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We numerically investigate flow regimes of rotating Rayleigh-Bénard convection on a
horizontally periodic domain vertically bounded by no-slip walls from a statistical view-
point. The flow is subject to strong thermal forcing [Rayleigh number up to Ra = O(1012)]
and rapid rotation [Ekman number down to Ek = O(10−7)]. Various Prandtl numbers (Pr =
0.1, ≈5, and 100) are considered. In the explored parameter space, we observe the regimes
of quasisteady cells, convective Taylor columns, plumes, large-scale vortices (LSVs),
and rotation-affected convection. Time- and horizontally averaged statistics such as mean
temperature, root-mean-square (RMS) temperature, and RMS velocity are used to discuss
the thermal mixing and convective heat transfer (Nusselt number Nu) in each regime. For
cells and columns, both the mean temperature gradient at midheight (−∂z〈T 〉|z=0.5) and
Nu exhibit scalings with flow supercriticality that are consistent with predictions from
numerical models of asymptotically rapidly rotating convection. For LSVs at moderate
supercriticality, −∂z〈T 〉|z=0.5 saturates, akin to what is observed in geostrophic turbu-
lence in asymptotic studies. Interestingly, for LSVs at larger supercriticality, −∂z〈T 〉|z=0.5

decreases, a behavior that is instead in line with the recently experimentally observed
regime of so-called rotationally influenced turbulence. We also explore flow statistics near
the top and bottom walls. The statistical distribution of temperature at the edge of the
kinetic boundary layer (BL) depends on the relative thickness of this layer (δu) and the
thermal BL (δθ ). In cases where δu > δθ , the temperature distribution at z = δu is positively
skewed, suggesting coherent localization of hot rising fluid; the distribution is negatively
skewed at z = 1 − δu, denoting localized cold sinking fluid. In contrast, when δu < δθ , hot
fluid at z = δu (cold fluid at z = 1 − δu) occupies large portions of the horizontal domain,
whereas the cold (hot) fluid is localized. Our results suggest that this near-wall statistical
distribution of temperature structures, and thus the relative thickness of the kinetic and
thermal BLs, does not influence the statistics in the bulk flow state. The reported findings
broaden our knowledge of rotating turbulent convection at rather extreme values of the
governing parameters and bounded by experimentally realizable boundary conditions,
relevant to geo- and astrophysical settings.
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FIG. 1. Instantaneous horizontal cross sections of temperature fluctuations at midheight for selected
cases at Pr ≈ 5 in the regimes of (a) cells (Ra/Rac = 1.3), (b) convective Taylor columns (Ra/Rac = 3.5),
(c) plumes (Ra/Rac = 7.5), and (d) large-scale vortices (Ra/Rac ≈ 80), and at Pr = 0.1 in the regimes of (e)
large-scale vortices (Ra/Rac ≈ 20), and (f) rotation-affected convection (Ra/Rac ≈ 489). The color scale is
chosen to highlight the flow features. Red and blue denote above- and below-average temperature fluctuations,
respectively. The domain-size vortical flows in panels (d) and (e) lead to large swirling patterns of temperature
fluctuations; the cyclonic structure therein is indicated with a thin-lined box. The observed flow regimes are
identified based on their flow- and temperature-based statistical properties (discussed in the present paper),
their characteristic force balance (as we report in Ref. [17]), and their scale-by-scale kinetic energy transfer (as
we discuss in Ref. [18]).

I. INTRODUCTION

Rotating Rayleigh-Bénard convection (RRBC), the buoyancy-driven flow between two parallel
horizontal plates and under the influence of rotation, provides a simplified framework to study
numerous large-scale flows in nature. Planetary atmospheres, terrestrial oceans, and stellar and
planetary interiors are prominent scenarios where fluid motion arises due to buoyancy forcing and
is altered by rotation of the celestial body (see, e.g., Refs. [1–4]). Hence a thorough understanding
of the flow dynamics in the RRBC configuration holds great importance in geophysics and astro-
physics. The current literature of rapidly rotating convection discerns a wealth of rotating convection
regimes when the strength of the buoyancy forcing and rotation are varied; see Ref. [5] for a recent
review. These are regimes of cellular convection, convective Taylor columns, plumes, geostrophic
turbulence [where domain-filling large-scale vortices (LSVs) may be observed], rotation-affected
convection, and rotation-unaffected convection. The flow in these regimes, except for rotation-
unaffected convection, is visualized through temperature fluctuations in Fig. 1. Much of the
characterization of these flow states involves the assessment of flow- and temperature-based sta-
tistical quantities. This is, on the one hand, due to their accessibility in laboratory experiments of
rotating convection [6–13] and, on the other hand, because they can be used to identify transitions
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between the flow regimes [10,13–15]. For instance, through simulations of reduced equations in the
asymptotic limit of rapid rotation in Ref. [14], it has been shown that the time- and plane-averaged
vertical profile of temperature 〈T 〉(z), often characterized by its gradient at midheight −∂z〈T 〉|z=0.5,
varies nonmonotonically with flow supercriticality, granting it diagnostic properties of the various
flow phenomenologies. Here we quantify flow supercriticality as Ra/Rac, the ratio of the Rayleigh
number Ra and its critical value for onset of convection Rac (both defined below in Sec. II). In
particular, the mean temperature gradient decreases with Ra/Rac in the cellular and columnar
regimes, it then increases in the plumes regime, and saturates (becomes constant) in the geostrophic
turbulence regime [14]. At larger flow supercriticality, beyond the limit of validity of asymptotic
models, recent laboratory experiments in Ref. [13] have revealed that −∂z〈T 〉|z=0.5 decreases again
with supercriticality, according to the scaling −∂z〈T 〉|z=0.5 ∼ Ra−0.21; the convective heat transfer
(convective Nusselt number Nu) scales as Ra0.52. These scaling behaviors are deemed to describe
a regime of so-called rotationally influenced turbulence (RIT) [13]. Past this regime, a state of
rotation-affected convection is found, where −∂z〈T 〉|z=0.5 may exhibit a steeper decrease with flow
supercriticality, as suggested by the experimental data in Ref. [13]. Finally, at sufficiently large
Ra/Rac, it is expected that −∂z〈T 〉|z=0.5 ≈ 0, as the flow becomes insensitive to rotation and the
bulk becomes nearly isothermal.

In addition to the midheight mean temperature gradient, in systems bounded by no-slip top
and bottom walls, the near-wall flow dynamics in itself can also be assessed to characterize the
bulk phenomenology. In linear Ekman boundary layer (BL) theory [16], the thickness δu of the
kinetic boundary layer that forms near the no-slip walls is established to scale as Ek1/2, when
the distant flow is in geostrophic balance (the balance between Coriolis and pressure-gradient
forces). Therefore, the scaling δu∼ Ek1/2 is a fundamentally relevant indicator of rotational control
in the fluid layer, and hence its compliance characterizes the known geostrophic regimes: cells,
convective Taylor columns, plumes, and geostrophic turbulence. For RIT, the role of rotation is
hypothesized to be important but not as dominant as in geostrophic turbulence. Hence, it remains an
open question whether such dynamics can lead to the development of Ekman-type BLs in the RIT
regime. In asymptotic studies in Ref. [14], additional characterization of the geostrophic regimes is
attained through the root-mean-square (RMS) and kurtosis (defined in Sec. IV D) of various physical
quantities, yet some of the underlying aspects of flows under realistic conditions may not exhibit
asymptotic behaviors. In the asymptotic limit of rapid rotation, a symmetric state is obtained where
the skewness, or asymmetry, of the statistical distribution of several physical quantities is zero over
horizontal planes at all domain heights. Direct numerical simulation (DNS) performed at finite
rotation rates, on the other hand, reveal great asymmetries in these distributions [19–21]. Similar
findings are reported in laboratory experiments and in studies of geophysical flows (see, e.g., review
in Ref. [22] and references therein). The presence of these asymmetries in natural flows, and their
quantitative study, can be exploited to provide additional means for flow characterization. This is
enabled in the present study of RRBC, as we employ finite rotation rates in our DNS.

