ

∂t
= −∇ · f , (1)

∂ f
∂t

= −∇ · (v f ) − ∇p − ρg + μ{∇2v + (1/3)∇(∇ · v)}, (2)

∂ p

∂t
= −v · ∇p − γ p∇ · v + (γ − 1)κ∇2T + (γ − 1)�, (3)

where μ and κ are dynamic viscosity and thermal diffusivity, and we assume μ = κ . � is the
dissipation function; � = 2μ{tr(εε) − (1/3)tr(ε)2}, with ε being the strain-rate tensor. Ignoring the
self-gravity of the fluid, the gravity acceleration is given by g = Gr̂/r2, where r̂ is the unit vector in
the radial direction and G is a constant. The specific heat ratio was γ = 5/3.

We used rigid boundary conditions for velocity, v = 0, and fixed temperature conditions on
r = ri and ro. The initial temperature profile T0(r), the pressure p0(r), and the density ρ0(r) were
spherically symmetric hydrostatic equilibrium states with thermal conduction. The initial velocity
was v0 = 0. We normalized the thermodynamic variables in terms of their values on r = ro(= 1),
that is, T0(ro) = p0(ro) = ρ0(ro) = 1.0. The initial state was given as T0(r) = β/r + 1 − β, p0(r) =
T n

0 , and ρ0(r) = T n−1
0 . Here, β was set such that T0(ri ) = 1.05; further, n = 1.25 and G = nβ. In the

simulations, the Mach number of the flow was at most 3.7 × 10−3. The density stratification was also
small, being ρ(ri ) ∼ 1.012. Time was normalized by the diffusion timescale τd = d2/μ = d2/κ .

The Rayleigh number of an ideal gas depends on the radius [23] as

Ra = g{−(dT/dr)/T − g/cpT }d4

(κ/cpρ)(μ/ρ)
= nβ2(cp − n)d4

κμ
f (r). (4)

where cp = γ /(γ − 1) is the specific heat. The radial factor f (r) = T (r)2n−3/r4 does not change
greatly in the shell; f (ro) = 1 and f (ri ) ∼ 1.224. Below, we estimate Ra at the middle of the shell
[24] at r̄ = (ro + ri )/2 and denote it as R̄.

We discretized the right-hand sides of Eqs. (1)–(3) using a second-order finite difference method
on a Yin-Yang grid [25]. The total grid size was Nr × Nϑ × Nϕ × 2 = 60 × 404 × 1208 × 2 in the
radial (r), colatitudinal (ϑ), and longitudinal (ϕ) directions. The last factor 2 was for the Yin and
Yang components. For numerical integration over time, we used a fourth-order explicit Runge-Kutta
method.

We used VISMO-YY [26] to generate in situ visualization images of the isosurfaces of radial veloc-
ity, that is, vr (r, ϑ, ϕ) = ±α, where α is constant. VISMO-YY is a parallelized open-source software
rendering library that is specialized for the in situ visualization of Yin-Yang grid simulations [27].
The level of the isosurface α was set to half the maximum radial velocity, α = 0.5 × max{|vr|}, at
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each snapshot. The rising fluid (vr = +α) and sinking fluid (vr = −α) are respectively colored in
orange and blue in the following images.

To apply the idea of four-dimensional street view (4DSV) [28], that is, in situ visualization with
multiple viewpoints, we placed ten visualization cameras, C1,C2, . . . ,C10, around the spherical
shell. The distance from the origin to the cameras was r = 2.6. Cameras Ck (1 � k � 8) were
placed on the “equator,” that is, at ϑ = π/2 and ϕ = (k − 1)π/4. Cameras C9 and C10 were located
above the north and south poles, that is, at ϑ = 0 and π , respectively.

III. CRITICAL RAYLEIGH NUMBER

A standard approach to spherical pattern formation is the stability analysis for each degree � of
the spherical harmonics Y m

� . Zhang et al. [17] performed linear computations for convection in a thin
spherical shell with radii ratio ri/ro ∼ 0.8475 and found that the critical Rayleigh numbers Rc for
� = 17, 18, 19, and 20 are 1723.5, 1710.7, 1712.4, and 1727.1, respectively. The Rc values are very
close to each other. Because the spherical shell in our study (ri/ro = 0.945) is thinner than theirs,
there would be more modes (having larger degree �) with close Rc values. The mixed existence of
multiple unstable modes with large � values means that it is highly demanding to investigate the
nature of the bifurcation for the onset of convection in our thin spherical shell. In addition to that,
our numerical method, which is a point-based spatial discretization rather than the commonly used
spectral method using spherical harmonics, makes the numerical stability analysis hard for each
degree �.

