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Unsteady and lineal translation of a sphere through a viscoelastic fluid
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The unsteady, lineal translation of a solid spherical particle through viscoelastic fluids
described by the Johnson-Segalman and Giesekus models is studied analytically. Solutions
for the pressure and velocity fields as well as the force on the particle are expanded
as a power series in the Weissenberg number. The momentum balance and constitutive
equation are solved asymptotically for a steadily translating particle up to second order in
the particle velocity, and rescaling of the pressure and velocity in the frequency domain
is used to relate the solutions for steady lineal translation to those for unsteady lineal
translation. The unsteady force at third order in the particle velocity is then calculated
through application of the Lorentz reciprocal theorem, and it is shown that this weakly
nonlinear contribution to the force can be expressed as part of a Volterra series. Through
a series of examples, it is shown that a truncated representation of this Volterra series,
which can be manipulated to describe the velocity in terms of an imposed force, is useful
for analyzing specific time-dependent particle motions. Two examples studied using this
relationship are the force on a particle suddenly set into motion and the velocity of a
particle in response to a suddenly imposed steady force. Additionally, the weakly nonlinear
response of a particle captured by a harmonic trap moving lineally through the fluid is
computed. This is an analog to active microrheology experiments and can be used to
explain how weakly nonlinear responses manifest in active microrheology experiments
with spherical probes.

DOI: 10.1103/PhysRevFluids.7.013301

I. INTRODUCTION

Flows of viscoelastic fluids around immersed objects have long been a subject of interest in both
experimental and theoretical studies. Understanding such flows around spheres, particularly, has
held appeal for its broad range of potential applications, from use as a benchmarking problem for
validation of complicated numerical methods and models [1] to better understanding sedimentation
of slurries [2] and suspensions with non-Newtonian matrix fluids [3]. A variety of analytical solu-
tions have been determined for the steady flows around solid spheres in viscoelastic fluids. In one
early example, Giesekus used a retarded motion expansion to solve the problem of steady rotation
and translation in a viscoelastic fluid [4]. Since, solutions have been determined for steady flows of
various description using different constitutive models via perturbation expansions [1,3,5–8]. And
though some studies have used numerical simulations to understand unsteady flows of viscoelastic
fluids around spheres [9–11], comparatively few have attempted an analytical description of such
flows. In work by Moore and Shelley, analytical solutions were determined for some specific flows
in the so-called “weak-coupling” limit, where viscoelastic stresses are treated as an asymptotically
small contribution to the overall stress in the fluid [12], providing an analytical description of
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the forces exerted on a sphere moving in response to a suddenly imposed force and subject to
oscillatory forcing. However, we still lack a general theoretical understanding of these types of
unsteady particle motions and flows outside of the weak-coupling limit and without restriction to
simple temporal protocols.

Having such a general theoretical understanding would be useful for a variety of reasons. Perhaps
most obviously, it would serve to unite the theoretical and experimental work that has already
been done. A variety of interesting flow phenomena have been observed in experimental studies
of spheres executing lineal motions in a variety of viscoelastic fluids. For example, sustained
oscillation in the settling velocity of a particle in both solutions of viscoelastic polymers [13]
and wormlike micellar solutions [14]. The nature of the instabilities causing these oscillations in
different fluid types can vary, and efforts to explore these instabilities using theory is ongoing.
Additionally, one particularly underexplored potential application for a more general understanding
of dynamic flows of viscoelastic fluids around spherical probe particles is in the field of nonlinear
microrheology.

Microrheology is a set of experimental techniques used to measure the rheological properties of
non-Newtonian fluids. In microrheology experiments, microscale probes, typically inert spherical
particles [15]—though some measurements have been carried out using other particle shapes such
as nanorods [16]—are embedded in a sample of the viscoelastic fluid of interest. Unlike traditional
macroscale rheology techniques, which require sample volumes on the order of milliliters, microrhe-
ology can be used for samples with volumes as small as a few nanoliters [17], or for unconventional
samples like the interior of living cells [18]. This is a major advantage over traditional rheological
techniques, particularly if the measurements are performed on precious or difficult to produce
materials for which a small sample volume may drastically reduce costs per experiment, or on
fluids like cytoplasm encased in a fragile structure like the cell that cannot be transferred to a regular
rheometer.

There are two main categories of microrheology techniques: passive and active. In passive
microrheology, the thermal fluctuations of a Brownian probe are the driving force for its movement,
and the generalized Stokes-Einstein relation can be used to infer the linear rheological properties
of the fluid from the mean-squared displacement of the probe particle [19]. This particle tracking
technique is limited to determining the linear response of materials. Conversely, active microrhe-
ology is not subject to this limitation. In active microrheology, the probe particle is impelled by
some known force perhaps through the use of optical [18,20–24] or magnetic [25–28] tweezers,
and the relationship between the applied force and the probe displacement is used to infer a
micro-rheological property of the fluid.

Currently, one of the major disadvantages of active microrheology is the lack of a general
understanding of how to interpret these micro-rheological properties when the viscoelastic material
is subject to strong deformations [19,20]. For small deformations, a known linear relationship
between the applied force and the probe displacement can be used determine the macroscopic linear
viscoleastic properties of the fluid [18]. Typically, the reported property is the complex modulus,
G∗(ω), as this is most familiar from macroscale rheology.

While nonlinear microrheology measurements have been made [21,27,29–31], the lack of a
generalized relationship between force and displacement has made it difficult to compare measure-
ments across materials or experiments. Additionally, theoretical work developing a fundamental
understanding of nonlinear microrheology has been mainly limited to analysis or simulations of
rheological probes in colloidal suspensions [32–35] or a few other model materials [36]. The range
of real materials to which such theories are applicable is not broad.

In recent work by Lennon et al. [37,38], a similar problem in the general representation of
nonlinear responses in traditional macroscale rheology was addressed via a Volterra series expansion
of the shear stress developed in response to arbitrary time-dependent, viscometric deformations.
For weakly nonlinear flows, the expansions derived in that work reveal a transfer function called
the third-order complex modulus, that is a material property characterizing nonlinear mechanical
responses. In this work, we develop an equivalent framework for interpretation of microrheological
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FIG. 1. Schematic depicting the flow geometry and boundary conditions for the velocity field.

measurements in the weakly nonlinear regime by formulating another Volterra series expansion for
the time-dependent force on a spherical probe undergoing lineal translation in a viscoelastic fluid.

Here, we solve for the force exerted on a sphere undergoing lineal translation through a viscoelas-
tic fluid. Though the technique we use could be applied to a wide variety of constitutive models,
here we employ two prototypical models of polymeric fluids: the Johnson-Segalman and Giesekus
fluids. These models have been used extensively in studies of motion of spheres in viscoelastic
fluids, and have some known limitations. Particularly, the Johnson-Segalman model is known to
exhibit instabilities in cases with significant extensional flow. We do not expect to encounter these
instabilities in our calculation, which is valid only in the limit of small Weissenberg and Reynolds
numbers. The force is computed using a perturbation expansion of the governing equations of these
flows in the limit of small deformation amplitudes (small Weissenberg numbers), as detailed in
Secs. II and III. We solve for the pressure and velocity fields in the fluid around the sphere to
second order in deformation amplitude and then show that the third-order contribution to the force
on the particle can be computed easily using the Lorentz reciprocal theorem. When the force on
the particle is expressed as a Volterra series expansion, a transfer function appearing at third order
in deformation amplitude, which we call the third-order resistivity, can be evaluated explicitly and
characterizes the nonlinear viscoelasticity of the fluid much like the third-order complex modulus
in viscometric flows. Section IV details the implications of this Volterra series representation of the
force and describes some visualization strategies that can be used to understand how constitutive
model parameters affect the third-order resistivity. Finally, in Sec. V this Volterra series is applied
to some specific particle motions and flows in the limit of weak deformations: start-up of lineal
motion, and active microrheology controlled by the motion of a harmonic trap.

II. PROBLEM DEFINITION

A spherical particle with radius a executes an arbitrary unsteady, lineal motion through a
viscoelastic fluid. A schematic representation of this scenario is found in Fig. 1. The motion of the
fluid and particle is assumed to be inertialess (Re � 1) and isothermal. The flow will be described
in a Cartesian coordinate system, with unit vectors ex, ey, ez. The boundary conditions are specified
from the frame of reference moving with the particle. Far from the sphere, the flow field is assumed
to have a known, uniform, time-dependent profile V (t )ez. The viscoelastic fluid is characterized by
a relaxation time λ and a total zero-shear viscosity η0 = ηs + ηp, where ηs is a Newtonian solvent
viscosity and ηp is a polymeric zero-shear viscosity.

The governing and constitutive equations are made dimensionless by rescaling the variables
carefully. The spatial position, r, which is centered on the spherical particle is scaled by the
particle radius a. We denote the distance from the particle center, r = |r|. Time, t , is scaled by
a characteristic time tc, which reflects the timescale on which the prescribed flow rate, V (t ), is
changing. tc can be mathematically defined in a variety of ways depending on the temporal protocol.
For most cases, an obvious tc will arise. For example, in a flow field with a time periodic velocity, a
natural definition for tc is the period. In a steady flow field, tc would be the duration of observation
and could tend to infinity. For a more complicated or even stochastically varying flow field, tc could
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be defined using features of the time autocorrelation function of V (t ). The fluid velocity, v(r, t ),
is scaled on vc, which is taken to be the maximum value of |V (t )|. Because we will solve the for
the fluid motion asymptotically, the velocity must be bounded in magnitude. The pressure, p(r, t ),
is scaled on η0vc/a. The Newtonian solvent stress, τs(r, t ), is scaled on ηsvc/a. The polymeric or
viscoelastic stress, τ p(r, t ), is scaled on ηpvc/a. The force exerted on the particle, F(t ), is scaled on
η0vca.

When these scaling relationships are applied, the conservation of mass and momentum in the
fluid can be written as

∇ · v(r, t ) = 0, (1a)

−∇p(r, t ) + β∇ · τs(r, t ) + (1 − β )∇ · τ p(r, t ) = 0, (1b)

where the Newtonian, τs(r, t ), and polymeric, τ p(r, t ), stresses are simply superimposed to give the
total stress in the fluid. The quantity, β = ηs/η0, denotes the fractional contribution of the solvent
to the zero shear viscosity. The quantity 1 − β = ηp/η0 is the similarly scaled polymeric viscosity.
The polymeric stress will depend on the constitutive model selected. Though the method described
in Sec. III is applicable for a wide variety of constitutive models, we here use the Johnson-Segalman
model with a Newtonian solvent as an example. In this case, the dimensionless representation of the
stress is

τs(r, t ) = 2e(r, t ), (2a)

τ p(r, t ) + De
∂

∂t
τ p(r, t ) + Wi

{
v(r, t ) · ∇τ p(r, t ) − 1

2
[A(r, t ) · τ p(r, t )

+ τ p(r, t ) · A(r, t )T ]

}
= 2e(r, t ), (2b)

where e(r, t ) is the rate-of-strain tensor:

e(r, t ) = 1
2 [∇v(r, t ) + ∇v(r, t )T ], (3)

and

A(r, t ) = (b − 1)∇v(r, t ) + (1 + b)∇v(r, t )T . (4)

In this model, b is an adjustable slip parameter, which can take on values between −1 and 1 and is
a measure of the contribution of nonaffine motion to the stress tensor. When b = 1, the Oldroyd-B
model is recovered. When b = 1 and β = 0, the upper-convected Maxwell model is recovered.
With β = 0, when b = 0 and b = −1, the corotational and lower-convected Maxwell models are
recovered, respectively.

The two additional dimensionless groups that emerge from these scaling arguments are: De =
λ/tc and Wi = λvc/a. The Deborah number, De, is a measure of how quickly the lineal velocity is
changing relative to the relaxation time of the fluid. The Weissenberg number, Wi, can be interpreted
as a ratio of the rate of lineal motion, vc/a, to the stress relaxation rate in the fluid, λ−1, or as a ratio
of elastic, λη0v

2
c , to viscous, η0vca, forces. Finally, the boundary conditions applied to the problem

are a no-slip and no-penetration condition at the surface of the sphere, v(r = 1, t ) = 0, the far-field
pressure approaching zero, p(r → ∞, t ) → 0, and the imposition of a time varying, uniform flow
profile in the far-field, v(r → ∞, t ) → V (t )ez.