In this study we discuss the most prominent differences and similarities between the flow
configurations in the asymptotic limit of rapid rotation and those manifested in our setup at finite
rotation rate. We address the distinction and characterization of RRBC regimes based on numerous
flow- and temperature-based statistical quantities. Furthermore, we evaluate the effect of the no-slip
(top and bottom) walls on the aforementioned statistical quantities, and their impact on the bulk flow.
We present an investigation of the statistics in the presence of no-slip walls, providing a detailed
comparison with the observed stress-free-type behavior in asymptotic studies. For the task, we
perform DNS of RRBC, at various Prandtl numbers Pr (= 0.1, ∼5, and 100), on a laterally periodic
domain vertically bounded by no-slip walls. This paper provides an analysis similar to Ref. [19],
but in a substantially extended parameter range to describe the geostrophic regime of RRBC (which
was computationally out of reach at that time). The statistical characterization of RRBC regimes
presented below can ultimately provide a framework for identification of these regimes in future
laboratory experiments and numerical simulations at even more extreme parameter values, and for
extrapolation to geophysical and astrophysical settings.
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The layout of the paper is as follows. The governing equations of RRBC and the associated
dimensionless parameters are introduced in Sec. II. In Sec. III we describe the numerical setup
and present the parameter values for the simulations. In Sec. IV A we investigate the midheight
mean temperature gradient and the heat transport across the fluid layer, and compare these results
with those from asymptotic studies to distinguish the different flow regimes. Next, in Sec. IV B
we discuss the (scaling) characteristics of the thermal and kinetic BL thicknesses. In Sec. IV C we
gain insight into the flow and temperature structures by means of the temperature, vertical-velocity,
and vertical-vorticity skewness. We further characterize the flow and thermal features by evaluating
the likelihood of extreme values (kurtosis) of the relevant physical quantities in Sec. IV D. Last, in
Sec. V we present our conclusions.

II. GOVERNING EQUATIONS

We model rotating Rayleigh-Bénard convection using the Navier-Stokes equations plus an
advection-diffusion equation for temperature, in the Boussinesq approximation [23]:

∂u

∂t
+ (u · ∇ )u + 1

RoC
ẑ × u = −∇p +

√
Pr

Ra
∇2u + T ẑ, (1)

∂T

∂t
+ (u · ∇ )T = 1√

RaPr
∇2T, (2)

with the incompressibility condition

∇ · u = 0. (3)

Here velocity u, temperature T , pressure p, and time t are nondimensionalized using the domain
height H , bottom-top temperature difference �T = Tbottom − Ttop > 0, and characteristic “free-fall”
velocity scale U ff = √

gα�T H . The rotation vector �ẑ is parallel to the vertical unit vector ẑ (� is
the angular velocity), whereas the gravitational acceleration is −gẑ. The kinematic viscosity, thermal
diffusivity, and thermal expansion coefficient of the fluid are ν, κ , and α, respectively.

The nondimensional parameters Ra = gα�T H3/(νκ ), Pr = ν/κ , and RoC = √
gα�T/H/(2�)

are the Rayleigh number, Prandtl number, and convective Rossby number, respectively. The first
one characterizes the strength of the thermal forcing, Pr involves the diffusive properties of the fluid,
and RoC parametrizes the (inverse) strength of rotation. Alternatively, rotation can be characterized
through the Ekman number Ek = ν/(2�H2) = RoC

√
Pr/Ra.

The top and bottom boundaries are impenetrable (vertical velocity w = 0) and no-slip boundary
conditions (horizontal velocities u = v = 0) apply. For reference, a few cases with stress-free
boundary conditions (∂u/∂z = ∂v/∂z= w = 0) are considered. The boundaries are taken to be
perfect thermal conductors (T = 1 at the bottom and T = 0 at the top).

The critical Rayleigh number Rac for onset of convection in a laterally unbounded fluid layer
subject to rapid rotation (Ek � 10−3) [23,24] is used to define flow supercriticality as Ra/Rac. The
value of Rac and the type of convection structures depend on the Prandtl number. At Pr < 0.68,
fluid motion starts in the form of oscillatory convection at Rac = 17.4(Ek/Pr)−4/3. At Pr � 0.68,
convection sets in as steady cells at Rac = 8.7Ek−4/3. Throughout this work, we present our results
in terms of Ra/Rac. The characteristic horizontal length scale 
c of the convection structures also
depends on Pr: 
c = 2.4(Ek/Pr)1/3 at Pr < 0.68 and 
c = 2.4Ek1/3 at Pr � 0.68 [23,25,26], again,
valid for a laterally unbounded layer of fluid subject to rapid rotation (Ek � 10−3).

III. NUMERICAL METHODOLOGY

We solve Eqs. (1) to (3) on a laterally periodic Cartesian domain, using two codes: a single-grid
code, where both velocity and temperature are resolved on the same grid, and a multiple-grid code,
where velocity is resolved on a coarser grid than that for temperature. The former is used for cases at
low Pr < 1, where the smallest active length scale for velocity (Kolmogorov length scale) is smaller
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TABLE I. Model parameters used in the DNS. Prandtl number Pr, Ekman number Ek, Rayleigh number
Ra, convective Rossby number RoC, supercriticality Ra/Rac, and width-to-height domain aspect ratio �. In the
simulation series at Pr ≈ 5, the small difference in both Pr and Ek is for comparison with experiments in our
group [13,31,32]. The number of grid points to resolve the velocity field is Nx , Ny, and Nz, and the refinement
factors for temperature mx , my, and mz (used by the multiple-grid code). The last column indicates the observed
flow structures: convective cells (C), convective Taylor columns (T), plumes (P), large-scale vortices (LSVs),
or rotation-affected convection (RA). All cases are simulated with no-slip walls. Cases denoted with an asterisk
superscript are also independently simulated with stress-free boundaries. The case denoted with a dagger
presents signs of upscale energy transfer, but no LSVs develop.

Pr Ek Ra RoC Ra/Rac � Nx × Ny × Nz mx × my × mz Flow
Pr Ek Ra RoC Ra/Rac � Nx × Ny × Nz mx × my × mz Flow
0.1 2.00 × 10−7 1.00 × 1010 0.063 14.48 0.302 1024 × 1024 × 1408 - LSV
0.1 2.24 × 10−7 1.00 × 1010 0.071 16.84 0.314 1024 × 1024 × 1408 - LSV
0.1 2.50 × 10−7 1.00 × 1010 0.079 19.50 0.326 768 × 768 × 1280 - LSV∗

0.1 3.00 × 10−7 1.00 × 1010 0.095 24.87 0.346 768 × 768 × 1280 - LSV
0.1 4.00 × 10−7 1.00 × 1010 0.126 36.49 0.381 640 × 640 × 1280 - LSV
0.1 8.00 × 10−7 1.00 × 1010 0.253 91.95 0.480 640 × 640 × 1280 - RA
0.1 1.05 × 10−6 1.00 × 1010 0.332 132.14 0.526 768 × 768 × 1280 - RA
0.1 2.80 × 10−6 1.00 × 1010 0.885 488.65 0.729 1088 × 1088 × 1280 - RA
0.1 6.00 × 10−6 1.00 × 1010 1.897 1349.95 0.940 1408 × 1408 × 1280 - RA
5.5 3.00 × 10−7 5.50 × 109 0.009 1.27 0.323 256 × 256 × 640 2 × 2 × 1 C
5.5 3.00 × 10−7 8.00 × 1010 0.011 1.85 0.323 256 × 256 × 640 2 × 2 × 1 C
5.5 3.00 × 10−7 1.00 × 1010 0.013 2.31 0.323 384 × 384 × 640 2 × 2 × 1 T
5.5 3.00 × 10−7 1.50 × 1010 0.016 3.46 0.323 384 × 384 × 640 2 × 2 × 1 T
5.5 3.00 × 10−7 2.00 × 1010 0.018 4.62 0.323 384 × 384 × 640 2 × 2 × 1 T
5.2 1.00 × 10−7 1.40 × 1011 0.016 7.47 0.224 384 × 384 × 640 2 × 2 × 2 P∗

5.2 1.00 × 10−7 2.10 × 1011 0.020 11.20 0.224 384 × 384 × 640 2 × 2 × 2 P
5.2 1.00 × 10−7 3.20 × 1011 0.025 17.07 0.224 512 × 512 × 640 2 × 2 × 2 P∗