To find the critical Rayleigh number of this system, we performed parameter runs with different
Rayleigh numbers R̄ under random perturbations on the pressure under the initial condition as
follows:

p(r, ϑ, ϕ) = p0(r) + c p1(ϑ, ϕ) sin {π (r − ri )/d}, (5)

where c is a small positive number. The perturbation profile p1 is a linear combination of spherical
harmonics:

p1(ϑ, ϕ) =
Lmax∑

�=1

�∑

m=0

δm
� P̂m

� (ϑ, ϕ) cos
(
mϕ + dm

�

)
, (6)

where Lmax = 202, P̂m
� is the normalized Legendre function, δm

� is a binary coefficient (δm
� = 0 or

1), and dm
� is a random phase between 0 and 2π . We randomly selected 5% of all possible (�, m)

pairs and set δm
� = 1 for them and δm

� = 0 for the others. The constant c in Eq. (5) was specified
after these random pickups so that the maximum amplitude of the resulting perturbation all over the
shell, that is, max{|c p1(ϑ, ϕ)|}, was 1.0 × 10−3.

When we changed R̄, we fixed β and other constants in the numerator of the last term in Eq. (4).
In other words, we changed only the diffusivities μ(= κ ) in these parameter runs.

We performed several jobs to find the critical R̄; Fig. 1 shows two decisive runs among these. In
this figure, the horizontal axis represents the simulation time normalized by the diffusion time τd,
and the vertical axis represents the total energy of the convection flow. We first focus on the case
of R̄ = 1712 (blue dotted line). The flow initiated by the random perturbation decays or the fluid is
stable. By contrast, in the case of R̄ = 1723 (green dashed line), the energy increases exponentially
with time. These observations indicate that the critical Rayleigh number R̄c is between these two
values. Here, we assume that it is the midpoint, that is, R̄c = (1712 + 1723)/2 = 1717.5, which is
close to the value of 1708 for convection in horizontal planes [29]. It is known that R̄c in spherical
thin shells becomes slightly larger than that in the plane layer convection [17].

Figure 2 shows snapshots of convection when R̄ = 1.29R̄c started from the random initial
condition used to determine the critical Rayleigh number. The random cellular pattern observed
in the very early stage in Figs. 2(a) and 2(b) is replaced by a set of unsteady rolls as shown in
Figs. 2(c) to 2(f). It resembles the onset of spiral defect chaos in the plane layer convection at a
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FIG. 1. Time developments of convection flow energy for three different Rayleigh numbers R̄. Time was
normalized by the diffusion time τd. The dotted blue curve (R̄ = 1712) and dashed green curve (R̄ = 1723)
show simulation results obtained starting from random perturbations. We assumed that the critical Rayleigh
number R̄c was the midpoint of the two R̄ values. The solid magenta curve (R̄ = 2209 = 1.29R̄c) shows the
simulation result obtained starting from a controlled initial condition.

small Prandtl number [19–21]. The pattern is constantly moving and there is no sign of settling
down to a steady state.

IV. INITIAL CONDITION

For the numerical demonstration of steady chiral convection, we adopted the controlled initial
condition method in convection experiments [30,31]. Our strategy was to specify a perturbation in
the initial condition with chirality and find if it led to a steady solution without breaking the chirality.

For the initial condition, we constructed 12 Archimedean spirals with the same winding [blue
curves in Fig. 3(a)] on a regular dodecahedron [red lines in Fig. 3(a)]. Next, we selected six adjacent

FIG. 2. Time development of convection for R̄ = 1.29R̄c when the initial condition is random. Time is
presented on the diffusion timescale τd in the upper-right corner of each panel. From panels (d) to (f), the
pattern slowly changes in time.
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FIG. 3. Design of initial condition with chirality. (a) Six pairs of Archimedean spirals (blue) were placed
on 12 faces of a regular dodecahedron (red). (b) Discrete rotational symmetry of the T (tetrahedral) group,
with four threefold rotations indicated by light blue triangles and three twofold rotations indicated by light
blue ellipses.

pairs from the 12 faces of the dodecahedron and smoothly connected two spirals on each pentagon
together. We called a pair of connected spirals a dipole [22].