Up to this point, we have described the viscoelastic fluid as if it has a single relaxation time, λ.
However, in many real viscoelastic fluids, there is a distribution of relaxation times, characterized
by the probability density function: P(λ). To more accurately model such a system, we introduce an
averaged polymeric stress:

〈τ p(r, t, λ)〉
λ

=
∫ ∞

0
τ p(r, t, λ)P(λ) dλ, (5)
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where τ p(r, t, λ) is the stress in a polymer mode with relaxation time λ. The subscript on the angle
brackets indicates that the average is taken with respect to the variable λ. In a fluid with a distribution
of relaxation times, ηp is now defined as the difference between the zero shear viscosity of the
fluid and the Newtonian solvent viscosity: ηp = η0 − ηs. In other literature, the quantity, ηpP(λ), is
sometimes used as a descriptor of the “stress relaxation spectrum” [39].

Numerous methods have been developed and used in the literature for estimation of both discrete
[40] and continuous [41,42] relaxation time distributions for viscoelastic materials. Most of these
methods use information about the linear responses of these materials to deformation to infer a
relaxation time spectrum using either theoretical models of these spectra or numerical optimization
routines. Many of these calculated distributions could be applied directly to the present calculations
to estimate the effect of having a broad relaxation time distribution. This can be done analytically
for discrete spectra, and in most cases could be computed numerically for continuous spectra, so we
aim to generalize the range of modeled responses and leave open that possibility.

The introduction of a range of relaxation times also calls for a redefinition of the Deborah
and Weissenberg numbers. Rather than being defined using the singular relaxation time λ, the
dimensionless groups will be defined on a characteristic relaxation time λ̄. This value should be
chosen carefully. Good choices include either the longest relaxation time in a discrete distribution
or the mean relaxation time: 〈λ〉λ, in the fluid, which will ensure that dimensionless groups defined
upon this quantity are representative for all polymer stress modes. Regardless of how λ̄ is specified,
for a fluid with a distribution of relaxation times, we can redefine the Weissenberg and Deborah
numbers as

De = λ̄

tc
, Wi = λ̄vc

a
. (6)

With these definitions, the scaled expression for a mode of the polymer stress in Eq. (2b) having
relaxation time, λ, is

τ p(r, t, λ) + De

(
λ

λ̄

)
∂

∂t
τ p(r, t, λ) + Wi

(
λ

λ̄

){
v(r, t ) · ∇τ p(r, t, λ)

− 1

2
[A(r, t ) · τ p(r, t, λ) + τ p(r, t, λ) · A(r, t )T ]

}
= 2e(r, t ). (7)

As is often done in calculations of this sort, we are assuming that the stresses from these different
polymer modes can be linearly superimposed and that the modes only interact indirectly through
local gradients in the velocity field [43–45]. The inertialess momentum balance in a fluid of this sort
is then

−∇p(r, t ) + β∇ · τs(r, t ) + (1 − β )∇ · 〈τ p(r, t, λ)〉
λ

= 0, (8)

where we have assumed that the distribution of relaxation times is spatially and temporally invariant.
Finally, the dimensionless force exerted on the particle is simply

F(t ) =
∫

∂�

n · [−p(r, t )I + βτs(r, t ) + (1 − β )〈τ p(r, t, λ)〉
λ
] dr, (9)

where ∂� is the surface with of the spherical particle with outward pointing unit normal, n.

III. METHOD OF SOLUTION

We aim to calculate the force exerted on a spherical particle immersed in a viscoelastic fluid with
a time-dependent, uniform flow in the far-field. Equivalently, this is the force exerted on a spherical
particle executing a time-dependent lineal motion through a viscoelastic fluid. In this section, we
briefly describe the nature of the solution we will produce and the solution method. Any reader
can understand the basis of the solution and method from this brief description and move onto the
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results presented in Sec. IV. A detailed derivation is provided in the following sections for the more
interested reader.

For weak imposed flows, we expect the time-dependent force, F(t ), on the particle to align with
the flow direction. Reversing the direction of the imposed flow should reverse the force. Therefore,
we also expect that the force, when represented in dimensional form, has a regular expansion in
odd powers of the characteristic velocity, vc. In dimensionless form, the leading-order nonlinear
contributions to the velocity and pressure fields with respect to a small deformation amplitude will
be O(Wi). Similarly, the leading-order nonlinear contribution to the dimensionless force will be
O(Wi2). We compute all of these leading-order perturbations to the well-known linear response
solution, which is briefly re-derived in Sec. III B. The nonlinear contributions to the velocity and
pressure fields are derived directly through an asymptotic expansion at small Wi in Sec. III C. The
nonlinear contribution to the force is derived from application of the Lorentz reciprocal theorem in
Sec. III D.

Because the far-field boundary conditions are time-dependent, the governing equations, their
asymptotic expansions at small Wi, solutions for the velocity and pressure fields, and the force are
represented more conveniently in the frequency domain through use of Fourier transformations.
In Secs. III B and III C, a clever rescaling of variables allows the linear response and leading
nonlinearities in the velocity and pressure fields in frequency space to be expressed in terms of
the velocity and pressure fields that would be calculated when the imposed far-field flow is steady
and of unit magnitude. Therefore, we compute steady-state solutions explicitly, and through these
scaling relationships, we determine the velocity and pressure fields in response to an unsteady,
far-field flow.

It should be noted for conceptual clarity that the application of an asymptotic expansion implies
the solution is only valid for vanishingly small Weissenberg numbers, so that the amplitude of
deformation is very weak. However, the Deborah number can be specified arbitrarily, so that
the imposed flow can change with arbitrary rapidity. In principle, it can be nice to close such
an asymptotic analysis by estimating the truncation error associated with terms neglected in the
asymptotic expansion or even computing the radius of convergence of the expansion if one exists.
We do not consider that problem here, which is quite difficult in general. However, results for the
radius of convergence of such an asymptotic expansion with respect to Wi for the steady lineal
motion of a sphere in an Oldroyd-B fluid exist [1].

A. Asymptotic expansion of variables and governing equations

For a small Wi, we suppose that all dimensionless variables can be written as a power series in
the Weissenberg number as follows:

v(r, t ) = v(1)(r, t ) + Wiv(2)(r, t ) + Wi2v(3)(r, t ) + · · · , (10a)

p(r, t ) = p(1)(r, t ) + Wip(2)(r, t ) + Wi2 p(3)(r, t ) + · · · , (10b)

τs(r, t ) = τ (1)
s (r, t ) + Wiτ (2)

s (r, t ) + Wi2τ (3)
s (r, t ) + · · · , (10c)

τ p(r, t, λ) = τ (1)
p (r, t, λ) + Wiτ (2)

p (r, t, λ) + Wi2τ (3)
p (r, t, λ) + · · · , (10d)

F(t ) = F(1)(t ) + Wi2F(3)(t ) + · · · . (10e)

In dimensional terms, v(1)(r, t ) contributes a term to the velocity that is linear in the deformation
amplitude, vc. Similarly, Wi2v(3)(r, t ) contributes a term that is cubic in the deformation amplitude.
With these expansions for the variables, Eqs. (1a) and (8) can be rewritten by matching terms of
O(Win−1) for n � 3:

∇ · v(n)(r, t ) = 0, (11a)

−∇p(n)(r, t ) + β∇ · τ (n)
s (r, t ) + (1 − β )∇ · 〈

τ (n)
p (r, t, λ)

〉
λ

= 0, (11b)
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while the constitutive model in Eqs. (2a) and (2b) matched at the same order is

τ (n)
s (r, t ) = 2e(n)(r, t ), (12a)

τ (n)
p (r, t, λ) + De

(
λ

λ̄

)
∂

∂t
τ (n)

p (r, t, λ)

= 2e(n)(r, t ) − λ

λ̄

n−1∑
m=1

{
v(n−m)(r, t ) · ∇τ (m)

p (r, t, λ) − 1

2

[
A(n−m)(r, t ) · τ (m)

p (r, t, λ)

+ τ (m)
p (r, t, λ) · A(n−m)(r, t )T

]}
. (12b)

Here, e(n)(r, t ) and A(n)(r, t ) have analogous definitions to e(r, t ) and A(r, t ) but using the
O(Win−1) term from the expansion of the velocity. For the dimensionless force on the particle:

F(n)(t ) =
∫

∂�

n · [−p(n)(r, t )I + βτ (n)
s (r, t ) + (1 − β )

〈
τ (n)

p (r, t, λ)
〉
λ

]
dr. (13)

One useful property arising from the divergence-free nature of the total stress is that, while the
force is calculated in Eq. (13) at the surface of the sphere, the force must be the same when evaluated
at any arbitrary spherical surface in the flow with r > 1. The force thus cannot depend on the spatial
coordinates; only on time (or, as we shall see later, frequency). This property must hold at all orders
of Wi and can be used to check the consistency of the solution.

There are two specific representations of the variables and governing equations with which
we will work simultaneously in what follows: the steady-state case and the frequency-domain
representation, with frequency denoted by ω. For the steady-state case, the time derivative of the
polymeric stress in Eq. (12b) is zero. Variables solving the steady-state governing equations will be
indicated with a tilde, for example: τ̃ (n)

p (r, λ).
The frequency-domain representation is formulated by rewriting all the variables in terms of their

Fourier transformation, which is indicated with a caret, e.g.,

τ (n)
p (r, t, λ) = 1

2π

∫ ∞

−∞
eiωt τ̂ (n)

p (r, ω, λ) dω. (14)

When substituted into the mass and momentum balance [Eqs. (11a) and (11b)], orthogonality of
Fourier modes can be used to simply replace time-domain variables (no caret) with frequency-
domain variables (caret). When substituted into the constitutive model, the O(Win−1) contribution
to the frequency-domain polymeric stress for n � 3 can be written as

τ̂ (n)
p (r, ω, λ) = χ (ω, λ)

{
2ê(n)(r, ω) − λ

λ̄

n−1∑
m=1

F
[

v(n−m) · ∇τ (m)
p

− 1

2

(
A(n−m) · τ (m)

p + τ (m)
p · A(n−m)T )]}

, (15)

where the Fourier transformation is

F[∗] =
∫ ∞

−∞
e−iωt (∗) dt . (16)

The frequency-domain transfer function: χ (ω, λ) = (1 + iωDeλ/λ̄)−1, will be used frequently
throughout the remainder of this work. It is the contribution of a polymer mode with relaxation
time λ to the complex viscosity of the viscoelastic fluid: η∗(ω) = β + (1 − β )〈χ (ω, λ)〉λ, made
dimensionless on η0.
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B. Linear solution for the velocity, pressure, and force

At leading order, the frequency-domain governing equations and boundary conditions are

∇ · v̂(1)(r, ω) = 0, −∇ p̂(1)(r, ω) + β∇ · τ̂ (1)
s (r, ω) + (1 − β )∇ · 〈τ̂ (1)

p (r, ω, λ)
〉
λ

= 0,

v̂(1)(r → ∞, ω) → V̂ (ω)ez, v̂(1)(r = 1, ω) = 0, p̂(1)(r → ∞, ω) → 0, (17)

where V̂ (ω) is the frequency-domain, far-field velocity. The frequency-domain constitutive model
at leading order is

τ̂ (1)
s (r, ω) = 2ê(1)(r, ω), (18a)

τ̂ (1)
p (r, ω, λ) = 2χ (ω, λ)ê(1)(r, ω). (18b)

The variables in the frequency-domain (caret) can be related to their steady-state counterparts (tilde)
via the following relationships:

v̂(1)(r, ω) = V̂ (ω)ṽ(1)(r), p̂(1)(r, ω) = V̂ (ω)η∗(ω) p̃(1)(r),

τ̂ (1)
p (r, ω, λ) = V̂ (ω)χ (ω, λ)τ̃ (1)

p (r), τ̂ (1)
s (r, ω) = V̂ (ω)τ̃ (1)

s (r). (19)

Substituting these relationships into the frequency domain equations recovers exactly the steady-
state form of the governing equations and constitutive model. The first-order velocity and pressure
profiles are given by the well-known solution for Stokes flow of a Newtonian fluid around a sphere.
In index notation,

ṽ
(1)
i (r) = 3

4r

(
δi3 + rir3

r2

)
− 1

4r3

(
δi3 − 3rir3

r2

)
, (20a)

p̃(1)(r) = 3r3

2r3
, (20b)

where the index 3 corresponds to the direction of the lineal motion, ez.
At leading order, the steady-state force is given simply the dimensionless Stokes drag: F̃(1) =

6πez. The unsteady force in frequency space is obtained by applying the scaling relationships
for the steady-state variables to the definition of the force at leading order [Eq. (13)]: F̂(1)(ω) =
6πη∗(ω)V̂ (ω)ez. For convenience, we can define a dimensional quantity: ζ ∗

1 (ω) = 6πη0a[β + (1 −
β )〈χ (ω, λ)〉λ], called the first-order complex resistivity. It is the linear, frequency-domain transfer
function between the dimensional force and the dimensional imposed velocity.