5.2 1.00 × 10−7 6.00 × 1011 0.034 32.01 0.224 512 × 512 × 640 2 × 2 × 2 P†

5.2 1.00 × 10−7 9.50 × 1011 0.043 50.68 0.224 640 × 640 × 896 2 × 2 × 2 LSV
5.2 1.00 × 10−7 1.50 × 1012 0.054 80.03 0.224 768 × 768 × 1024 2 × 2 × 2 LSV∗

100 3.00 × 10−7 1.30 × 1011 0.011 30.01 0.323 384 × 384 × 512 3 × 3 × 3 P
100 3.00 × 10−7 2.10 × 1011 0.014 48.48 0.323 384 × 384 × 512 3 × 3 × 3 P
100 3.00 × 10−7 3.40 × 1011 0.017 78.49 0.323 512 × 512 × 512 3 × 3 × 3 P
100 3.00 × 10−7 6.00 × 1011 0.023 138.50 0.323 512 × 512 × 768 3 × 3 × 3 P
100 3.00 × 10−7 9.50 × 1011 0.029 219.30 0.323 512 × 512 × 768 3 × 3 × 3 P
100 3.00 × 10−7 1.50 × 1012 0.037 346.26 0.323 512 × 512 × 768 3 × 3 × 3 P
100 3.00 × 10−7 2.50 × 1012 0.047 577.10 0.323 384 × 384 × 768 4 × 4 × 4 P

than that for temperature (Batchelor length scale), whereas the latter code is advantageous for cases
at high Pr > 1, where the Batchelor length scale is smaller. Both codes are based on the Verzicco
convection code [27,28]. For additional details on the codes and their validation, see Refs. [27–30].
A list of the cases considered in this study is presented in Table I. Notice that the set of simulations
at Pr ≈ 5 comprises a small difference in both Pr and Ek that is for comparison with (ongoing)
laboratory experiments in our group [13,31,32].

The domain size, 10
c × 10
c × 1 (normalized by the domain height H) at low Pr, and
20
c × 20
c × 1 at high Pr, lead to appropriate convergence of spatially averaged statistics. For all
runs, the largest grid spacing in the bulk is below four times the smallest active length scale (either
Kolmogorov or Batchelor length scale), which is considered adequate in Ref. [28]. In both codes,
the grid is vertically denser near the top and bottom to appropriately resolve the thinner (kinetic or
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thermal) boundary layer. We find, in postprocessing, that a minimum of 11 grid points are allocated
within this region, which is enough to accurately resolve it.

The measure of the convective heat transfer across the fluid layer is used to further validate
the grid resolution: we compute Nu in five different ways (as the plane-averaged wall-normal
temperature gradient at the bottom and at the top wall, as the volume-averaged convective flux, and
based on exact relations for the dissipation rate of kinetic energy and for that of thermal variance
[33]) and confirm the convergence of these measurements to within a few percent, over simulation
times of the order of 102 convective time units τ ff = H/U ff.

IV. RESULTS

A. Temperature gradient and heat transport

A well-known feature of rotating Rayleigh-Bénard convection is the gradual decrease of the
mean bulk temperature with height across the fluid layer [13,19,21,34], from a large value at the
hot bottom wall to a lower temperature at the top (this is also observed, e.g., in nonrotating RBC
at low Pr � 1 [35,36]). As a function of Ra/Rac, the vertical profile of mean temperature can be
evaluated in two limit cases. At Ra/Rac < 1, where no convection is present, the heat transfer from
the bottom wall to the top wall is carried out by conduction alone. In this state the temperature profile
is linear and the midheight mean temperature gradient is maximal, −∂z〈T 〉|z=0.5 = 1. In the limit
of very large Ra/Rac, the influence of rotation is minimal, and the flow approaches a nonrotating
style of convection. In this state the bulk is well mixed, so that its mean temperature is uniform, and
−∂z〈T 〉|z=0.5 ≈ 0 (in the bulk outside the BLs). For values of Ra/Rac between these two extreme
cases, the temperature gradient exhibits variations that are specific to the distinct flow regimes, and
thus provide a way to characterize them.

Figure 2(a) shows the mean temperature gradient at midheight, −∂z〈T 〉|z=0.5, as a function of
Ra/Rac for all our simulation cases at all Prandtl numbers explored. At Pr ≈ 5, we observe that the
temperature gradient decreases with supercriticality throughout the cellular and columnar regimes
(also reported in Refs. [13,14]). Here −∂z〈T 〉|z=0.5 scales as (Ra/Rac)−0.91±0.07, which is in good
agreement with the asymptotic scaling −∂z〈T 〉|z=0.5 ∼ (RaEk4/3)−0.96 ∼ (Ra/Rac)−0.96 in Ref. [14]
[see dotted line in Fig. 2(a)]. This drop in temperature gradient is accompanied by an increase in
heat transport [see Fig. 2(b)]. The Nusselt number data corresponding to the four cases at Pr ≈ 5
and lowest Ra/Rac describe a scaling behavior that is steeper than that provided by the asymptotic
exponent γ = 2.1 [black dotted line in Fig. 2(b)]for cells and columns with stress-free boundary
conditions [14]. Our data are in fact in better agreement with γ = 3 obtained through asymptotic
models with parametrized Ekman pumping, and DNS with no-slip walls, in Ref. [37]. Surely,
the increased heat transport efficiency (i.e., larger scaling exponent) is associated with Ekman
pumping from the kinetic boundary layers [15,37,44–46], which is absent when stress-free boundary
conditions are considered, as in asymptotic studies in Ref. [14]. The enhancement in heat transport is
most clearly visible for cellular and columnar structures, where the Ekman flow at both boundaries
increases the heat transport through these vertically aligned structures.

In the plumes regime, −∂z〈T 〉|z=0.5 increases with Ra/Rac (also for plumes at Pr = 100), as
observed in Refs. [13,14]. Here vertical heat transport is hindered by increasingly strong horizontal
advection due to ever stronger interaction among plumes. Hence, the increase of Nu with Ra/Rac

becomes shallower. A least-squares fit of the Nusselt number for plumes at Pr ≈ 5 [i.e., for 6 �
Ra/Rac � 37 in Fig. 2(b)] yields a scaling Nu ∼ (Ra/Rac)0.42±0.03, a reduction of about 85% in the
scaling exponent with respect to the cellular and columnar regimes. For plumes at Pr = 100, the
scaling is Nu ∼ (Ra/Rac)0.24±0.01.

In the LSV regime at Ra/Rac > 37 (at Pr ≈ 5), the temperature gradient gradually reverses
back to a downward trend. This behavior differs from what is observed in the geostrophic turbu-
lence regime, which is characterized by a saturation of the midheight mean temperature gradient
(i.e., −∂z〈T 〉|z=0.5 does not change with Ra/Rac) [14]. The decreasing behavior in our data for
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FIG. 2. (a) Midheight mean temperature gradient at various Prandtl numbers [indicated in the legend of
panel (b)]; the black dotted line is the asymptotic scaling ∼(Ra/Rac )−0.96 for cells and columns [14]; the black
line is the scaling ∼(Ra/Rac )−0.21 for so-called rotation-influenced turbulence (RIT; in water experiments at
Pr ≈ 5.2) [13]. These and other scalings are indicated through their scaling exponent (i.e., the number next to a
given scaling). (b) Convective Nusselt number Nu; the black dotted line is the asymptotic scaling for cells and
columns; the black long-dashed line is the scaling from asymptotic models with parametrized Ekman pumping
and DNS with no-slip walls in Ref. [37]; the black (solid) line is the scaling for RIT [13]; the black dash-dotted
line is the asymptotic scaling in the geostrophic turbulence regime; the black short-dashed line is the predicted
scaling for nonrotating RBC (Ek is taken as a constant) at Pr = 0.1 [38–41]. In both panels (a) and (b), vertical
dotted lines are our qualitative estimate for the transition between cells (C) and convective Taylor columns (T).
Vertical dash-dotted and dashed lines are predicted transitions between T and plumes (P) in Refs. [10] and
[42], respectively. Vertical solid lines are our qualitative estimate for the transitions between P and large-scale
vortices (LSVs) at Pr ≈ 5 (in red), and between LSVs and rotation-affected (RA) convection at Pr = 0.1 (in
blue). (c) Nu∗ vs Ra∗ (both defined in the text); the dotted line is the scaling Nu∗ = 0.17Ra0.55

∗ in Ref. [43].
The inset zooms in on cases at Pr = 5.2 (and Ek = 10−7) in the intervals 5 × 10−11 � Ra∗ � 4 × 10−9 and
8 × 10−7 � Nu∗ � 5 × 10−6. In all panels filled and open symbols are for no-slip and stress-free simulations,
respectively.