Among the various possible combinations of the six pairs of pentagonal faces, we selected the
special one shown in Fig. 3(a) that has a discrete rotational symmetry. A dodecahedron can be
constructed by adding a “roof” to each face of a cube [32]. The rotational symmetry of the dipoles
is much easier to understand if we observe the underlying cube with a spiral texture, as shown in
Fig. 3(b).

The rotational symmetries of a plain cube partially disappear owing to the spiral texture. The
remaining rotational symmetries of the texture shown in Fig. 3(b) are four threefold rotations with
axes about the cube’s diagonal [indicated by light blue triangles in Fig. 3(b)] and three twofold
rotations about axes perpendicular to square faces [indicated by light blue ellipses in Fig. 3(b)]. The
dodecahedron with the spiral texture has the discrete rotational symmetry of the tetrahedral group
T [32].

We took the above T -symmetric dipole curves as the skeleton of a pressure perturbation p1(ϑ, ϕ)
in Eq. (5). We first mapped the dipole curves on the regular dodecahedron onto a unit sphere, and
for each point (ϑ, ϕ) on the sphere, we found the distance δ to the closest dipole curve on the sphere
from the point. We then specified the perturbation p1(ϑ, ϕ) in terms of a Gaussian function of δ.
A free parameter in the configuration of the skeleton was the winding number n of each spiral in a
pentagon. Figure 4 shows the p1 profile when n = 5, which was used in all simulations described
below. Depending on the winding of the spirals, there are two possible configurations that are mirror
images of one another. A set of programs to calculate p1(ϑ, ϕ) and to draw Fig. 4 is available at

FIG. 4. Pressure perturbation profile p1(ϑ, ϕ) used in the controlled initial condition in this study.
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FIG. 5. Time development of convection when R̄ = 1.29R̄c. Time is presented on the diffusion timescale
τd in the upper-right corner of each panel. The convection reached the steady state by t = 67.8 τd. No shift or
rotation of spiral arms was observed. Panels (a) to (i) show the convection started by the pressure perturbation
shown in Fig. 4. Panel (j) shows a snapshot of another simulation started by the mirrored perturbation of Fig. 4.

GitHub [33]. As in the case of random perturbations, the constant c in Eq. (5) was adjusted so that
max{|c p1(ϑ, ϕ)|} = 1.0 × 10−3.

V. CHIRAL PATTERN CONVECTION

We first present the simulation results for R̄ = 1.29R̄c. The chiral profile similar to the initial
perturbation appeared in the convection flow, which becomes steady. Figure 5 shows a sequence
of snapshots taken by camera C1 from t = 0.136 τd to t = 203.3 τd. The viewing direction of C1

is shown by the arrow in the diagrams in the upper-left corner, in which the red, green, and blue
lines denote x, y, and z axes, respectively, and the yellow solid below the gray sphere represents the
configuration of the regular dodecahedron used in the pressure perturbation.

The convection appeared according to the initial stripe pattern of the pressure perturbation as
shown in Fig. 5(a) at t = 0.136 τd. Each pentagon’s spiral slowly rotated around its axis. In the
initial phase, a more notable change was observed at the five corners around each pentagon, which
correspond to the vertices of the original regular dodecahedron. The flow was initially absent at
the corner regions before they were gradually filled with convection. The filling pattern in each
corner seemed to have threefold rotational symmetry in the early stage, as indicated by the three
short blue bars around the small red point in Fig. 5(d). The threefold rotational symmetry is still
observed in Fig. 5(e) (t = 2.71 τd), following which the corner slowly loses its threefold symmetry
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FIG. 6. Dodecahedral convection pattern with discrete rotational symmetry of T for R̄ = 1.29R̄c. Isosur-
faces of positive vr were visualized using six different in situ visualization cameras. The viewing direction
from each camera is indicated by arrows in the lower right corner of each panel.

[see Fig. 5(f), t = 13.6 τd]. The convection reached almost the final pattern by t = 13.6 τd, although
a slight adjustment of the whole pattern was still observed.