C. Leading-order nonlinearities in the velocity and pressure

At the next order in Wi, the governing equations and boundary conditions are

∇ · v̂(2)(r, ω) = 0, −∇ p̂(2)(r, ω) + β∇ · τ̂ (2)
s (r, ω) + (1 − β )∇ · 〈τ̂ (2)

p (r, ω, λ)
〉
λ

= 0,

v̂(2)(r → ∞, ω) → 0, v̂(2)(r = 1, ω) = 0, p̂(2)(r → ∞, ω) → 0, (21)

and the constitutive equation at this order is

τ̂ (2)
s (r, ω) = 2ê(2)(r, ω), (22a)

τ̂ (2)
p (r, ω, λ) = χ (ω, λ)

(
2ê(2)(r, ω) − λ

λ̄

[
v̂(1)(r, ω) ∗ ∇τ̂ (1)

p (r, ω, λ)

− 1

2

{
Â(1)(r, ω) ∗ τ̂ (1)

p (r, ω, λ) + τ̂ (1)
p (r, ω, λ) ∗ Â(1)(r, ω)T

)]}
. (22b)
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Here the ∗ in Eq. (22b) indicates a scaled convolution (and a dot product for vector/tensor
arguments) of two terms in the frequency domain:

F[ f (t )g(t )] = f̂ (ω) ∗ ĝ(ω) = 1

2π

∫∫ ∞

−∞
f̂ (ω1)ĝ(ω2)δ(ω − ω1 − ω2)dω1dω2, (23)

and appears due to application of the convolution theorem in evaluating the Fourier transform in
Eq. (15). It should be noted that while the symbol ∗ is typically used to denote convolution, here it
includes the scaling factor introduced due to the definition of the Fourier transform being used.

The relationships between the steady-state and frequency-domain terms at first order were
already specified and can be applied directly. Additional relationships between terms at second
order can also be determined:

v̂(2)(r, ω) = 1

η∗(ω)λ̄
〈λχ (ω, λ){V̂ (ω) ∗ [V̂ (ω)χ (ω, λ)]}〉λṽ(2)(r),

p̂(2)(r) = 1

λ̄
〈λχ (ω, λ){V̂ (ω) ∗ [V̂ (ω)χ (ω, λ)]}〉λ p̃(2)(r). (24)

It is important that the terms in angle brackets exist. Recall that the quantity, χ (ω, λ), scales as
λ−1 for large λ when ω �= 0 and that P(λ) must decay faster than λ−1 to be integrable. Therefore,
the scaling factor: 〈λχ (ω, λ)[V̂ (ω) ∗ (V̂ (ω)χ (ω, λ)]〉λ is finite for all ω �= 0. If this scaling factor
must be finite when ω = 0, then P(λ) must decay faster than λ−2 for large values of λ, because
χ (0, λ) = 1. An equivalent requirement in this case is that P(λ) must have a finite mean value:
〈λ〉λ.

Substitution of these scaled, second-order terms into the frequency-domain governing and con-
stitutive equations recovers the steady-state momentum balance at second order for a single-mode
Johnson-Segalman fluid:

∇2ṽ(2)(r) − ∇ p̃(2)(r) = (1 − β )∇ · {
ṽ(1)(r) · ∇τ̃ (1)

p (r) − 1
2

[
Ã(1)(r) · τ̃ (1)

p (r) + τ̃ (1)
p (r) · Ã(1)(r)T

]}
.

(25)

From conservation of mass, ṽ(2)(r) is also known to be divergence free. Using this in conjunction
with the steady-state momentum balance, the second-order steady-state velocity and pressure
profiles can be solved for analytically. We do this in tensorial form through use of the computer
algebra system Mathematica and the plugin EinS [46]:

ṽ
(2)
i (r) = b(1 − β )

[
3

8r3

(
1 − 3

r
+ 3

r2
− 1

r3

)
ri − 9

8r4

(
1 − 2

r
+ 1

r2

)
δi3r3

− 9

8r5

(
1 − 4

r
+ 5

r2
− 2

r3

)
rir3r3

]
, (26a)

p̃(2)(r) = 3

2r3

(
1 − 3

4r
− 3

r2
+ 5

4r3
+ 3

r5
− 3

2r7

)
+ 3b

4r3

(
1 − 3

2r
− 3

r2
+ 12

r3
− 15

r5
+ 6

r7

)
.

(26b)

These profiles, when converted to spherical coordinates with b = 1, corresponding to the
Oldroyd-B model, match exactly those determined at second order by Housiadas and Tanner for
the same model [1]. These steady-state analytical solutions can then be related to their frequency-
domain counterparts using the relationships in Eq. (24) to describe the time-dependent response.
The contribution of these fields to the force can also be calculated at second order. However, due
to the spatial symmetry of the pressure and stress at second order, this contribution to the force is
exactly zero.
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D. Leading-order nonlinearity in the force

To determine the force at third order in deformation amplitude, we must be able to evaluate
the surface integral of the third-order traction, n · [−p̂(3)(r, ω)I + τ̂ (3)

s (r, ω) + 〈τ̂ (3)
p (r, ω, λ)〉λ].

Equation (12b) allows one to specify part of τ̂ (3)
p (r, ω, λ) in terms of the first and second-order

velocity profiles. However, without solving the system of partial differential equations for the
third-order fields, we cannot know ê(3)(r, ω), which is needed to compute the solvent stress, or
p̂(3)(r, ω). Yet, by making use of the Lorentz reciprocal theorem, we can avoid having to explicitly
solve for the pressure and velocity fields at this next order.

We first define an auxiliary velocity field, v̂′(r), having pressure profile p̂′(r, ω). These auxiliary
velocity and pressure fields satisfy the Stokes equations:

η∗(ω)∇2v̂′(r) = ∇ p̂′(r, ω), ∇ · v̂′(r) = 0, (27)

with boundary conditions v̂′(r = 1) = u′, v̂′(r → ∞) → 0, and p̂′(r → ∞, ω) → 0. The constant
vector, u′, is chosen arbitrarily. The deviatoric stress in this auxiliary flow is τ̂ ′(r, ω) = 2η∗(ω)ê′(r),
where η∗(ω) is just the complex viscosity of the viscoelastic fluid under study at frequency, ω,
normalized on its zero shear viscosity. The rate of strain in the auxiliary flow is e′(r) = u′ · R(r),
with

Ri jk (r) = 3

4r3

[
−rkδi j + 1

r2
(3rir jrk + riδ jk + r jδik + rkδi j ) − 1

r4
5rir jrk

]
. (28)

Following the usual construction of reciprocal theorem type arguments, we know that∫
�

∇ · [−p̂(3)(r, ω)I + βτ̂ (3)
s (r, ω) + (1 − β )

〈
τ̂ (3)

p (r, ω, λ)
〉
λ

] · v′(r) dr

=
∫

�

∇ · [−p′(r, ω)I + τ ′(r, ω)] · v̂(3)(r, ω) dr, (29)

with � the volume of the fluid around the particle, because the divergence of the total stress in each
flow is zero. Applying the product rule and the divergence theorem along with some tedious algebra
leads to a surprisingly simple expression for the third-order contribution to the force on the particle:

u′ · F̂(3)(ω) = u′ ·
∫

∂�

n · [−p̂(3)(r, ω)I + βτ̂ (3)
s (r, ω) + (1 − β )

〈
τ̂ (3)

p (r, ω, λ)
〉
λ

]
dr

= (1 − β )
∫

�

e′(r) :
[〈
τ̂ (3)

p (r, ω, λ)
〉
λ
− 2〈χ (ω)〉ê(3)(r, ω)

]
dr, (30)

Recalling the definition of e′(r) and recognizing that the heterogeneity in the auxiliary flow field,
u′, is arbitrary, reduces the expression for the third-order force to

F̂(3)(ω) = (1 − β )
∫

�

R(r) :
[〈
τ̂ (3)

p (r, ω, λ)
〉
λ
− 2〈χ (ω, λ)〉ê(3)(r, ω)

]
dr. (31)

Finally, we can close this expression for the force by computing the average over modes for the
polymeric stress constitutive model at third order:〈

τ̂ (3)
p (r, ω, λ)

〉
λ
− 2〈χ (ω, λ)〉λê3(r, ω)

= −
〈
χ (ω, λ)

(
λ

λ̄

){
v̂(1)(r, ω) ∗ ∇τ̂ (2)

p (r, ω, λ) + v̂2(r, ω) ∗ ∇τ̂ (1)
p (r, ω, λ)

− 1

2

[
Â(1)(r, ω) ∗ τ̂ (2)

p (r, ω, λ) + Â(2)(r, ω) ∗ τ̂ (1)
p (r, ω, λ)

+ τ̂ (2)
p (r, ω, λ) ∗ Â(1)(r, ω)T + τ̂ (1)

p (r, ω, λ) ∗ Â(2)(r, ω)T
]}〉

λ

. (32)
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As illustrated in the previous sections, there are scaling relationships between the frequency-domain
terms in Eq. (32) (carets) and the steady-state solutions for those values (tildes). Therefore, one
can use the steady-state solutions for the velocity field at first and second order to determine
the third-order force. One caveat when formulating the solution this way is that the volume
integral over the fluid domain in Eq. (31) must converge. We know that R(r) ∼ O(r−2), and
〈τ̂ (3)

p (r, ω, λ)〉λ − 2η∗(ω)ê(3)(r, ω) ∼ O(r−4) in the large r limit. Therefore, this volume integral
is absolutely convergent. Additionally, the relaxation time distribution must decay fast enough that
the average in Eq. (31) is finite. As with the calculation of the leading-order nonlinearity in the
velocity and pressure fields, this always happens when the relaxation time distribution has a finite
mean value.

Once the third-order force is re-expressed in terms of the steady-state solutions, three groupings
of terms emerge as the products of volume integrals over the steady-state solutions with distinct
frequency domain coefficients. These coefficients depend on averages over the relaxation time
distribution and convolutions of the time-dependent flow, V̂ (ω), with the transfer function χ (ω, λ).
Here, we take advantage of the fact that averaging and convolution are integral operations whose
order can be interchanged freely so long as the integrals are absolutely convergent:

F̂(3)(ω) = C1(1 − β )
1

λ̄2

〈〈
λ1λ2χ (ω, λ1)

[
[V̂ (ω)χ (ω, λ1)] ∗

(
χ (ω, λ2)

η∗(ω)

× {V̂ (ω) ∗ [V̂ (ω)χ (ω, λ2)]}
)]〉

λ1

〉
λ2

+ C2(1 − β )
1

λ̄2

〈〈
λ1λ2χ (ω, λ1)

[
V̂ (ω) ∗

(
χ (ω, λ1)χ (ω, λ2)

η∗(ω)

× {V̂ (ω) ∗ [V̂ (ω)χ (ω, λ2)]}
)]〉

λ1

〉
λ2

+ C3(1 − β )
1

λ̄2
〈λ2χ (ω, λ)(V̂ (ω) ∗ (χ (ω, λ){V̂ (ω) ∗ [V̂ (ω)χ (ω, λ)]})〉λ, (33)

with

C1 = −
∫

�

R(r) :

{
ṽ(2)(r) · ∇τ̃ (1)

p (r) − 1

2

[
Ã(2)(r) · τ̃ (1)

p (r) + τ̃ (1)
p (r) · Ã(2)(r)T

]}
dr

= −(1 − β )
3πb2

175
ez, (34a)

C2 = −2
∫

�

R(r) :

{
ṽ(1)(r) · ∇ẽ(2)(r) − 1

2

[
Ã(1)(r) · ẽ(2)(r) + ẽ(2)(r) · Ã(1)(r)T

]}
dr

= −(1 − β )
3πb2

175
ez, (34b)

C3 = −
∫

�

R(r) :

{
−ṽ(1)(r) · ∇g̃(1)(r) + 1

2
[Ã(1)(r) · g̃(1)(r) + g̃(1)(r) · Ã(1)(r)T ]

}
dr

= −18π (1813 − 1727b2)

25025
ez, (34c)

and g̃(1)(r) = ṽ(1)(r) · ∇τ̃ (1)
p (r) − 1/2[Ã(1)(r) · τ̃ (1)

p (r) + τ̃ (1)
p (r) · Ã(1)(r)T ]. The convolutions in

Eq. (33) can be rewritten in a more convenient form that will ultimately make the expression for the
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force more compact by applying the identity:

â(ω)(b̂(ω) ∗ {ĉ(ω)[d̂ (ω) ∗ ê(ω)]})

= 1

(2π )2

∫∫∫ ∞

−∞
â(ω1 + ω2 + ω3)b̂(ω1)ĉ(ω2 + ω3)d̂ (ω2)ê(ω3)

× δ(ω − ω1 − ω2 − ω3) dω1dω2dω3, (35)

to yield

F̂(3)(ω) = −ez
1

(2π )2

∫∫∫ ∞

−∞

1

λ̄2

[
(1 − β )2 3πb2

175

1

η∗(ω2 + ω3)

×〈λχ (ω1 + ω2 + ω3, λ)χ (ω1, λ)〉λ〈λχ (ω2 + ω3, λ)χ (ω3, λ)〉λ (36)

+ (1 − β )2 3πb2

175

1

η∗(ω2 + ω3)
〈λχ (ω1 + ω2 + ω3, λ)χ (ω2 + ω3, λ)〉λ

×〈λχ (ω2 + ω3, λ)χ (ω3, λ)〉λ
+ (1 − β )

18π (1813 − 1727b2)

25025
〈λ2χ (ω1 + ω2 + ω3, λ)χ (ω2 + ω3, λ)χ (ω3, λ)〉λ

]

× V̂ (ω1)V̂ (ω2)V̂ (ω3)δ(ω − ω1 − ω2 − ω3) dω1dω2dω3. (37)

Equivalently, the third-order contribution to the force can be expressed in terms of a nonlinear
transfer function:

F̂(3)(ω) = −ez
1

(2π )2

∫∫∫ ∞

−∞
R∗

3(ω1, ω2, ω3)V̂ (ω1)V̂ (ω2)V̂ (ω3)δ(ω − ω1 − ω2 − ω3) dω1dω2dω3,

(38)
where the transfer function is like a dimensionless, third-order complex resistivity:

R∗
3(ω1, ω2, ω3)

= 1

λ̄2

[
(1 − β )2 3πb2

175

1

η∗(ω2 + ω3)
〈λχ (ω1 + ω2 + ω3, λ)χ (ω1, λ)〉λ〈λχ (ω2 + ω3, λ)χ (ω3, λ)〉λ

+ (1 − β )2 3πb2

175

1

η∗(ω2 + ω3)
〈λχ (ω1 + ω2 + ω3, λ)χ (ω2 + ω3, λ)〉λ〈λχ (ω2 + ω3, λ)

× χ (ω3, λ)〉λ + (1 − β )
18π (1813 − 1727b2)

25025
〈λ2χ (ω1 + ω2 + ω3, λ)

× χ (ω2 + ω3, λ)χ (ω3, λ)〉λ
]
. (39)

Section IV is devoted to understanding and interpreting this transfer function as a term in a Volterra
series expansion of the force in terms of the velocity.

IV. GENERALIZING, INTERPRETING, AND VISUALIZING THE MODEL PREDICTIONS

For asymptotically weak deformations, we have derived expressions for the leading-order
nonlinearities in the velocity and pressure fields in a Johnson-Segalman fluid flowing around a
stationary spherical particle with an arbitrarily unsteady, lineal flow imposed in the far-field having
characteristic magnitude vc. In dimensional form, these weak nonlinearities scale with v2

c . We have
also derived the leading-order nonlinearity in the force exerted on this stationary particle, which in
dimensional form scales with v3

c .
The asymptotic solutions derived in Sec. III, and the definition of the third-order force as written

in Eq. (38) are not limited to this specific constitutive model and could be calculated for a variety
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of models or measured in experiments. In the Appendix, we repeat the calculation for the Giesekus
model and compare the asymptotic behavior of the different models in this section. For both of the
constitutive models studied in this work, or for other models and materials, the force exerted on the
particle in an unsteady uniform flow field can be expressed in terms of a Volterra series, which we
will show serves as a useful conceptual framework for representing the nonlinear force-displacement
relationship for a particle immersed in a complex fluid.

A. Volterra series representation of the force-velocity relationship

The Volterra series is a general polynomial representation of a functional describing a scalar,
time-dependent input-output relationship. It is analogous to a Taylor series for a scalar, time
invariant function [47,48]. For the remainder of the manuscript, we will work in dimensional terms
and describe a particle moving through the fluid. The ez component of the dimensional force exerted
on a particle executing a lineal translation through a complex fluid with dimensional velocity, V (t )ez,
has the Volterra series in Fourier space:

ez · F̂(ω) = −
∞∑

n=1
n∈odds

1

(2π )n−1

∫
n· · ·

∫ ∞

−∞
ζ ∗

n (ω1, ..., ωn)δ(ω −
n∑

m=1

ωm)
n∏

m=1

V̂ (ωm)dωm. (40)

The quantities, ζ ∗
n (ω1, . . . , ωn), are called nth-order Volterra kernels, which can be recognized as

complex resistivities. The Volterra series is truncated at third order is

ez · F̂(ω) = −
∫ ∞

−∞
ζ ∗

1 (ω1)δ(ω − ω1)V̂ (ω1)dω1

− 1

(2π )2

∫∫∫ ∞

−∞
ζ ∗

3 (ω1, ω2, ω3)V̂ (ω1)V̂ (ω2)V̂ (ω3)δ(ω − ω1 − ω2 − ω3) dω1dω2dω3.

(41)

We can immediately identify the Volterra series coefficients with the dimensionless responses
determined in the asymptotic expansions of the previous section:

ζ ∗
1 (ω) = 6πη0a[β + (1 − β )〈(1 + iωλ)−1〉λ], (42a)

ζ ∗
3 (ω1, ω2, ω3) = η0aWi2

v2
c

R∗
3(ω1, ω2, ω3) = η0λ̄

2

a
R∗

3(ω1, ω2, ω3). (42b)

The minus sign introduced in the Volterra series comes from the fact that we have changed the frame
of reference from describing a particle held stationary in a far-field flow to considering a particle
executing a lineal translation in a stationary fluid.

Writing the force exerted on the particle as a Volterra series in the lineal particle velocity—or, as
we will see in Sec. V B, the lineal velocity as a Volterra series in the force—has several implications.
A generalizable relationship between the time-dependent force and velocity with this prescribed
lineal motion makes it far easier to relate experimental measurements of this nonlinear response
when different temporal protocols are used to drive particle motion in the same fluid. Section V C
will discuss this in the context of microrheology experiments in particular.

The first- and third-order complex resistivities each have real and imaginary components. In
keeping with the notation that is conventional in rheology, we describe these two parts separately:
ζ ∗

1 (ω) = ζ ′
1(ω) − iζ ′′

1 (ω) and ζ ∗
3 (ω1, ω2, ω3) = ζ ′

3(ω1, ω2, ω3) − iζ ′′
3 (ω1, ω2, ω3). For all complex

fluids, ζ ′
1(ω), ζ ′′

1 (ω) are positive and real. There is no restriction on the sign of ζ ′
3(ω1, ω2, ω3) or

ζ ′′
3 (ω1, ω2, ω3), but both are real numbers. The signs of these quantities when ω1, ω2, ω3 � 1 can be

interpreted in terms of shear thinning/thickening (real part) or strain softening/hardening (imaginary
part), instead. For finite values of the frequency, physical rationalizations for the signs of these terms
are still somewhat controversial. At zero frequency, the third-order transfer function reflects how the
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drag coefficient either increases or decreases with faster particle motion. Thus, the relationship to
thinning and thickening is plainly evident.

Thus far, much of the derivation has been in dimensionless terms. The complex resistivities
presented from here on are dimensional. It is useful to reflect on their units and how they might
be made into quantities that describe the fluid properties independent of the particle size. The
dimensional, first-order resistivity has dimensions in SI units of N s/m. It scales linearly with the
particle radius, a; thus, ζ ∗

1 (ω)/a depends only on the properties of the fluid. In fact, ζ ∗
1 (ω)/(6πa)

is the dimensional complex viscosity of the fluid. The dimensional third-order complex resistitivity
has dimensions in SI units of N s3/m3. It scales linearly with the inverse of the particle radius, a;
thus, ζ ∗

3 (ω1, ω2, ω3)a depends only on the properties of the fluid as well.
It will prove useful to understand some of the properties of the third-order complex resistivity

itself. There are two key symmetries inherent in the third-order complex resistivity ζ ∗
3 (ω1, ω2, ω3)

that impact the weakly nonlinear force-velocity relationship: Hermitian symmetry, arising from the
properties of the Fourier transform; and permutation symmetry, arising from the properties of the
Volterra series representation.

Hermitian symmetry of a function, f (ω) : R → C, implies that the value of that function for
argument −ω is the complex conjugate of the value for argument at ω. Hermitian symmetry is
guaranteed for V̂ (ω) because it is a Fourier transformation of a real-valued time signal. Thus,
Re[V̂ (−ω)] = Re[V̂ (ω)], and Im[V̂ (−ω)] = −Im[V̂ (ω)]. The same is true for ez · F̂(ω). Because
of the Hermitian symmetry of the force and the velocity, ζ ∗

1 (ω) also exhibits Hermitian sym-
metry, and the third-order resistivity satisfies the symmetry relations: Re[ζ ∗

3 (−ω1,−ω2,−ω3)] =
Re[ζ ∗

3 (ω1, ω2, ω3)] and Im[ζ ∗
3 (−ω1,−ω2,−ω3)] = −Im[ζ ∗

3 (ω1, ω2, ω3)].
A unique form of the third-order complex resistivity should also possess a permutation symmetry

that arises from the construction of the third-order term in the Volterra series. It is clear that simply
swapping the names of the frequencies in the triple integral in Eq. (41) (e.g., ω1 → ω2 → ω3 → ω1)
cannot change the result of the expression. In fact, all the Volterra series kernels are symmetric with
respect to the permutations of the frequencies. As such, for the the third-order complex resistivity:

ζ ∗
3 (ω1, ω2, ω3) = ζ ∗

3 (ω1, ω3, ω2) = ζ ∗
3 (ω2, ω1, ω3).

The expression for R∗
3(ω1, ω2, ω3) in Eq. (39) does not possess this permutation symmetry, but the

symmetric version of the third-order complex resistivity can easily be crafted by computing

ζ ∗
3 (ω1, ω2, ω3) = −η0λ̄

2

6a
[R∗

3(ω1, ω2, ω3) + R∗
3(ω2, ω3, ω1) + R∗

3(ω3, ω1, ω2)

+ R∗
3(ω3, ω2, ω1) + R∗

3(ω2, ω1, ω3) + R∗
3(ω1, ω3, ω2)]. (43)

We will assume that the third-order transfer functions are always represented in their symmeterized
form for the remainder of the work unless otherwise noted.

B. Visualizing the third-order complex resistivity

1. Projections of the third-order complex resistivity

Here, we will explore two methods for visualizing the third-order complex resistivity in the
Johnson-Segalman and Giesekus models. The first and simpler of the two visualization methods
depicts the real and imaginary parts of ζ ∗

3 (n1ω, n2ω, n3ω) as a function of ω for different integer
triplets. One of the major benefits of this visualization strategy is that it is very similar to strategies
already ubiquitous in visualizing measurements of the complex modulus, G∗(ω), and complex
viscosity, η∗(ω), in both traditional rheology and microrheology experiments. The familiarity should
make it easier to compare the third-order complex resistivity arising from different models or even
experimental measurements.

In the projections shown throughout this work, two sets of integer triplets {n1, n2, n3} will be
shown: {1, 1,−1} and {1, 1, 1}. The third-order resistivity along these coordinates corresponds
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FIG. 2. Projections of ζ ∗
3 (ω1, ω2, ω3) for a Johnson-Segalman fluid with b = 0.5 and β = 0.5, with the first

harmonic response on the left and the third harmonic response on the right. Solid lines indicate positive values,
and dashed lines indicate negative values.

to the nonlinearities excited by a lineal velocity that oscillates sinusoidally at a single frequency,
ω. These values could be measured, for example in a displacement controlled microrheology
experiment in which the probe particle is made to oscillate at small displacement amplitude and
with frequency ω. The frequency would be swept across a range of values—as it is in a typical
“frequency sweep,” linear response measurement—to probe the nonlinear viscoelasticity on a vari-
ety of different timescales [49]. As in a medium amplitude oscillatory shear (MAOS) experiment,
the third-order resistivities, ζ ∗

3 (ω,ω,−ω) and ζ ∗
3 (ω,ω,ω), would correlate with the nonlinearities

in the Fourier transformation of the force at frequencies ω and 3ω or the first and third harmonic,
respectively [50]. Figure 2 depicts these third-order resistivities for a particular Johnson-Segalman
fluid with a single relaxation time: P(λ) = δ(λ − λ̄),where δ is a Dirac δ function and a modest
value of the slip parameter, b = 0.5.