−∂z〈T 〉|z=0.5 is instead consistent with that reported in the RIT regime [13]. In fact, our data (also
at Pr = 0.1, discussed below) appears to be well described by the proposed scaling −∂z〈T 〉|z=0.5 ∼
(Ra/Rac)−0.21 (at fixed Ek) in this regime [compare the last three red data points with the solid
black line in Fig. 2(a)]. Below we discuss these observations further. In our LSV regime (at Pr ≈ 5),
vertical-velocity fluctuations again increase with supercriticality. This increase in w RMS is rather
moderate, yet enough to enhance vertical mixing, leading to a Nu scaling that appears to be slightly
steeper than the scaling (Ra/Rac)0.42±0.03 obtained in the plumes regime. While our data are scarce,
our cases may be consistent with the slightly steeper scaling (Ra/Rac)0.52 for RIT [black solid line in
Fig. 2(b)], as proposed in Ref. [13]. To further evaluate the Nu scaling, we consider the scaling law in
Ref. [43]: Nu∗ = aRab

∗, where Nu∗ = NuEk/Pr and Ra∗ = RaEk3Nu/Pr2, with best-fit parameters
a = 0.17 and b = 0.55. Here the prefactor a has been multiplied by 23b−1 to account for the factor of
2 in the different definitions of Ek used in Ref. [43] and in this paper. This scaling law is independent
of the diffusive properties (thermal diffusivity κ and kinematic viscosity ν) of the fluid. While the
presence of LSVs in the simulations in Ref. [43] is not mentioned, this scaling is proposed for a
rotation-dominated flow, at Pr = 0.7 and 7, subject to competing nonlinear effects, in the presence
of stress-free walls. In Ref. [47], Nu∗ = 0.17Ra0.55

∗ is shown to fit fairly well Nu measurements of
LSV cases at Pr = 1. In Fig. 2(c) we plot Nu∗ as a function of Ra∗ for all our simulation cases. In
the close-up of the Pr ≈ 5 data, shown in the inset, we notice that the data appear to approach the
proposed scaling.

In the LSV regime at Pr = 0.1 (for Ra/Rac < 60), the midheight mean temperature gradient
displays little variation with Ra/Rac for the four cases with lowest supercriticality. This is consistent
with the saturation in −∂z〈T 〉|z=0.5 that characterizes the geostrophic turbulence regime [14].
Nonetheless, −∂z〈T 〉|z=0.5 is smaller for the fifth case at Ra/Rac ≈ 36, suggesting that, also at this
Prandtl number, LSVs can occur in the range where −∂z〈T 〉|z=0.5 is on a downward trend. Therefore,
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FIG. 3. Vertical profiles of (a) RMS temperature and (b) RMS horizontal velocity, for selected cases at
Pr ≈ 5, and (c) RMS horizontal velocity for selected cases at Pr = 0.1 displaying LSVs (Ra/Rac ≈ 20) and
rotation-affected convection (Ra/Rac ≈ 489). The profiles, which are symmetric about z = 0.5, are shown
near the bottom wall of the domain. Dotted lines in panels (b) and (c) are the theoretical Ekman BL profile
(see text for analytical solution) fitted to each u RMS(z) profile in the range 0 < z < 3 × 10−3 [for the case at
(Pr, Ra/Rac ) = (0.1, 489) in panel (c), we use 0 < z < 5 × 10−2 to take into account the thicker BL region].

our LSV cases at Pr = 0.1 and lowest Ra/Rac can be regarded as part of the geostrophic turbulence
regime, whereas those at larger Ra/Rac are expected to be part of the RIT regime, as observed
at Pr ≈ 5. Hence, our results indicate the presence of LSVs beyond the geostrophic turbulence
regime, uncovering their existence within the RIT regime. Notably, LSV-dominant convection has
been previously observed in the “plumes” regime of asymptotically rapidly rotating convection
[48]. Our results thus provide additional evidence that such dynamics is indeed not exclusive to
the geostrophic turbulence regime. At this point, we would like to also highlight the following: (1)
In Ref. [14], it is explained that access to geostrophic turbulence is more readily gained at lower
Pr; this is confirmed here not only through comparison of our data at Pr = 0.1 and at Pr ≈ 5, but
also by noting that flows at Pr = 100 would demand significantly higher Ra/Rac to achieve this
flow state. (2) The presence of LSVs in the RIT regime certainly suggests that rotation exerts a
substantial influence in this regime. We shall further discuss the strength of these rotational effects
in Sec. IV B.

The Nusselt number scaling for LSV cases at Pr = 0.1 [blue symbols at Ra/Rac < 60 in
Fig. 2(b)] is quite steep, Nu ∼ (Ra/Rac)1.28±0.02. This scaling is in fairly good agreement with
the asymptotic scaling Nu ∼ (RaEk4/3)3/2 ∼ (Ra/Rac)1.5 for the geostrophic turbulence regime
reported in Ref. [14] [see dash-dotted line in Fig. 2(b)]. Similar to the Nu∗ vs Ra∗ scaling in
Ref. [43], the asymptotic scaling is, in its full form Nu ∝ Pr−1/2(RaEk4/3)3/2, independent of κ

and ν. This therefore confirms that in the observed turbulent LSV state, diffusive processes are
overwhelmed by nonlinear effects, as expected for highly supercritical flows. We also evaluate the
scaling behavior of our Pr = 0.1 data in the LSV regime in terms of Nu∗ in Fig. 2(c). We find that,
for the five cases at Pr = 0.1 and with the lowest Ra/Rac, Nu∗ scales as Ra0.574±0.002

∗ , which is in
very good agreement with the above-mentioned Ra0.55

∗ scaling.
Finally, in the rotation-affected regime at Ra/Rac > 60 (at Pr = 0.1), −∂〈T 〉/∂z continues to

decrease with Ra/Rac, though seemingly more steeply, as the influence of rotation weakens and the
bulk becomes more isothermal. This steeper decrease is consistent with that observed beyond RIT in
Ref. [13]. In our RA regime, the heat transport scaling is shallower than for LSVs, as it approaches
the scaling Ra1/5 (i.e., Ek is a constant) for nonrotating Rayleigh-Bénard convection [at Pr = 0.1;
black short-dashed line in Fig. 2(b)], predicted in Refs. [38,40,41].

B. Boundary layers

In this section we investigate the vertical profiles of RMS temperature TRMS(z) and horizontal
velocity u RMS(z) in the region close to the no-slip walls. In Fig. 3 we present these profiles near
the bottom wall for selected cases at Pr ≈ 5; other cases at different Ra/Rac and Pr display profiles
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that are qualitatively similar to the ones shown in this figure. In the vertical profile of TRMS, in
Fig. 3(a), we see that temperature fluctuations approach zero toward the bottom wall (also toward
the top wall, not shown). There the temperature field must meet the constant-temperature boundary
condition T = 1 at z = 0 (for the top wall T = 0 at z = 1). Away from the wall, but still at a short
distance from it, TRMS increases rapidly. In fact, TRMS attains its maximum values in this region.
The location of the peak value in the vertical TRMS profile is often used as a measure of the thickness
δθ of the thermal BL. For the case with the lowest supercriticality, at Ra/Rac = 1.3 [blue curve in
Fig. 3(a)], the signature of the thermal layer is much weaker compared to the other cases, which
reflects the near-laminar state of the flow at such a low supercriticality.