Figures 5(g)–5(i) show the convection in the last two-thirds of the simulation time. The three
panels appear identical, which is true in views from other cameras. This indicates that the convection
had reached a steady state. No rotation of the arms was observed, unlike the global or local spirals
in the case of planar convections [34,35]. The same was true of other steady solutions with different
R̄, as described below.

The 12 spirals in the steady state had the same winding direction as the initial pattern of the
pressure perturbation. We can expect that mirrored pattern with the opposite winding is also stable.
We confirmed this by performing a simulation with the initial condition of pressure perturbation
that is the mirror image of Fig. 4. The time development and the final steady state of the convection
were the same, except that they had the opposite winding. A snapshot in the final steady state is
shown in Fig. 5(j) in the lower-left corner of the figure. The two final states shown in Fig. 5(j) and
in Fig. 5(g) [or Figs. 5(h) and 5(i)] are mirror images of one another.

Figure 6 shows the isosurfaces of positive vr in the steady state when R̄ = 1.29R̄c. Snapshots
for in situ visualization were taken at the same time (t = 203.3 τd) from six different visualization
cameras: C1–C4 for Figs. 6(a)–6(d) and C9 and C10 for Figs. 6(e) and 6(f). The viewing direction of
each camera is indicated by the arrow in the lower right in each panel. The spirals were located on
the faces of a spherical dodecahedron, and the whole pattern kept rotational T symmetry with the
chirality of the initial perturbation.

Starting from the same p1 perturbation, we also performed simulations with different R̄ values.
The results are summarized in the upper part of Fig. 7. Black circles (a and f) correspond to unsteady
convection, while white circles (b to e) correspond to steady convection. The steady solutions span
a range of Rayleigh numbers, 1.29R̄c � R̄ � 3.86R̄c. They have basically the same pattern, with
slight variations in the pentagonal corners.

The lower six panels in Fig. 7 show convection patterns for different R̄. All panels except Fig. 7(f)
show snapshots taken at t = 113 τd.

We first examine Fig. 7(a) for R̄ = 1.09R̄c. The T -symmetric spirals on the regular dodecahedron,
similar to the case of R̄ = 1.29R̄c, grew initially but were just barely unstable. Ripplelike modes
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FIG. 7. Black or white circles with labels a–f in the upper panel show the range of Rayleigh numbers R̄
for steady-state solutions; white circles indicate that steady, chiral, and symmetric solutions are obtained by
simulations. The convection patterns are presented in the lower six panels with corresponding labels. Snapshots
were taken at t = 113 τd for panels (a)–(e), and at t = 12.2 τd for panel (f).

along the spiral arms appeared [see Fig. 7(a)]. As the ripple grew, the rolls were broken and the
convection pattern shifted to irregular cells.

Figure 7(b) shows the steady solution for R̄ = 1.29R̄c, which we have examined above. Fig-
ures 7(c)–7(e) also show solutions in the steady solution range.

The convection pattern under R̄ = 4.50R̄c was unstable, as shown in Fig. 7(f). The collapse of
the pattern was so fast that we show a snapshot at t = 12.2 τd in this case.

The steady states shown in Figs. 7(b)–7(e) indicate that the chiral pattern of six sets of spiral
dipoles on a spherical dodecahedron is a stable solution in a nonrotating spherical shell in the
Rayleigh number regime.

VI. CONCLUSION

Because of geometrical isotropy, Rayleigh-Bénard convection in a spherical vessel with central
gravity is expected to exhibit symmetric patterns in terms of rotation. All three polyhedral groups,
namely, T (tetrahedral), O (octahedral), and I (icosahedral), are known to appear in the solutions of
spherical shell convection.

We found an alternative type of chiral solution in a nonrotating spherical shell. The solution had
discrete rotational symmetry of group T . The pattern consisted of six pairs of spiral rolls placed on
12 faces of a spherical dodecahedron. The solution kept chirality as well as rotational symmetry for
Rayleigh numbers in the range of R̄ = 1.29 R̄c to 3.86 R̄c.

The chiral solution was found by using a carefully adjusted initial condition. Chiral patterns with
discrete rotational symmetry of the O or I group might exist; however, we have not yet explored
this possibility. Matthews [10] used the bifurcation theory and showed that I symmetry is preferred
in pattern formations on a sphere in general. An I-symmetric chiral solution could possibly be
constructed using the same kind of controlled initial condition method adopted in the present study.
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