While mathematical development shown in Sec. III accommodates for systems with a spectrum
of relaxation times, the particular relaxation time spectrum of interest will depend on the particular
problem in question. Since we aim to provide a general overview of the behavior of the third-order
complex resistivity, we will simply show a single relaxation mode. For an example of how a relax-
ation time spectrum can be used to better capture the behavior of a real system using these models,
the reader is directed to Ref. [51], showing how a relaxation time spectrum for a wormlike micelle
solution can be determined via linear response data and used to calculate the third-order response.
Additionally, though only theoretical results are presented here, experimental measurements of the
third-order complex resistivity have been carried out for some real viscoleastic fluids in this paper.
While extensive comparison to these measurements is outside the scope of this work, it is worth
noting that the predictions of the corotational Maxwell (CRM) model are in qualitative agreement
with the measurements made in a wormlike micelle solution. The CRM model is frequently used
to describe wormlike micelle solutions [52], and the good agreement between the calculated and
measured third-order complex resistivity in this case indicate that our analytical calculation of the
third-order complex resistivity is able to capture the behavior of a real system.

The resulting curves are feature-rich just like those of intrinsic nonlinearities probed via simple
shear rheometry [37,38]. For instance, the third-order complex resistivity changes sign. At low
frequencies, the leading nonlinearities act to diminish the force exerted on the particle relative to the
linear response. At these low frequencies, the response function is dominated by its real part, and
thus describes a primarily viscous response and thinning of the fluid upon being deformed. At higher
frequencies, the sign of the response measured on the third harmonic of the force, ζ ∗

3 (ω,ω,ω),
changes, and the nonlinear response functions measured on both the first and third harmonic of the
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FIG. 3. Projections of ζ ∗
3 (ω1, ω2, ω3) for a Johnson-Segalman fluid. In all cases, β = 10−3, while the slip

parameter b, for the top, middle, and bottom rows, respectively, is 0, 0.5, 1. The first harmonic response is on
the left, and the third harmonic is on the right; solid lines indicate positive values, and dashed lines indicate
negative values.

force are dominated by their imaginary parts. This suggests the nonlinear response is more elastic on
these timescales. The nature of these features depends strongly on the adjustable parameters— and
even the structure—of the model. For instance, Fig. 3 depicts the same projections of the third-order
complex resistivity for a strongly coupled Johnson-Segalman fluid, β � 1, with a single relaxation
time for different values of the slip parameter.

For the Johnson-Segalman model, the third-order complex resistivity depends on simple but
revealing ways on the slip parameter, b, and on the ratio of the solvent to the zero shear viscosity,
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β. When b = 0, as for a single-mode, corotational Maxwell fluid, C1 = C2 = 0, and the nonlinear
response to a single tone oscillation is characterized by

ζ ∗
3 (ω,ω,ω) =

(
4662π

3575

)
η0λ̄

2(1 − β )

a

(
1

1 + iλ̄ω

)(
1

1 + 2iλ̄ω

)(
1

1 + 3iλ̄ω

)
, (44a)

ζ ∗
3 (ω,ω,−ω) =

(
4662π

3575

)
η0λ̄

2(1 − β )

a

[
1

1 + 2iλ̄ω + (λ̄ω)2 + 2i(λ̄ω)3

]
. (44b)

At high frequency, ωλ̄ 
 1, these response functions are dominated by their imaginary parts, which
have opposite signs and each decay as ω−3. For most values of b and in the weak coupling limit
for which β approaches 1 asymptotically, these transfer functions take on an almost identical form
to that given by the corotational Maxwell model too. In particular, for values of b smaller than
1727(1 − β )/1813, and β → 1, Eqs. (44a) and (44b) are good asymptotic approximations when the
rational multiple of π in the prefactor is replaced by 18(1813 − 1727b)/25 025. The error incurred
in this approximation is of order (1 − β )2.

In the strong coupling limit, β → 0, there are no convenient simplification of third-order complex
resistivity. However, we can observe that because η∗(ω), χ (ω, λ̄) ∼ ω−1 at high frequencies, we
should expect that ζ ∗

3 (ω,ω,±ω) will decay as ω−3. Figure 3 shows just how feature rich the
nonlinear transfer functions are in the strong coupling limit. They can exhibit multiple sign changes
whose existence and position depends sensitively on the value of the slip parameter. This is also
known from analysis of intrinsic nonlinearities of Johnson-Segalman fluids in simple shear flows
[37,53].

Similar analyses can be done for the Giesekus model, for which the full form of the third-order
complex resistivity is shown in the Appendix. The single-mode Giesekus constitutive model defines
the polymeric contribution to the stress as:

τ p(r, t ) + De
∂τ p

∂t
(r, t ) + Wi{α[τ p(r, t ) · τ p(r, t )] + v(r, t ) · ∇τ p(r, t )

−[τ p(r, t ) · ∇v(r, t ) + ∇vT (r, t ) · τ p(r, t )]} = 2e(r, t ). (45)

It contains the adjustable “mobility factor” α, which scales the quadratic nonlinearity in the stress
and is associated with anisotropic hydrodynamic drag on polymer molecules [54]. When α = 0, the
Oldroyd-B model is recovered.

By the same logic used in examining the results of calculations with the Johnson-Segalman
model, it is expected that the third-order resistivity of a single-mode Giesekus fluid would decay
at high frequencies, ωλ̄ 
 1, as ω−3 due to the presence of a dominant α-independent term that
scales as ω−3. Projections of the third-order complex resistivity for a Giesekus fluid, like those in
Fig. 4, show a variety of other features that can be used to make inferences about the fluid behavior.
For example, at α = 0.3 and α = 0.5, the third harmonic measurement, ζ ∗

3 (ω,ω,ω), features two
sign changes in its real part. Over that distinct range of moderate frequencies, ζ ′

3(ω,ω,ω) is positive,
while it is negative at both low frequencies and higher frequencies. The real part of the first harmonic
measurement, ζ ′

3(ω,ω,−ω), also features a sign change for both values of α, though it occurs at
significantly higher frequency for α = 0.5. Both the first and third harmonics are dominated by
the real part at low frequency and the imaginary part at high frequency. This is an indication of a
transition from viscous to elastic nonlinearities when the variation in the deformation rate occurs on
shorter timescales. These changes in response are remarkably sensitive to the value of α.

2. Contours of the third-order complex resistivity on a constant L1-norm surface

While it is clear that these projections of the third-order complex resistivity can provide insights
into distinguishing features of different fluid responses, they do not represent the full wealth of
information captured in the entire transfer function. We introduce a second and somewhat more
complicated visualization strategy for understanding ζ ∗

3 (ω1, ω2, ω3), which is intended to more
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FIG. 4. Projections of ζ ∗
3 (ω1, ω2, ω3) for a single-mode Giesekus fluid with β = 10−3 and α = 0.5 (top

row), α = 0.3 (bottom row). The first harmonic response is on the left, and the third harmonic on the right;
solid lines indicate positive values, and dashed lines indicate negative values.

fully capture the data-rich nature of this function by eliminating the constraint of only showing
ζ ∗

3 (n1ω, n2ω, n3ω) over a range of characteristic frequencies ω.
The third-order complex resistivity exists in a three-dimensional frequency space characterized

by (ω1, ω2, ω3). We will examine a constant L1-norm subspace of the three-dimensional frequency
space, with the L1-norm given by

‖ω‖1 = |ω1| + |ω2| + |ω3|.
In the three-frequency space, a constant L1-norm surface is a regular octahedron, as shown in
Fig. 5. The lines on the surface of the different octahedra are the contours of the real (top row)
and imaginary (bottom row) parts of ζ ∗

3 (ω1, ω2, ω3) on the surfaces given by a particular value of
λ̄‖ω‖1.

These complete representations of the third-order complex resistivity on the constant L1-norm
surface show how this function behaves and changes throughout the entire frequency space. How-
ever, due to the symmetries outlined in Sec. IV A, Fig. 5 also contains redundant information. We
can take advantage of these symmetries to simplify visualization of the contours of ζ ∗

3 (ω1, ω2, ω3).
Large portions of the following method for doing so were initially developed by Lennon et al. [37]
for visualization of the third-order complex modulus used in medium-amplitude parallel superpo-
sition (MAPS) rheology. For the purpose of brevity, only the essential parts of this visualization
strategy will be described here.

Permutation symmetry divides the octahedral surface into 12 subregions, indicated by the dashed
lines in Fig. 6. Of these 12, only two can be specified uniquely due to permutation symmetry;
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FIG. 5. Contours of ζ ∗
3 (ω1, ω2, ω3) for one particular Johnson-Segalman fluid shown in three dimen-

sions on different constant 1-norm surfaces. The top row shows ζ ′
3(ω1, ω2, ω3), and the bottom row shows

ζ ′′
3 (ω1, ω2, ω3). In both rows, from left to right λ̄‖ω‖1 = 0.1, 1, 10.

these are colored at the front and back of the octahedron. However, these two regions are directly
related by Hermitian symmetry. So, the behavior of the third-order complex resistivity can be fully
understood from its behavior in the region highlighted in the front of the octahedron in Fig. 6.

In Fig. 6, this triangular subregion that fully defines the behavior of the third-order complex
resistivity is lifted from the surface of the octahedron and projected flat into a two dimensional space.
This region can be further divided into four subspaces, geometrically defined by the boundaries:

A : ω1 � ω2 � ω3, ω1, ω2, ω3 � 0, (46a)
B : ω1 � ω3 � −ω2, ω1, ω3 � 0 � ω2, (46b)
C : ω1 � −ω2 � ω3, ω1, ω3 � 0 � ω2, (46c)
D : −ω2 � ω1 � ω3, ω1, ω3 � 0 � ω2. (46d)

FIG. 6. Subregions of the constant L1-norm space (|ω1| + |ω2| + |ω3| = ω∗) used to fully define
ζ ∗

3 (ω1, ω2, ω3). Reproduced from Ref. [37] and modified with permission.
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(a) λ̄ ‖ω‖1 = 1 (b) λ̄ ‖ω‖1 = 10

FIG. 7. Linearly spaced contours of ζ ∗
3 (ω1, ω2, ω3) at different values of λ̄‖ω‖1 for a Johnson-Segalman

fluid with β = 10−3, and b = 1 (top row), or b = 0.5 (bottom row).

Through proper application of the symmetries previously detailed, any point in 3D frequency
space can be associated with a point that satisfies one of four inequalities in Eq. (46), thus allowing
the behavior of ζ ∗

3 (ω1, ω2, ω3) to be depicted and described in one of these four subregions.
In MAPS rheology, the specific vertices marked in Fig. 6 are related to common flow

protocols used to make weakly nonlinear rheological measurements with traditional rheology
equipment [medium-amplitude oscillatory shear (MAOS) and parallel superposition rheology
(PS)]. In microrheology experiments, the typical imposed flow protocol is a single-tone os-
cillation. If extended into the nonlinear regime by imposing medium-amplitude single-tone
oscillation, then this would be analogous to the MAOS single-tone flow protocol. However,
microrheology experiments do not have to be limited to measurement of the third-order com-
plex resistivity at vertices on the periphery of this triangle. Exploration of the interior of this
domain could carry a wealth of information about material behavior, which might be used to
improve model or parameter identification or predict behavior of such fluids in different flow
protocols.

The highlighted area shown in Fig. 6 can be “lifted” from the surfaces shown in Fig. 5, to depict
the contours of the third-order complex resistivity in two dimensions without loss of nonredundant
information, due to the previously stated symmetries. This can be done for different values of
the frequency L1-norm and for a variety of constitutive models if the analytical expression for
ζ ∗

3 (ω1, ω2, ω3) is known.
Figure 7 shows examples of these contour plots for the Johnson-Segalman model in the strong

coupling limit β → 0 at both moderate (b = 0.5) and high (b = 1) values of the slip parameter.
These plots can be generated at different values of λ̄‖ω‖1, with higher values reflecting features of
the nonlinear response excited by variations in deformation rate on shorter timescales.