Vertical profiles of u RMS are shown in Fig. 3(b) (as solid lines) for the selected cases at
Pr ≈ 5, and in Fig. 3(c) for two selected cases at Pr = 0.1. The profiles at Ra/Rac = 1.3, 3.5,
and 7.5 correspond to cases within the cellular, columnar, and plumes regimes, respectively. In
these regimes the bulk is expected to be predominantly geostrophic, and as such the near-wall
profile of u RMS should be described by linear Ekman BL theory [16], namely, by the expression
u(z) = u′[1 − 2 cos(z/δ′

u) exp(−z/δ′
u) + exp(−2z/δ′

u)]1/2 (see the Appendix), where u′ and δ′
u are

parameters describing the (theoretical) geostrophic velocity in the bulk and the BL thickness,
respectively. In Figs. 3(b) and 3(c), we confirm this by direct comparison of the numerically
determined profiles (solid lines) with their corresponding analytical Ekman BL profiles (dotted
lines). Each profile is fitted independently, using u′ and δ′

u as fitting parameters, within the range
0 < z < 3 × 10−3 to fully capture the BL region. Owing to the selected z-range, the fitted values of
u′ somewhat reflect the peak value of u RMS near the wall [see Fig. 9(a) in the Appendix]. Note that
the position of the peak value of u RMS, similar to TRMS, is frequently used to define the thickness
δu of the kinetic BL [14,15]; here, we also adopt this definition. The fitted values of δ′

u are found
to be roughly two times smaller than δu for all geostrophic cases [see Fig. 9(b) in the Appendix].
Figures 3(b) and 3(c) thus reveal the excellent agreement between the theoretical profiles and our
numerical results close to the walls. Naturally, beyond the BL region, convection in the bulk leads to
significant deviations from the theoretical quasisteady behavior, even when the bulk does remain in
geostrophic balance at leading order. The fourth case, at Ra/Rac ≈ 80, displays LSVs and is found
within the RIT regime (see discussion in Sec. IV A). Notably, also in this case the near-wall u RMS(z)
profile is consistent with Ekman BL theory, indicating that LSVs in the RIT regime are in fact in
leading geostrophic balance. Not surprisingly, also the LSV case at Pr = 0.1 and Ra/Rac ≈ 20
[see Fig. 3(c)], found within the geostrophic turbulence regime, exhibits a u RMS profile that is
well described by Ekman BL theory. In the case at Ra/Rac ≈ 489, displaying rotation-affected
convection, the near-wall region is poorly described by the theoretical profile, which clearly exposes
the lack of rotational constraint in this case. Below we further evaluate the rotational constraint of
the discussed cases, and of the rest of the cases in our suite of simulations, by considering the kinetic
BL thickness, δu, and evaluating its compliance with the theoretical scaling Ek1/2.

Figure 4(a) presents the plots of the thermal and kinetic BL thicknesses, δθ and δu, as a function
of Ra/Rac for all our simulations at all Prandtl numbers. Let us first discuss the kinetic BL thickness.
We note that δu remains constant for our simulations at Pr ≈ 5 and 100, and fixed Ek: δu ≈ 1.7 ×
10−3 for cases at Ek = 3 × 10−7 (red and green triangles) and δu ≈ 10−3 for those at Ek = 10−7

(orange triangles). For cases at Pr = 0.1, where instead Ek is varied and Ra is kept fixed, the kinetic
BL thickness varies with Ra/Rac. To evaluate the Ek dependence of the kinetic BL thickness, we
plot δu/Ek1/2 as a function of the supercriticality of the flow in Fig. 4(b). As expected from the
previous analysis on the vertical profile of δu, all cases displaying cells, convective Taylor columns,
plumes, and LSVs (in both the regimes of geostrophic turbulence and RIT), at all Prandtl numbers,
comply with the Ek1/2 scaling with an RMS error just under 4%. Even the prefactor, approximately
equal to 3.24 [see linear fit in Fig. 4(b)], is only weakly dependent on Pr. However, in the rotation-
affected regime (at Pr = 0.1), δu does not exhibit the theoretical scaling Ek1/2. This is consistent
with the subdominant role of rotation in this regime. Therefore, the kinetic BL at Ra/Rac values
beyond RIT is certainly not of Ekman type.
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FIG. 4. (a) Kinetic and thermal BL thicknesses, δu and δθ , near the bottom wall (dark symbols) and the
top wall (light symbols), vs Ra/Rac. Filled and open symbols are for no-slip and stress-free simulations,
respectively. Red, orange, green and blue symbols are cases at Pr = 5.5 (at Ek = 3 × 10−7), 5.2 (at Ek = 10−7),
100 (at Ek = 3 × 10−7), and 0.1 (at fixed Ra = 1010 and varying Ek), respectively. Color-coded vertical lines
and regime labels are as in Fig. 2. (b) Kinetic BL thickness scaled by Ek1/2, the theoretical scaling for linear
Ekman BLs [16]. Most light symbols, corresponding to δu near the top wall, lie behind the accompanying dark
symbols, corresponding to δu near the bottom wall. The horizontal dotted line is at δu/Ek1/2 ≈ 3.2. (c) Thermal
BL thickness plotted separately for comparison with the asymptotic scaling δθ ∼ (RaEk4/3)−2 ∼ (Ra/Rac )−2,
denoted by dashed lines. (d) Thermal BL thickness multiplied by two times the convective Nusselt number
Nu. This quantity is equal to one for nonrotating convection, since there δθ≈1/(2Nu). In all panels, a case at
Pr = 5.2 and Ra/Rac = 1.6 is included to demonstrate the overlap between simulations at Pr = 5.2 and 5.5.

For the thermal BL thickness [see Fig. 4(a)], starting from the data at Pr ≈ 5, we see that it
is thickest at the lowest supercriticality and that it decreases with Ra/Rac. This decrease is quite
steep for low values of Ra/Rac, and gradually becomes shallower toward larger supercriticalities,
although no saturation is observed. In Ref. [14] it has been observed that in all geostrophic regimes,
over a wide range of Prandtl numbers, δθ roughly scales as (RaEk4/3)−2 in the asymptotic limit of
rapid rotation. This scaling is indicated by the black dashed lines (one near the data at Pr = 0.1
and another for Pr ≈ 5) in Fig. 4(c), where we have plotted δθ vs Ra/Rac separately for clarity.
We note that our simulation data within the cellular and columnar regimes is somewhat consistent
with the steep asymptotic scaling. However, deviations from this scaling are already observed
toward the plumes regime. This is likely associated with the following: (1) There is enhancement
of convective instabilities in the thermal BL, due to Ekman pumping, which leads to thickening
of the thermal BL with respect to the trend (RaEk4/3)−2. (2) At finite rotation rate, the increase in
thermal forcing renders the thermal plumes more and more confined to the BL to a lesser degree than
in the asymptotic case. Remarkably, at Pr = 0.1, δθ agrees very well with the asymptotic scaling,
perhaps because the enhanced thermal plumes are shorter lived at this Prandtl number, and fail
to prompt the thickening of the thermal BL (as observed for plumes at Pr ≈ 5). This agreement
seems to be best for cases displaying LSVs. At larger Ra/Rac, the data show a much shallower
scaling. This virtually constant behavior suggests a saturation of δθ toward and within the RA
regime, where no Ekman-type BLs develop. In fact, for the cases with largest Ra/Rac, δθ hints
a tendency toward behaviors proper of nonrotating convection. Namely, in nonrotating convection,
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δθ relates to the convective Nusselt number Nu through the expression δθ = 1/(2Nu) (recall that δθ

is already normalized by H). In Fig. 4(d) we plot the quantity 2Nuδθ for all simulation cases. We
observe that rotationally dominated regimes are poorly described by 2Nuδθ = 1, whereas cases at
Pr = 0.1 in the rotation-affected regime approach this theoretical prediction as Ra/Rac increases.
Similar results are reported in Ref. [49] for the rotationally constrained regime at RaEk3/2 < 10,
or Ra/Rac � 124 (at Pr = 0.1 and Ra = 1010) and weakly rotating convection at RaEk3/2 > 10, or
Ra/Rac � 124.

Finally, we note the following. For cells and columns, the thermal BL is thicker than the kinetic
BL. This is also observed in the plumes regime, although, in contrast, plumes at Pr = 100 exhibit
a thicker kinetic BL. A similar situation occurs in the LSV regime: δu > δθ for LSVs at Pr ≈ 5,
whereas δθ > δu for those at Pr = 0.1. This all suggests that the bulk flow state does not significantly
depend on the relative thickness of the boundary layers. Nonetheless, the arrangement of the
boundary layers influences the distribution of flow- and temperature structures near the walls. This
is the subject of study of the subsequent sections.

C. Skewness of temperature, velocity, and vorticity

To gain insight into the temperature and velocity structures in the flow, we draw upon the
characterization of the probability distribution of related physical quantities. In particular, in this
section we evaluate the third-order moment, or skewness, of these distributions. In Sec. I we
introduced that the skewness of a probability distribution provides a measure of its asymmetry.
Hence, positive values of the temperature skewness TSKEW = 〈(T − 〈T 〉)3〉/T 3

RMS indicate that
large above-average temperature fluctuations are localized in small portions of the domain, whereas
smaller below-average values are distributed over a larger portion of the domain; and vice versa
for a negatively skewed distribution. This is also valid for the skewness of vertical velocity
w SKEW = 〈w3〉/w3

RMS and of vertical vorticity ωz, SKEW = 〈ω3
z 〉/ω3

z, RMS. As before, 〈·〉 denotes
averaging over time and over horizontal planes at a given height; thus, both 〈w〉 and 〈ωz〉 are zero at
all heights. Figure 5 shows the vertical profiles of skewness for selected cases at Pr ≈ 5. For most
cases, including those at different Ra/Rac and Pr not shown in Figs. 5(a) to 5(c), the vertical profiles
of TSKEW and w SKEW are antisymmetric about midheight, whereas the profiles of ωz, SKEW are
symmetric. This is certainly expected, as it is consistent, for instance, with the presence of localized
hot rising cyclonic flows in the lower half of the domain and localized cold sinking cyclonic flows
in the upper half [15,19,21,50,51] . However, we notice that the vertical profiles of TSKEW and
w SKEW at Pr ≈ 5 and Ra/Rac = 3.5 are clearly not antisymmetric, and the profile of ωz, SKEW is
not symmetric. The predominantly positive profiles of TSKEW and w SKEW indicate that the flow is
dominated by localized hot rapidly rising convective columns surrounded by cool slowly sinking
fluid. This is, e.g., reflected in Fig. 1(b), where the number of hot columns is larger than the number
of cold columns. A similar situation is found for the case at Pr ≈ 5 and Ra/Rac = 2.3 (not shown).
A possible reason for this asymmetry may be that this arrangement has emerged from the randomly
perturbed initial condition during the early development of the columnar structures, and it then
persists over time due to the strong stability of the flow at low supercriticality. The net effect is that
skewness curves in Figs. 5(a) and 5(b) are shifted toward positive values, while they should be zero
at z = 0.5, and ω SKEW should be vertically symmetric [Fig. 5(c)]. We expect that this asymmetric
arrangement will equilibrate into the expected distribution with equal number of hot rising and cold
sinking columns at sufficiently long simulation times, of the order of the viscous diffusion timescale
τν = τ ff

√
Ra/Pr or ∼104 convective time units (at Ra ∼ 1010 and Pr ≈ 5). We must acknowledge,

however, that the question why this is not observed in other cases in the columnar regime, or even
for cells and plumes, warrants further investigation.

For most cases, the largest values of TSKEW, w SKEW and ωz, SKEW are found near the walls.
This reveals a strong asymmetry in the statistical distribution of temperature, vertical velocity, and
vertical vorticity in this region. In Figs. 5(d) and 5(f) we plot the values of skewness at the bottom
kinetic boundary layer (z = δu; dark symbols) and at the top kinetic boundary layer (z = 1 − δu;
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FIG. 5. Vertical profiles of skewness of (a) temperature, (b) vertical velocity, and (c) vertical vorticity, for
selected cases at Pr ≈ 5. Skewness of (d) temperature, (e) vertical velocity, and (f) vertical vorticity at both the
bottom kinetic BL (z = δu; dark symbols) and the top kinetic BL (z = 1 − δu; light symbols; TSKEW and w SKEW

are multiplied by minus one). Filled and open symbols are for no-slip and stress-free simulations, respectively.
Color-coded vertical lines and regime labels are as in Fig. 2.

light symbols), as a function of Ra/Rac. The values of TSKEW and w SKEW at z = 1 − δu are plotted
with a minus sign for comparison of their magnitude with that at z = δu. Notice the excellent
agreement of all skewness values at these two heights for most of our simulation cases, barring
the aforementioned cases at Ra/Rac = 2.3 and 3.5, both at Pr ≈ 5, where the values of w SKEW and
ωz, SKEW are noticeably different. This discrepancy results from the above-mentioned asymmetry
in these two cases, yet remarkably TSKEW(z = δu) ≈ −TSKEW(z = 1 − δu). Bearing in mind these
expected symmetries and antisymmetries, let us then use measurements taken at the bottom kinetic
BL as a starting point for our discussions.

In Figs. 5(e) and 5(f), we see that, for all cases at Pr ≈ 5, w SKEW and ωz, SKEW are positive, which
reveals the presence of localized flows with cyclonic vorticity emanating from the BL [see flow
visualizations in Figs. 6(b) and 6(c)]. However, TSKEW < 0 for the cases displaying cells, columns
and plumes. Interestingly, in Sec. IV B we observed that in these cases the kinetic BL is embedded
within the thermal BL [i.e., δu < δθ in Fig. 4(a)]. This indicates that the localization of cyclonic
rising flows within the thermal boundary layer is not matched by localization of hot fluid in this
region. Instead, the hot fluid in the thermal BL interior is distributed over large portions of the
horizontal domain [large red patches in Fig. 6(a)], whereas the cold fluid parcels that penetrate
into the thermal BL are concentrated in smaller regions [the area occupied by the blue patches in
Fig. 6(a) is about 1.7 times smaller than for red patches]. In contrast, for LSV cases (at Pr ≈ 5),
where the kinetic BL becomes thicker than the thermal BL, TSKEW becomes positive, indicating
that hot fluid parcels become localized [e.g., in Fig. 6(d), red patches occupy 45% of the total
cross-sectional area]. Therefore, in these cases, localization of cyclonic rising flows at z = δu (> δθ )
is matched by concentrated regions of hot fluid at this height [Figs. 6(e) and 6(f)]. Other cases for
which w SKEW > 0 and/or ωz, SKEW > 0 is matched by TSKEW > 0 are those displaying plumes at
Pr = 100, and the two cases at Pr = 0.1 with largest Ra/Rac; all these cases are also characterized
by δu > δθ . For the remaining cases where δu < δθ , i.e., the five cases at Pr = 0.1 with lowest
Ra/Rac, the statistical distribution of temperature is negatively skewed (TSKEW < 0), even when
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FIG. 6. Snapshots of temperature fluctuations (left), vertical velocity (center), and vertical vorticity (right),
at the kinetic BL edge (z = δu) for cases at Pr ≈ 5 and Ra/Rac = 7.5 (top), at Pr ≈ 5 and Ra/Rac = 80
(middle), and at Pr = 0.1 and Ra/Rac = 20 (bottom). In panels (b) and (c), vertical-velocity and vertical-
vorticity features, respectively, bear a strong resemblance between them.

large positive ωz, SKEW is observed [see, e.g., the localized cyclonic vortices in Fig. 6(i)]; here the
vertical-velocity skewness is very small. Let us summarize the findings discussed above. For clarity,
we shall consider only the skewness statistics near the bottom wall, while keeping in mind that the
same conclusions can be drawn for the statistics near the top wall for temperature features with
opposite thermal contrast. When δu > δθ , localized cyclonic flows from the kinetic BL concur with
concentrated parcels of hot fluid at z = δu, while nonlocalized anticyclonic flows into the BL are
matched by widespread regions of cold fluid. By zooming in on the near-wall region in Fig. 5(a)
for all our simulation cases (not shown), we note that, intuitively, the aforementioned results on
the spatial distribution of temperature are roughly consistent with a negatively skewed temperature
distribution within the thermal BL, and a positively skewed temperature distribution in the region
outside the thermal BL. When δu < δθ , localized cyclonic motion of fluid emanating from the kinetic
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BL is correlated with widespread regions of hot fluid within the thermal BL, whereas large regions
of weak anticyclonic flow into the BL are correlated with small regions of cold fluid. Here, similar
to the cases where δu > δθ , the temperature distribution is negatively skewed within the thermal BL,
nonetheless this distribution is not necessarily positively skewed in the region outside the thermal
BL [i.e., even in the region outside this BL, hot plumes may continue to occupy a larger portion of
the horizontal domain compared to cold plumes]. This indeed suggests that the thermal BL does not
necessarily nucleate concentrated parcels of hot fluid that match the localized cyclonic flows from
the kinetic BL.