The same can be done for the Giesekus model, as shown in Fig. 8 in the strong coupling limit
β → 0 with α = 0.3. It is worth noting that the qualitative nonlinear response of the Johnson-
Segalman and Giesekus models is fairly similar at low frequencies λ̄‖ω‖1, or for velocities that
change slowly in time. However, at higher λ̄‖ω‖1, the nonlinear responses have starkly different
qualitative features that are easily recognized by these contours.
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(a) λ̄ ‖ω‖1 = 1 (b) λ̄ ‖ω‖1 = 10

FIG. 8. Linearly spaced contours of ζ ∗
3 (ω1, ω2, ω3) at different values of λ̄‖ω‖1 for a Giesekus fluid with

α = 0.3 and β = 10−3.

The weakly nonlinear behavior of viscoelastic materials described by these constitutive models
is highly sensitive to the timescale on which it is probed, the model structure, and the model
parameters. In all of the contour plots shown, the behavior of the third-order complex resistivity
changes drastically with even small changes in the ω coordinate. Measurements taken at one set
of ω coordinates are not necessarily informative about the behavior of ζ ∗

3 (ω1, ω2, ω3) elsewehere
in three-dimensional ω space. However, a frequency sweep with a single-tone oscillation in the
velocity or, better yet, a method of probing broadly the response across the surface of the constant
L1-norm surface can provide a wealth of distinctive information about the fluid’s behavior, aiding
in identification of the appropriate model to describe it and determining the parameters of that fluid
model with great sensitivity [52].

V. EXAMPLE FLOWS CALCULATED FROM THE WEAKLY NONLINEAR RESPONSE

To clearly illustrate the flexibility and utility of the solutions we have derived for the weakly
nonlinear response of a particle to lineal motion, we will present some specific examples. First, we
examine two different “start-up” problems for motion in a Johnson-Segalman fluid. One of these is
the calculation of the force on a particle suddenly set into motion. The other is the calculation of
the velocity of a particle in response to a suddenly applied force, which is analogous to a frequently
performed experiment in studying various viscoelastic fluids, in which a sphere is suddenly released
into and translates through the fluid under the influence of gravity. Then, we discuss the motion of
a particle in a harmonic trap whose basin of attraction moves in a line as in an active microrheology
experiment.

A. The force on a particle suddenly set into motion at constant velocity

Here, we apply ζ ∗
3 (ω1, ω2, ω3) derived previously for the single-mode Johnson-Segalman model

to predict the weakly nonlinear force exerted on a particle on start-up of a steady lineal motion of the
particle. The total force exerted on the particle by the fluid, ez · F(t ) resulting from a lineal motion
with V (t ) = −V H (t ), where H (t ) is the Heaviside step function, can be written as the the sum of a
linear contribution denoted: F (1)(t ), and a weakly nonlinear contribution denoted: F (3)(t ) such that
ez · F(t ) = F (1)(t ) + F (3)(t ).

In Fourier space, the lineal speed is

V̂ (ω) = −V

[
πδ(ω) + 1

iω

]
, (47)

from which we find that the linear contribution to the force in Fourier space is

F̂ (1)(ω) = V ζ ∗
1 (ω)

[
πδ(ω) + 1

iω

]
, (48)
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or in real space, for t > 0:

F (1)(t ) = 6πη0aV
[
β + (1 − β )(1 − e− t

λ̄ )
]
. (49)

As shown in Fig. 10, the force at low Weissenberg numbers grows toward a plateau on long
timescales in an exponential fashion. At third order, the contribution to the force in Fourier space
takes the form:

F̂ (3)(ω) = − 1

(2π )2

∫∫∫ ∞

−∞
ζ ∗

3 (ω1, ω2, ω3)V̂ (ω1)V̂ (ω2)V̂ (ω3)δ(ω − ω1 − ω2 − ω3)dω1dω2dω3.

(50)
In the time domain, this contribution to the force is

F (3)(t ) = V 3
∫∫∫ t

−∞
F−1

ω1,ω2,ω3
[ζ ∗

3 (ω1, ω2, ω3)](τ1, τ2, τ3)dτ1dτ2dτ3. (51)

For the single relaxation time Johnson-Segalman fluid, this contribution can be written as

F (3)(t ) = 6πη0λ̄
2V 3

a
[A(3)(t ) + B(3)(t ) + C(3)(t )] = 6πη0aV Wi2[A(3)(t ) + B(3)(t ) + C(3)(t )],

(52)
with Wi = V λ̄/a, and

A(3)(t ) = −b2(1 − β )2

350

(
1 + 1

β2λ̄
{β(1 − β )2λ̄e− t

λ̄ ( 2−β

1−β ) − (1 − β )2λ̄e− t
λ̄ ( 1

1−β )

−βλ̄e− 2t
λ̄ + [λ̄(1 − 2β + 2β2 − β3) − tβ(1 + β )]e− t

λ̄ }
)

, (53a)

B(3)(t ) = −b2(1 − β )2

350

{
1 + β3

(1 − β )3
e− t

λ̄ ( 1
β ) − 1

2(1 − β )3λ̄2
[2β2λ̄2 − 2β(1 − β )λ̄(t + λ̄)

+ (1 − β )2(t2 + 2λ̄t + 2λ̄2)]e− t
λ̄

}
, (53b)

C(3)(t ) = −3(1813 − 17 27b2)(1 − β )

25025

[
1 − 1

2λ̄2
(t2 + 2λt + 2λ̄2)e− t

λ̄

]
. (53c)

Though some of these expressions are long and appear complicated, they simply reflect the
product of different exponential decays with polynomial functions of time. When b = 0 as in the
corotational Maxwell model, the exponential decay occurs only on the timescale λ̄. However, for
other values of b additional exponential decay modes with timescales proportional to λ̄ but weighted
on either the relative solvent or polymer viscosity govern the start-up response. This relatively
simple function is easy to visualize, as in Figs. 9 and 10. This asymptotic model for the force
during start-up of lineal motion predicts many of the features and behaviors one would expect from
other start-up problems in rheology.

In Fig. 10, the Wi = 0, or linear, case predicts growth of the force from 0 to a steady plateau.
With increasing Wi, the terminal force normalized by the expectation for steady linear response is
decreasing. For larger Weissenberg numbers, this reduction becomes increasingly significant, and
the predicted total force begins to have features like a small overshoot before reaching the steady
state. These kinds of features are qualitatively similar to some experimental observations of start-up
flows around spheres [10].

Variation of the slip parameter b in absolute value from shows that there is a reduction in the force
that is greatest for the case of b = 0, steadily decreases as |b| is increased, and the smallest reduction
in force is obtained for |b| = 1. This is consistent with the predictions of the Johnson-Segalman
model in the case of simple shear, in which no shear thinning is predicted for the fully affine and
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FIG. 9. Dimensionless third-order force for β = 10−3 over time with a variety of slip parameters as
indicated by the legend at the right of the figure.

fully nonaffine cases (in this case, b = 1 and b = −1), with the maximum contribution to shear
thinning expected for the corotational case (in this case, b = 0) [55].

Though determining an exact limit of the Weissenberg number for which these calculations are
valid is difficult, analysis of the predicted force allows us to define a rough upper limit of the
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FIG. 10. Total dimensionless force over time following the sudden lineal motion of a particle with both
linear and third-order contributions at a variety of Weissenberg numbers and slip parameters with β = 10−3.
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Weissenberg number for these calculations. The predictions become physically unrealistic when
the predicted total force becomes negative. This occurs around Wi = 2.15 for b = 0, which predicts
the greatest decrease in force. It is likely that even below this limit, the predictions of this calculation
become unreliable, which is why results here are presented mostly for Wi � 1.

B. Expressing the velocity in terms of the force in the weakly nonlinear limit

To this point, we have determined the unsteady force exerted on a sphere in a viscoelastic fluid as
a function of an imposed, unsteady, lineal velocity of the particle. However, it may be desirable to
express the lineal, unsteady velocity, V (t ), in terms of the force exerted on the particle by the fluid,
F (t ). This expression in the weakly nonlinear limit can be written as an analogous set of terms from
a truncated Volterra series:

V̂ (ω) = −ξ ∗
1 (ω)F̂ (ω) − 1

(2π )2

∫∫∫ ∞

∞
ξ ∗

3 (ω1, ω2, ω3)F̂ (ω1)F̂ (ω2)F̂ (ω3)

× δ(ω − ω1 − ω2 − ω3) dω1dω2dω3, (54)

where ξ ∗
1 (ω) is called the first-order complex mobility and ξ ∗

3 (ω1, ω2, ω) is the third-order complex
mobility. The mobility and resistivity kernels are directly related to one another, ξ ∗

1 (ω) = 1/ζ ∗
1 (ω),

and

ξ ∗
3 (ω) = − ζ ∗

3 (ω1, ω2, ω3)

ζ ∗
1 (ω1 + ω2 + ω3)ζ ∗

1 (ω1)ζ ∗
1 (ω2)ζ ∗

1 (ω3)
, (55)

just as was shown for the complex moduli and complex compliance in previous work on MAPS
rheology [37]. Because ζ ∗

1 (ω) ∼ a and ζ ∗
3 (ω1, ω2, ω3) ∼ a−1, ξ ∗

3 (ω1, ω2, ω3) ∼ a−5. From this, we
can see that the third-order complex mobility is highly sensitive to the particle size.

This mobility relation, for instance, makes it possible to determine the time dependent velocity of
a particle suddenly set into motion by a force that is constant in time, so long as the magnitude of that
force is sufficiently small. In the limit that the particle inertia is negligible, one would simply replace
the force the fluid exerts on the particle, F (t ), with the negative of the impulsive force, −FH (t ),
where H (t ) is the Heaviside step function. The predicted time dependent velocity for a particle
suddenly impelled by a constant force is shown in Fig. 11 for a fluid described by the corotational
Maxwell model. The characteristic velocity on which the particle velocity is made dimensionless
is simply: vc = F/(6πη0a), and the Weissenberg number is defined with respect to this velocity
multiplied by 6π .

An interesting observation from experiments with sedimenting particles in viscoelastic fluids is
that in some fluids the magnitude of the force is so large that the rapid particle motion induces a sort
of elastic recoil. When this occurs, the particle velocity oscillates rather than reaching a steady state.
At some finite point in time after the particle is set into motion, V ′(t ) = F−1[iωV̂ (ω)] = 0, rather
than the particle decelerating monotonically toward its terminal velocity. The magnitude of the
force required to induce this reversal in acceleration is worth considering and has been investigated
experimentally [14,56]. We might approximate it by considering the Volterra series for the velocity
truncated at third order and identifying when the time rate of change of the velocity is zero. This
same equation can be interpreted as a direct relationship between an appropriately scaled force—a
Weissenberg number for the problem of a particle impelled by a sudden force—and a function of
the time coordinate:

Wi2 =
(

F λ̄

η0a2

)2

= − (2π )2λ̄2

η0a2

× F−1[iωξ ∗
1 (ω)Ĥ (ω)]

F−1
[
iω

∫∫∫ ∞
−∞ ξ ∗

3 (ω1, ω2, ω3)δ(ω − ω1 − ω2 − ω3)Ĥ (ω1)Ĥ (ω2)Ĥ (ω3) dω1dω2dω3
] .

(56)
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FIG. 11. Dimensionless velocity of a particle over time following a suddenly applied force including both
the linear and third-order contributions at a variety of Weissenberg numbers with b = 0.

For a given value of the Weissenberg number, this relationship gives the corresponding points in
time at which the time rate of change in the velocity might become zero. We plot this relationship
in Fig. 12 for the corotational Maxwell model with a single relaxation time in both the strong-
and weak-coupling limits. Because the Weissenberg number must be real valued, we consider only
positive values of Wi2.
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FIG. 12. Time of undershoot, tm/λ̄, as a function of Wi. Note that while the overall trend is similar for both
the strong-coupling and weak-coupling limits, the magnitudes are vastly different due to the dependence on
β, with the undershoot occurring at much shorter times in the strong-coupling limit. (a) Strong-coupling limit
(β = 0.01) and (b) Weak-coupling limit (β = 0.99).
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The relationships we have derived here do not predict oscillations in the velocity, but rather
an undershoot in velocity that subsequently levels out to the terminal velocity as seen in Fig. 10.
Therefore, these results are not directly analogous to the experimental observations of oscillations
in the settling velocity, The instabilities observed in experimental study of wormlike micelles are
elastic in nature, resulting from flow-induced micellar breakage [14,56,57], and the onset of these
instabilities have been shown to be a function of both Weissenberg and Reynolds number. Though
the Reynolds number in some of the experimental measurements in which instability is observed
is very small, and thus in the limit which we are studying. the Weissenberg number in such cases
is moderate to high, outside the range for which our calculations are valid. However, the model
appears to describe a related effect in the weakly nonlinear limit.

As clearly seen in Fig. 12, in both strong- and weak-coupling cases for the corotational Maxwell
model, an undershoot in the velocity occurs for all Weissenberg numbers, though at significantly
longer times for low Wi. Though the dependence of the time to reach the undershoot on Wi is very
similar in both the weak- and strong-coupling limits, the undershoot in the velocity occurs much
sooner in the strong-coupling limit than the weak-coupling limit. Additionally, the relative scale of
the undershoot is larger in the strong-coupling limit.

C. The weakly nonlinear response of a particle in a microrheology experiment

In one active microrheology experiment, a spherical probe particle is driven to move along with
a trap produced by a laser or magnetic tweezer. If the trap is relatively stiff or the displacement
between the particle and the focus of the trap is small, then the force exerted by the trap on the
particle is well approximated as linear in the displacement: Ftrap(t ) = −k[X(t ) − Xtrap(t )], where k
is the stiffness. We will assume for these purposes that there is no nonlinearity in the trapping force,
though this assumption is easily relaxed. In such microrheology experiments, the position of the
trap Xtrap(t ) = Xtrap(t )ez can be controlled to achieve a lineal motion. The position of the particle
X(t ) = X (t )ez can be measured and for small, lineal trap motions, the particle will execute a lineal
motion too. We aim then to determine a Volterra series relationship between the particle position
and the trap location truncated in the weakly nonlinear limit:

X̂ (ω) = ψ∗
1 (ω)X̂trap(ω) + 1

(2π )2

∫∫∫ ∞

−∞
ψ∗

3 (ω1, ω2, ω3)X̂trap(ω1)X̂trap(ω2)X̂trap(ω3)

× δ(ω − ω1 − ω2 − ω3) dω1dω2dω3. (57)

The newly specified Volterra series coefficients, ψ∗
1 (ω) and ψ∗

3 (ω1, ω2, ω3), will be functions of
the complex resistivities or mobilities determined previously. In the following, we use the spectral
derivative: V̂ (ω) = iωX̂ (ω) to re-express the lineal velocity of the particle in terms of its position.

At first order in the trap position, the relationship between the the particle velocity and the force
exerted on the particle by the trap is simply: iωX̂ (ω) = −kξ ∗

1 (ω)[X̂ (ω) − X̂trap(ω)], from which we
find

X̂ (ω) = kξ ∗
1 (ω)

iω + kξ ∗
1 (ω)

X̂trap(ω). (58)

Therefore, ψ∗
1 (ω) = kξ ∗

1 (ω)/[iω + kξ ∗
1 (ω)], which is a well-known expression for the linear

response function in an active microrheology experiment. In the weak trap limit, k � η0aω,
ψ∗

1 (ω) ≈ −(ik/ω)ξ ∗
1 (ω), so that the linear response function in the microrheology experiment

is directly proportional to the first-order complex mobility. In the stiff trap limit, k 
 ηsaω,
ψ1(ω) ≈ 1 − iωζ ∗

1 (ω)/k, so that the linear microrheology response function is O(1) with a small
perturbation proportional to the first-order complex resistivity.

There are, of course, additional higher-order contributions to the particle position. We can find
the third-order contribution easily by writing particle position as the linear contribution plus a
perturbation denoted δX̂ (ω). The trapping force in frequency space is ez · F̂trap(ω) = −k[ψ∗

1 (ω) −
1]X̂trap − kδX̂ (ω). This can be substituted into Eq. (54) for the Volterra series of velocity in terms of
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FIG. 13. Projections of ψ∗
3 (ω1, ω2, ω3) for a fluid with b = 0.5, β = 0.5, subjected to a single-tone

oscillation in a system with trap stiffness kλ̄/(η0a) = 1 (top row), kλ̄/(η0a) = 10−2 (bottom row).

applied force, which can then be truncated at third order in the trap position. This gives an expression
for perturbation to the linear response of the particle valid at third order:

iωδX̂ (ω) = − ξ ∗
1 (ω)kδX̂ (ω) −

∫∫∫ ∞

−∞
k3ξ ∗

3 (ω1, ω2, ω3)[ψ∗
1 (ω1) − 1][ψ∗

1 (ω2) − 1][ψ∗
1 (ω3) − 1]

× X̂trap(ω1)X̂trap(ω2)X̂trap(ω3)δ(ω − ω1 − ω2 − ω3) dω1dω2dω3. (59)

Solving for the perturbation to the linear response at third order in the trap position, we find that the
third-order response function in a microrheology experiment is

ψ∗
3 (ω1, ω2, ω3) = −

[
k3ξ ∗

3 (ω1, ω2, ω3)

i(ω1 + ω2 + ω3) + kξ ∗
1 (ω1 + ω2 + ω3)

][
iω1

iω1 + kξ ∗
1 (ω1)

]

×
[

iω2

iω2 + kξ ∗
1 (ω2)

][
iω3

iω3 + kξ ∗
1 (ω3)

]
. (60)

As with the linear response function for the microrheology experiment, the trap stiffness has a
significant impact on the value of ψ∗

3 (ω1, ω2, ω3). While ψ∗
3 (ω1, ω2, ω3) approaches 0 in the limits

of both large and small values of k, the ways this Volterra kernel decays in these limits are distinct.
For a weak trap, ψ∗

3 (ω1, ω2, ω3) ≈ ik3ξ ∗
3 (ω1, ω2, ω3)/(ω1 + ω2 + ω3), so that the response function

is directly proportional to the third-order complex mobility and the cube of the trap stiffness.
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Whereas for stiff traps, ψ∗
3 (ω1, ω2, ω3) ≈ −iω1ω2ω3ζ

∗
3 (ω1, ω2, ω3)/k. In this case the transfer

function is directly proportional to the third-order complex resistivity and inversely proportional
to the trap stiffness. Inference of the material properties: ξ ∗

3 (ω1, ω2, ω3)a5 or ζ ∗
3 (ω1, ω2, ω3)a, from

a microrheology experiment will require inverting the expression in Eq. (60). Doing so requires
either careful consideration of whether the experiment is conducted in the weak and strong trapping
limits so that limiting expressions can be applied or precise measurement of the trap stiffness and
first-order complex mobility.

Projections and contours of ψ∗
3 (ω1, ω2, ω3) can be visualized the same way that those of

ζ ∗
3 (ω1, ω2, ω3) are in Sec. IV B. The first and third harmonic projections of ψ∗

3 (ω1, ω2, ω3),
made dimensionless on a2, are shown in Fig. 13. The trap stiffness k is made dimensionless on
η0a/λ̄, and the ratio of these two groups can be varied freely as we have in Fig. 13. It can be
clearly seen that for a Johnson-Segalman fluid with a trap having moderate stiffness kλ̄/(η0a) = 1,
ψ∗

3 (ω1, ω2, ω3) trends toward zero at both high and low frequencies, though at low frequencies
this scales like ψ∗

3 (ω1, ω2, ω3) ∼ ω3, and at high frequencies like ψ∗
3 (ω1, ω2, ω3) ∼ ω−4. For both

the first and third harmonic measurements, there is a sign change observed in both components
of ψ∗

3 (ω1, ω2, ω3), as well as the change in scaling behavior, within the moderate frequency
range of approximately (10−1 < λ̄ω < 10). However, in the case of a weak trap kλ̄/(η0a) = 10−2,
ψ∗

3 (ω1, ω2, ω3) exhibits the type of scaling expected, bearing a strong resemblance—particularly at
high frequency—to the expected behavior of ξ ∗

3 (ω1, ω2, ω3), at an overall lower magnitude due to
the cubic scaling with k.

VI. CONCLUSIONS

In this work, we have shown a general method for describing the unsteady creeping flow of
an incompressible, isothermal viscoelastic fluid around a sphere executing a lineal translation. The
asymptotic solutions for the pressure and flow fields in the fluid accompanying such translations
were calculated up to second order in the amplitude of the lineal translation for the Johnson-
Segalman and Giesekus fluids. It was demonstrated that these velocity and pressure profiles can
be used to calculate the force at third order in the magnitude of the translational velocity. These
analytical solutions are valid for low Weissenberg numbers, or in the weakly nonlinear limit. We
believe that this same method of solution, which solves the momentum balance, conservation of
mass and constitutive equations in Fourier space using a kind of separation of variables, can be
applied straightforwardly to other constitutive models.

The method and calculations shown here have two key implications: they provide a more
general fluid mechanical understanding of and ability to model unsteady phenomena in flows of
viscoelastic fluids around a sphere without resorting to numerical approximation, and they provide
a framework for understanding the first effects of nonlinearity in unsteady particle motions. The
analytical solution for the weakly nonlinear force was shown in this work to be able to describe flow
phenomena in a “start-up” flow that were previously observed only in experiment and numerical
simulation, like a force overshoot at high Weissenberg numbers [10].

While the solution method described a particle executing a prescribed translation, due to the
generality and simplicity of the asymptotic solution, a Volterra series representation could be
constructed and inverted to describe the weakly nonlinear response to an imposed force instead.
This reconstitution of the solution may expand the usefulness of these types of asymptotic solutions
for validation of numerical and computational techniques to unsteady flows. Additionally, it could
be used to provide insight into some of the less well-understood dynamic phenomena observed
in experiments such as velocity oscillation during sedimentation. Beyond the improved ability to
model and understand the fluid mechanics of these unsteady flows, the technique presented here
also provides a framework for weakly nonlinear microrheology. While researchers have both made
measurements in the nonlinear regime in physical systems using microrheology and modeled the
nonlinear response in idealized systems via material specific theory and numerical simulation, there
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is no general, unified method for understanding such measurements, comparing them to constitutive
models, or comparing them between different materials.

We have proposed that the third-order complex resistivity and mobility, when scaled appropri-
ately on the particle size, are the key quantities of interest in weakly nonlinear microrheology.
These are functions that can be both measured via active microrheology and modeled via the
methods shown in this work. The first-order complex resistivity is already a well-understood,
measurable quantity in microrheology experiments. The extension of this quantity to the weakly
nonlinear regime via the Volterra series expansion shown in this work arises naturally and provides
a generalized way of representing nonlinear microrheology measurements.

Ultimately, taking advantage of this new representation will require new experimental protocols
for efficiently probing the third-order complex resistivity or mobility. Some techniques developed
for weakly nonlinear rheology at the macro-scale like MAOS or MAPS might be applied to
microrheology as well. However, this requires mastering the coordination of trap and particle motion
beyond the constant velocity and single-tone oscillation protocols most commonly used in active
microrheology. This more careful design of complex temporal protocols to probe a larger subset of
the total space characterized by the third-order complex resistivity and mobility is left for future
work. We think that this is a worthwhile effort as it could provide a method of deriving a more
complete characterization of rheological responses for efficient model identification and parameter
estimation in fluids that are precious or otherwise difficult to study in bulk.