The relative thickness of the boundary layers appears to determine the statistical distribution of
temperature at the kinetic BL, although, as concluded in Sec. IV B, the BL arrangement does not
further influence the bulk flow state. Hence, by extension, the resulting asymmetries in the near-wall
distribution of temperature may not influence the bulk either. In the next section, we investigate flow
and temperature structures, both in the bulk and near the walls, based on the feasibility of extreme
values in the statistical distributions discussed in this section.

D. Kurtosis of temperature, velocity, and vorticity

Further understanding of the flow and temperature structures can be gained by computing
the kurtosis of the probability distribution of relevant physical quantities. The kurtosis measures
the feasibility of extreme values in the distribution, e.g., large values of kurtosis indicate that
extreme fluctuations are more likely to occur. For reference, in homogeneous isotropic turbulence
(HIT) the velocity distribution is practically Gaussian, with kurtosis equal to 3 [52,53], whereas
the vorticity distribution is strongly non-Gaussian, with kurtosis larger than 3 and increasing with
the turbulence intensity [54,55]. The presence of localized coherent structures in the flow, such
as plumes, raises the probability of extreme events, so that kurtosis larger than 3 is expected. We
compute the kurtosis of the temperature distribution as TKURT = 〈(T − 〈T 〉)4〉/T 4

RMS, of vertical
velocity as w KURT = 〈w4〉/w4

RMS, and of vertical vorticity as ωz, KURT = 〈ω4
z 〉/ω4

z, RMS; recall that
〈w〉, 〈ωz〉 ≈ 0 averaged over time and over horizontal planes at all heights. We present the kurtosis
profiles in Fig. 7 for selected cases at Pr ≈ 5. Similar to skewness, the kurtosis profiles of the case
at Ra/Rac = 3.5 (also at Ra/Rac = 2.3, not shown) display asymmetries about midheight, albeit
less evident than for skewness due to the even parity of the kurtosis function. Figures 7(a) and 7(c)
show that the likelihood of extreme fluctuations in the bulk varies with supercriticality. In Figs. 7(d)
to 7(f), we plot the kurtosis values at midheight as a function of Ra/Rac for all cases.

At Pr ≈ 5 (red symbols), all values of kurtosis (TKURT, w KURT and ωz, KURT) are close to 3
at our lowest supercriticality (in the cellular regime), they then increase with Ra/Rac throughout
the cellular and columnar regimes, they decrease in the plumes regime (also observed for plumes
at Pr = 100; see green symbols), and finally TKURT and w KURT are again close to 3 in the LSV
regime (also observed for LSVs at Pr = 0.1; see blue symbols; recall, for reference, that the velocity
distribution in HIT is approximately Gaussian, with kurtosis equal to 3). These changes of w KURT

with supercriticality are also reported in Ref. [14] at various Prandtl numbers. Notably, for LSV
cases, the vertical-vorticity kurtosis remains larger than 3: ωz, KURT ≈ 4 and potentially increasing at
Pr ≈ 5, and increasing ωz, KURT > 5 at Pr = 0.1. This indicates that, for LSV cases, the likelihood of
large values of vertical vorticity increases with supercriticality (in HIT, the vorticity kurtosis is larger
than 3 and increasing with the turbulence intensity). Notice that the above-discussed kurtosis values
do not appear to discern between the regimes of geostrophic turbulence and rotation-influenced
turbulence (RIT). Namely, the underlying turbulent state in these two regimes yields a similar trend
for TKURT, w KURT, and ωz, KURT with varying flow supercriticality. Finally, in the rotation-affected
regime at Pr = 0.1, the turbulent bulk yields a Gaussian distribution for temperature and vertical
velocity (TKURT,w KURT ≈ 3), whereas the vertical-vorticity kurtosis is ωz, KURT ≈ 10. This value
of ωz, KURT is larger than for LSV cases, indicating that extreme values of ωz are more likely to
occur in the rotation-affected regime. Furthermore, ωz, KURT remains nearly constant for all cases in
this regime.
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FIG. 7. Vertical profiles of kurtosis of (a) temperature, (b) vertical velocity, and (c) vertical vorticity, for
selected cases at Pr ≈ 5. Kurtosis of (d) temperature, (e) vertical velocity, and (f) vertical vorticity at midheight
(z = 0.5) plotted against Ra/Rac for all simulation cases. Filled and open symbols are for no-slip and stress-free
simulations, respectively. Color-coded vertical lines and regime labels are as in Fig. 2.

In Fig. 8 we plot the kurtosis values, both at the bottom kinetic boundary layer (dark symbols) and
at the top kinetic boundary layer (light symbols), as a function of flow supercriticality. At Pr ≈ 5,
similar to the bulk, TKURT, w KURT, and ωz, KURT increase with Ra/Rac in the cellular and columnar
regimes, and then decrease in the plumes regime. This indicates that, also in the near-wall region, the
likelihood of extreme values of temperature, vertical velocity, and vertical vorticity increases with
supercriticality within the cellular and columnar regimes, and decreases in the plumes regime. For
plumes at Pr = 100, the behavior of TKURT, w KURT, and ωz, KURT is markedly different (also different
from its behavior in the bulk). We observe that TKURT and w KURT increase with Ra/Rac instead,
whereas ωz, KURT ≈ 5 remains approximately unchanged for the parameter values considered. This
implies that, for plumes at this Prandtl number, there is an increasing probability of localized hot
rising (cold sinking) fluid near the bottom (top) wall [consistent with positive (negative) values

FIG. 8. (a) Temperature, (b) vertical-velocity, and (c) vertical-vorticity kurtosis at the bottom kinetic BL
(z = δu; dark symbols) and at the top kinetic BL (z = 1 − δu; light symbols) vs Ra/Rac for all simulations
cases. Filled and open symbols are for no-slip and stress-free simulations, respectively. Color-coded vertical
lines and regime labels are as in Fig. 2.
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of TSKEW and w SKEW, and positive ωz, SKEW, as shown in Figs. 5(d) to 5(f)], with nearly invariable
likelihood of large values of cyclonic vorticity. This can be understood as the prevalence of coherent,
longer-lived flow structures near the walls owing to the larger Prandtl number.

For LSV cases at Pr ≈ 5, and also at Pr = 0.1, the vertical-velocity kurtosis presents considerable
differences in comparison to the bulk: it is larger than 3 and increases with Ra/Rac. This indicates
an increasing likelihood of large vertical-velocity and vertical-vorticity fluctuations at the Ekman
BL. The presence of these near-wall vertical flows may influence the flow far from the walls.
The competition between Ekman BL flows and large-scale vortices in the bulk is discussed in
Ref. [18]. For LSVs at Pr = 0.1, the large values of TKURT are related to the strong asymmetry in
the distribution of temperature in this region [note the large negative values of TSKEW in Fig. 5(d)].
Namely, strongly localized parcels of cold fluid (large TSKEW < 0) must necessarily register extreme
values of temperature that are well below the mean temperature (large TKURT), whereas extended
regions of hot fluid register temperatures much closer to the mean. For instance, in the snapshot
of temperature fluctuations shown in Fig. 6(g), parcels of fluid with below-average temperature
(in blue) occupy 32% of the total cross-sectional area, and register a mean temperature difference
(with respect to the average temperature of the entire cross section) that, in absolute terms, is about
two times larger than that for hot parcels (in red). For LSV cases at Pr ≈ 5, on the other hand, the
asymmetry of the temperature distribution is small, but seemingly increasing [see Fig. 5(d)]. We
thus expect that, also at this Prandtl number, TKURT will eventually become large with increasing
Ra/Rac for LSV cases. Finally, in the rotation-affected regime (at Pr = 0.1), temperature, vertical
velocity, and vertical vorticity approach their corresponding statistical distribution for the bulk. That
is, Gaussian for temperature and vertical velocity (TKURT,w KURT → 3) and larger-than-Gaussian
(ωz, KURT > 3), but approximately constant, for vertical vorticity.

As a final note, also here it is worthwhile to mention that even when the near-wall values of
TKURT, w KURT and ωz, KURT, and their variation with Ra/Rac, possess diagnostic properties of the
flow in this region, these quantities do not seem to distinguish between the LSVs in the geostrophic
turbulence regime and those in the RIT regime.

V. CONCLUSIONS

We have investigated flow and temperature features of rotating Rayleigh-Bénard convection, both
in the bulk and close to no-slip walls, from a statistical perspective. We have employed both flow-
and temperature-based statistical quantities for distinction and characterization of RRBC regimes,
and we have compared our results (at a finite rotation rate) with observations from asymptotic
studies (in the asymptotic limit of rapid rotation) [14]. We find that, in the cellular and columnar
regimes (at Pr ≈ 5), the mean temperature gradient at midheight scales as (Ra/Rac)−0.91±0.07, in
excellent agreement with results from asymptotic models. Our data for the convective Nusselt
number are consistent with the scaling exponent γ = 3 obtained from asymptotic models with
parametrized Ekman pumping, and DNS with no-slip walls [37]. For LSV cases (at Pr = 0.1 and
≈5), our data of the midheight mean temperature gradient resolve two distinct behaviors: one with
a saturated −∂z〈T 〉|z=0.5 ∼ (Ra/Rac)0, and another with a decreasing −∂z〈T 〉|z=0.5 that is well
described by (Ra/Rac)−0.21. The former is consistent with the so-called geostrophic turbulence
regime [14], and the latter is compatible with the recently experimentally observed regime of
so-called rotation-influenced turbulence (RIT) [13]. These results demonstrate the presence of LSVs
beyond the geostrophic turbulence regime, and reveal their existence within the RIT regime. The
heat transport by LSVs (at Pr = 0.1) in the geostrophic turbulence regime is in accordance with the
diffusion-free asymptotic scaling Nu ∼ (Ra/Rac)3/2.

The theoretical scaling from linear Ekman BL theory has been employed as an indicator of
rotational control in the fluid layer. For the geostrophic regimes of cells, columns, plumes and
geostrophic turbulence, the kinetic BL thickness scales as Ek1/2, as predicted in Ekman BL theory
[16], a clear indication (and confirmation) that this boundary layer is of Ekman type. The kinetic
BL thickness of LSVs in the RIT regime also complies with the scaling Ek1/2, which reveals that,
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also in this regime, the bulk flow is in leading geostrophic balance. For rotation-affected convection,
the kinetic BL thickness deviates significantly from the aforementioned scaling, consistent with the
loss of rotational constraint in this region. The scaling of the thermal BL thickness in strongly rota-
tionally constrained regimes (cells and columns at Pr ≈ 5) is roughly described by the asymptotic
scaling (Ra/Rac)−2. Toward the plumes regime, and even up to the LSV regime, deviations from
this scaling may be observed. In the rotation-affected regime, the thermal BL is marginally affected
by rotation, and its thickness may solely depend on the Rayleigh number, as δθ is seen to approach
the nonrotating scaling 1/(2Nu). Hence, at even larger supercriticality, we reiterate the hypothesis
in Ref. [13], whereby nonrotating-style thermal boundary layers form.

We have examined flow- and temperature-based statistics in the region near the no-slip walls. Our
results suggest that the relative thickness of the kinetic and thermal BLs influences the skewness of
the statistical distribution of temperature close to the walls. Remarkably, the observed plumes and
LSV flow states develop regardless of the relative thickness of the BLs and therefore, by extension,
notwithstanding the near-wall distribution of temperature either. This suggests that these bulk flow
states are not dictated by the BL arrangement and the resulting asymmetries in the temperature
distribution.

Finally, the kurtosis of temperature, vertical velocity, and vertical vorticity exhibits transitional
behaviors at similar Ra/Rac in the bulk and near the walls. These kurtosis values, and their variation
with flow supercriticality, closely characterize the flow state, both in the bulk and the BLs, yet
they do not decisively discerns between the LSVs in the geostrophic turbulence regime and those
in the RIT regime. Indeed, considering the employed flow- and temperature-based statistics, and
the explored parameter values, the mean temperature gradient at midheight provides the clearest
diagnostic distinguishing between these two regimes. This is certainly of great convenience, as
measurements of this quantity can be readily available in laboratory experiments of rapidly rotating
turbulent convection.

The study of rotating turbulent convection at extreme parameter values presents challenges in
both laboratory experiments and numerical simulations. In the latter approach these challenges
are exacerbated by the presence of no-slip walls, as the development of thin viscous boundary
layers adjacent to the wall surface demands increased numerical resolution in this region. Hence,
much of our knowledge of these systems has been gained from simulations employing stress-free
boundary conditions, in particular from those in the asymptotic limit of rapid rotation. Here we
provide results from direct numerical simulations at rather extreme parameter values bounded by
experimentally realizable no-slip boundary conditions. The provided statistical characterization
of RRBC regimes can be used as a framework for identification of these flow states in future
experiments and simulations at even more extreme parameter values, and for extrapolation to
geophysical and astrophysical flow systems.
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APPENDIX: THEORETICAL EKMAN BL VERTICAL PROFILE OF HORIZONTAL VELOCITY

An analytical expression for the near-wall vertical profile of horizontal velocity can be attained
from linear Ekman BL theory [16]. Let us assume u = (ux, uy) the horizontal fluid velocity and
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FIG. 9. Fitting parameters u′ and δ′
u for the near-wall vertical profile of u RMS of all simulation cases at

Pr = 0.1 (blue), Pr ≈ 5 [red in panel (a); and red and orange in panel (b) for consistency with Fig. 4(b)], and
Pr = 100 (green). In panel (a), we also plot the RMS horizontal velocity u RMS at midheight z = 0.5 (filled
symbols) and at z = δu (open symbols). In panel (b), we include δu/Ek1/2 (triangles), where δu is the location
of the peak value of u RMS close to the bottom wall.

u′ = (u′
x, u′

y) the theoretical geostrophic velocity in the bulk, so that the velocity components ux and
uy are given by

ux(z) = u′
x − [u′

x cos(z/δ′
u) + u′

y sin(z/δ′
u)] exp(−z/δ′

u), (A1)

uy(z) = u′
y + [u′

x sin(z/δ′
u) − u′

y cos(z/δ′
u)] exp(−z/δ′

u), (A2)

where δ′
u characterizes the BL thickness. Equations (A1) and (A2) satisfy the boundary conditions:

ux = uy = 0 at z = 0, and (ux, uy) → (u′
x, u′

y) as z → ∞. These equations are general analytical
solutions to the set of differential equations that results when considering a geostrophic bulk near a
no-slip (bottom) boundary; their detailed derivation is presented in Ref. [30] (see Sec. 2.7 therein).
By combining Eqs. (A1) and (A2), according to u = (u2

x + u2
y )1/2, we obtain the desired analytical

expression for the vertical profile of horizontal velocity:

u(z) = u′[1 − 2 cos(z/δ′
u) exp(−z/δ′

u) + exp(−2z/δ′
u)]1/2

, (A3)

with u′ = (u′2
x + u′2

y )1/2. Equation (A3) is employed to fit the numerically determined vertical profile
of u RMS of each of our simulation cases [see, e.g., Figs. 3(b) and 3(c)]. Each profile is fitted
independently, using u′ and δ′

u as fitting parameters, within the range 0 < z < 3 × 10−3 [except at
(Pr, Ra/Rac) = (0.1, 489) where the range 0 < z < 5 × 10−2 is used], to fully capture the near-wall
region. In Fig. 9 we plot the fitted values of u′ and δ′

u (the latter normalized by Ek1/2) for each
simulation case.
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