APPENDIX: DERIVATION OF THE THIRD-ORDER COMPLEX RESISTIVITY
FOR A GIESEKUS FLUID

The third-order complex resistivity is derived here for a fluid described by the Giesekus consti-
tutive model. For a single relaxation time Giesekus fluid, the dimensional polymer stress is

τ p(r, t ) + αλ

ηp
[τ p(r, t ) · τ p(r, t )] + λ

[
∂τ p(r, t )

∂t
+ v(r, t ) · ∇τ p(r, t ) − τ p(r, t ) · ∇v(r, t )

−∇vT (r, t ) · τ p(r, t )

]
= 2ηpe(r, t ). (A1)

The parameter α governs the strength of a nonlinearity proportional to the square of the polymer
stress. The momentum balance and continuity equation are the same as in the derivation described
for the Johnson-Segalman model. When the same scaling relationships are used as in the main text,
a dimensionless expression for the polymer stress can be written as

τ p(r, t ) + De
∂τ p

∂t
(r, t ) + Wi{ατ p(r, t ) · τ p(r, t ) + v(r, t ) · ∇τ p(r, t )

− [τ p(r, t ) · ∇v(r, t ) + vT (r, t ) · τ p(r, t )]} = 2e(r, t ). (A2)

The same ordered expansion of variables in Wi and matched order equations can be formulated
as in the main text. In frequency space, the nth order contribution to a polymer stress mode with
relaxation time, λ, satisfies the equation

τ̂ (n)
p (r, ω, λ) = χ (ω, λ)

(
2ê(n)(r, ω) − λ

λ̄

n−1∑
m=1

{
ατ̂ (n−m)

p (r, ω, λ) ∗ τ̂ (m)
p (r, ω, λ)

+ v̂(n−m)(r, ω) ∗ ∇τ̂ (m)
p (r, ω, λ) − [

τ̂ (n)
p (r, ω, λ) ∗ ∇v̂(n−m)(r, ω)

+ v̂(n−m)T (r, ω) ∗ τ̂ (m)
p (r, ω, λ)

]})
. (A3)
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The first-order solution for the pressure and velocity fields and the force is the same as for the
Johnson-Segalman model. At second order, the equations and solutions differ. The second-order
equations to be solved are

−∇ p̂(2)(r, ω) + β∇ · τ̂ (2)
s (r, ω) + (1 − β )∇ · 〈

τ (2)
p (r, ω, λ)

〉
λ

= 0, ∇ · v̂(2)(r, ω) = 0, (A4a)

τ̂ (2)
s (r, ω) = 2ê(2)(r, ω), (A4b)

τ̂ (2)
p (r, ω, λ) = χ (ω, λ)

(
2ê(2)(r, ω)− λ

λ̄

{
ατ̂ (1)

p (r, ω, λ) ∗ τ̂ (1)
p (r, ω, λ)+v̂(1)(r, ω)∗∇τ̂ (1)

p (r, ω, λ)

−[
τ̂ (1)

p (r, ω, λ) ∗ ∇v̂(1)(r, ω) + v̂(1)T (r, ω) ∗ τ̂ (1)
p (r, ω, λ)

]})
. (A4c)

Using the established relationships between the frequency-domain and steady-state solutions
at first order: τ̂ (1)

p (r, ω) = V̂ (ω)χ (ω, λ)τ̃ (1)
p (r, λ), v̂(1)(r, ω) = V̂ (ω)ṽ(1)(r), we can re-express the

second-order polymeric stress as

τ̂ (2)
p (r, ω, λ)

= χ (ω, λ)
(
2ê(2)(r) − α[V̂ (ω)χ (ω, λ)] ∗ [V̂ (ω)χ (ω, λ)]τ̃ (1)

p (r) · τ̃ (1)
p (r)

+{V̂ (ω) ∗ [V̂ (ω)χ (ω, λ)]}{ṽ(1)(r) · ∇τ̃ (1)
p (r, t ) − [τ̃ (1)

p (r) · ∇ṽ(1)(r) + ṽ(1)T (r) · τ̃ (1)
p (r)]

})
.

(A5)

We define a rescaled Giesekus parameter denoted

α∗ = α
〈λχ (ω, λ){[V̂ (ω)χ (ω, λ)] ∗ [V̂ (ω)χ (ω, λ)]}〉λ

〈λχ (ω, λ){V̂ (ω) ∗ [V̂ (ω)χ (ω, λ)]}〉λ
, (A6)

which, when applied to Eq. (A5), yields the following definition of the second-order polymeric
stress:

τ̂ (2)
p (r, ω, λ) = χ (ω, λ)

(
2ê(2)(r) − {V̂ (ω) ∗ [V̂ (ω)χ (ω, λ)]}{α∗τ̃ (1)

p (r) · τ̃ (1)
p (r)

+ ṽ(1)(r) · ∇τ̃ (1)
p (r, t ) − [

τ̃ (1)
p (r) · ∇ṽ(1)(r) + ṽ(1)T (r) · τ̃ (1)

p (r)
]})

. (A7)

We can then rescale the second-order velocity and pressure as done previously for the Johnson-
Segalman model:

v̂2(r, ω) = 1

λ̄η∗(ω)
〈λχ (ω, λ){V̂ (ω) ∗ [V̂ (ω, λ)χ (ω, λ)]}〉λṽ(2)(r), (A8a)

p̂2(r) = 1

λ̄
〈λχ (ω, λ){V̂ (ω) ∗ [V̂ (ω, λ)χ (ω, λ)]}〉λ p̃2(r). (A8b)

On substitution of these scaling relations into the constitutive model, solving for the polymeric
stress and then substituting that into the the momentum balance and continuity equation, we
recover equations for the steady-state velocity and pressure fields in a Giesekus fluid. Solving these
equations as before, we find that the steady-state velocity and pressure profiles are:

ṽ
(2)
i (r) = (1 − β )(1 − α)

[
3

8r3

(
1 − 3

r
+ 3

r2
− 1

r3

)
ri − 9

8r4

(
1 − 2

r
+ 1

r2

)
δi3r3

− 9

8r5

(
1 − 4

r
+ 5

r2
− 2

r3

)
rir3r3

]
, (A9a)

p̃(2)(r) = 1

4r3

(
9 − 9

r
− 27

r2
+ 87

2r3
− 27

r5
+ 9

r7

)
+ α

3

4r3

(
−1 + 3

2r
+ 9

2r2
− 12

r3
+ 5

r5
− 2

r7

)
.

(A9b)
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The first- and second-order velocity fields provide the necessary elements to calculate the third-
order contribution to the force via the reciprocal theorem. Following the same procedure as with the
Johnson-Segalman fluid, we need to compute the quantity: 〈τ̂ (3)

p (r, ω, λ)〉λ − 2〈χ (ω, λ)〉λê(3)(r, ω),
to evaluate the third-order contribution to the force as in Eq. (31). An average over the constitutive
model at third-order in the deformation amplitude yields:〈

τ̂ (3)
p (r, ω, λ)

〉
λ
− 2〈χ (ω, λ)〉λê(3)(r, ω)

= −
〈(

λ

λ̄

)
χ (ω, λ)

{
α∗[τ̂ (1)

p (r, ω, λ) ∗ τ̂ (2)
p (r, ω, λ) + τ̂ (1)

p (r, ω, λ) ∗ τ̂ (2)
p (r, ω, λ)

]
+ v̂(1)(r, ω) ∗ ∇τ̂ (2)

p (r, ω, λ) + v̂(2)(r, ω) ∗ ∇τ̂ (1)
p (r, ω, λ) − [

τ̂ (2)
p (r, ω, λ) ∗ ∇v̂(1)(r, ω)

+ τ̂ (1)
p (r, ω, λ) ∗ v̂(2)(r, ω) + v̂(1)T (r, ω) ∗ τ̂ (2)

p (r, ω, λ) + v̂(2)T (r, ω) ∗ τ̂ (1)
p (r, ω, λ)

]}〉
λ

.

(A10)

Ultimately, substituting the known values for the first and second-order fields and computing the
volume integral in Eq. (31) gives the unsteady third-order force expressed as the combination of
seven distinct terms:

F̂(3)(ω) = C1

〈
λχ (ω, λ)

[
[V̂ (ω)χ (ω, λ)] ∗

(
χ (ω, λ)

{ 〈λχ (ω, λ)[V̂ (ω) ∗ V̂ (ω)χ (ω, λ)]〉λ
η(ω)

})]〉
λ

+ C2〈λχ (ω, λ){[V̂ (ω)χ (ω, λ)] ∗ [V̂ (ω)χ (ω, λ) ∗ V̂ (ω)χ (ω, λ)]}〉λ
+ C3〈λχ (ω, λ)([V̂ (ω)χ (ω, λ)] ∗ {χ (ω, λ)[V̂ (ω) ∗ V̂ (ω)χ (ω, λ)]})〉λ

+ C4

〈
λχ (ω, λ)

({ 〈χ (ω, λ)(V̂ (ω) ∗ [V̂ (ω)χ (ω, λ)])〉λ
η∗(ω)

}
∗ [V̂ (ω)χ (ω, λ)]

)〉
λ

+ C5〈λχ (ω, λ)
(
V̂ (ω) ∗ {χ (ω, λ)[V̂ (ω)χ (ω, λ)]} ∗ [V̂ (ω)χ (ω, λ)]

)〉
λ

+ C6

〈
λχ (ω, λ)

(
V̂ (ω) ∗

{
χ (ω, λ)〈χ (ω, λ)[V̂ (ω) ∗ V̂ (ω)χ (ω, λ)]〉λ

η∗(ω)

})〉
λ

+ C7〈λχ (ω, λ)
(
V̂ (ω) ∗ {χ (ω, λ)[V̂ (ω) ∗ V̂ (ω)χ (ω, λ)]})〉

λ
, (A11)

where

C1 = −2α(1 − β )
∫

�

R(r) :
[
τ̃ (1)

p (r) · ẽ(2)(r) + ẽ(2)(r) · τ̃ (1)
p (r)

]
dr

= 6π (1 − α)(1 − β )2α

175
ez, (A12a)

C2 = 2α2(1 − β )
∫

�

R(r) :
[
τ̃ (1)

p (r) · τ̃ (1)
p (r) · τ̃ (1)

p (r)
]
dr

= 5652πα2(1 − β )

2275
ez, (A12b)

C3 = −α(1 − β )
∫

�

R(r) :
[
τ̃ (1)

p (r) · g1(r) + g1(r) · τ̃ (1)
p (r)

]
dr

= −5652πα(1 − β )

2275
ez, (A12c)
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C4 = (1 − β )
∫

�

R(r) :
[ − ṽ(2)(r) · ∇τ̃ (1)

p (r) + τ̃ (1)
p (r) · ∇ṽ(2)(r) + ∇ṽ(2)(r)T · τ̃ (1)

p (r)
]
dr

= −3π (1 − α)(1 − β )2

175
ez, (A12d)

C5 = α(1 − β )
∫

�

R(r) :
{−ṽ(1) · ∇[

τ̃ (1)
p · τ̃ (1)

p (r)
] + [

τ̃ (1)
p (r) · τ̃ (1)

p (r)
] · ∇ṽ(1)(r)

+∇ṽ(1)(r)T · [
τ̃ (1)

p (r) · τ̃ (1)
p (r)

]}
dr (A12e)

= −2826πα(1 − β )

2275
ez, (A12f)

C6 = 2(1 − β )
∫

�

R(r) :
[−ṽ(1)(r) · ∇ẽ(2)(r) + ẽ(2)(r) · ∇ṽ(1)(r) + ∇ṽ(1)(r)T · ẽ(2)(r)

]
dr

= −3π (1 − α)(1 − β )2

175
ez,

C7 = (1 − β )
∫

�

R(r) :
[−ṽ(1)(r) · ∇g(1)(r) + g(1)(r) · ∇ṽ(1)(r) + ∇ṽ(1)(r)T · g(1)(r)

]
dr

= −1548π (1 − β )

25025
ez. (A12g)

As with the Johnson-Segalman model, we find that the third-order force in a Giesekus fluid can
also be expressed in the form of a nonlinear transfer function:

F̂(3)(ω) = ez
1

(2π )2

∫∫∫ ∞

−∞
R∗

3(ω1, ω2, ω3)δ(ω − ω1 − ω2 − ω3)V̂ (ω1)V̂ (ω2)V̂ (ω3)dω1dω2dω3,

(A13)
where

R∗
3(ω1, ω2, ω3) (A14)

= 1

λ̄2

[
6π (1 − α)(1 − β )2α

175η∗(ω2 + ω3)
〈λχ (ω1 + ω2 + ω3, λ)χ (ω1, λ)χ (ω2 + ω3, λ)〉λ〈λχ (ω2 + ω3, λ)

×χ (ω3, λ)〉λ + 5652πα2(1 − β )

2275
〈λ2χ (ω1 + ω2 + ω3, λ)χ (ω1, λ)χ (ω2, λ)χ (ω3, λ)〉λ

− 5652πα(1 − β )

2275
〈λ2χ (ω1 + ω2 + ω3, λ)χ (ω1, λ)χ (ω3, λ)χ (ω2 + ω3, λ)〉λ

− 3π (1 − α)(1 − β )2

175η∗(ω2 + ω3)
〈λχ (ω1 + ω2 + ω3, λ)χ (ω1, λ)〉λ〈λχ (ω2 + ω3, λ)χ (ω3, λ)〉λ

− 2826πα(1 − β )

2275
〈λ2χ (ω1 + ω2 + ω3, λ)χ (ω2 + ω3, λ)χ (ω2, λ)χ (ω3, λ)〉λ

− 3π (1 − α)(1 − β )2

175η∗(ω2 + ω3)
〈λχ (ω1 + ω2 + ω3, λ)χ (ω2 + ω3, λ)〉λ〈λχ (ω2 + ω3, λ)χ (ω3, λ)〉λ

− 1548π (1 − β )

25025
〈λ2χ (ω1 + ω2 + ω3, λ)χ (ω2 + ω3, λ)χ (ω3, λ)〉λ

]
. (A15)
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From this same calculation we can deduce that the leading-order nonlinearity in the the dimension-
less steady-state force is

F̃ (3)

η0aV
= Wi2(1 − β )π

{
α2

[
5652

2275
− 6(1 − β )

175

]
− α

[
8439

2275
+ 9(1 − β )

175

]
− 1977

25025
− 3(1 − β )

175

}
.
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