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Pairwise scattering and bound states of spherical microorganisms
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The dynamic interactions between pairs of swimming microorganisms underpin the
collective behavior of larger suspensions, but accurately calculating pairwise collisions has
typically required the use of numerical simulations in which hydrodynamic interactions
are fully resolved. In this paper, we utilize analytical expressions for forces and torques
acting on two closely separated spherical squirmers—accurate to second order in the ratio
of cell-cell spacing to squirmer radius—to calculate their scattering dynamics. Attention
is limited to squirmers whose orientation vectors lie in the same plane. We characterize
the outgoing angles of pairs of bottom-heavy squirmers in terms of their incoming angles,
the squirmer parameter β, and the strength of the external gravitational field, discovering
transient scattering, stationary bound states, pairwise swimming motion, and circular
orbits. These results compare well with full numerical solutions obtained using boundary
element methods, highlighting the utility of lubrication theory. We expect these results will
be useful for the foundations of mesoscale continuum models for suspensions of spherical
microorganisms.

DOI: 10.1103/PhysRevFluids.7.013104

I. INTRODUCTION

Suspensions of active matter feature prominently in biological and engineered systems, and have
generated great interest among fluid dynamicists and soft matter physicists [1]. Notable examples
include suspensions of swimming microorganisms [2], collective motion of active filaments [3], and
a range of chemically [4], magnetically [5,6], and acoustically driven [7] particles. Underpinning
striking experimental observations such as bacterial turbulence [8], stable bound states [9], and
clustering of particles [10], is an interplay between hydrodynamic and steric interactions and
responses to external forces and torques [11,12]. Theoretical works of active suspensions have
typically centered around continuum models—either in the dilute limit [13] or through minimal
models [14]—and numerical simulations which resolve interactions across multiple length scales
[15,16]. Recent work has also shown that summation of pairwise lubrication interactions between
closely separated spherical squirmers is sufficient to capture the bulk rheological properties of
concentrated suspensions across a range of packing fractions and external field strengths [17,18].

In the pursuit of understanding active matter collective dynamics, experimental works have
systematically examined the fluid flows generated by propulsive appendages [19–21], swimming
microorganisms [22–25], the interactions between pairs of cells [9] and active droplets [26], and the
role of nearby boundaries [27–29]. Colonies of Volvox exhibit striking bound states [30] mediated
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by gravity and a bounding wall, while cells of Chlamydomonas reflect in nontrivial ways from
no-slip surfaces [31]. Detailed numerical studies have carefully calculated the scattering angles
between pairs of squirmers in quiescent Stokes flow [15,32,33] and examined the role of inertia [34],
density stratification [35], and unsteady swimming [36]. For axisymmetric interactions, it is possible
to find closed-form analytical solutions for the interaction between squirmers [37]. However, for
general interactions, works involving closely separated squirmers typically involve computationally
intensive simulations to calculate the fluid flows and resolve the organisms’ trajectories [15]. The
success of lubrication theory (LT) in predicting selected hydrodynamic bound states [9] as well
as bulk suspension rheology [17] offers a tantalizing prospect that it may be used more generally
to calculate pairwise dynamics of hydrodynamically coupled microorganisms. This paper utilizes
analytical expressions for forces and torques between closely separated spherical squirmers whose
orientations are coplanar, calculating the hydrodynamic interactions between them and resolving
their full two-dimensional trajectories. This enables rapid calculation of nontrivial scattering dy-
namics between pairs of arbitrarily positioned squirmers, across a range of squirming parameters
(pushers versus pullers) and for varying degrees of bottom heaviness.

II. MODEL OUTLINE

The principal goal of this paper is to calculate the scattering dynamics of pairs of colliding
spherical microorganisms of equal radius a. The celebrated squirmer model [38] is used to capture
the motility of the cells, which move due to radial and tangential velocity boundary conditions,

ur

∣∣
r=a =

∑
n

An(t )Pn(cos θ ), uθ
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r=a = sin θ

∑
n

Bn(t )Wn(cos θ ), (1)

respectively, where θ is the angle measured from the anterior of the squirmer, Pn is the nth Legendre
polynomial, and Wn is defined as

Wn(cos θ ) = 2

n(n + 1)
P′

n(cos θ ). (2)

The swimming speed of a solitary squirmer is related to the primary squirming mode, Vs =
2B1/3, and β = B2/B1 captures the stresslet strength. We consider squirmers with zero radial
velocity (An(t ) = 0 ∀ n), and although the analysis can be completed to arbitrary order in Bn, we
will truncate the tangential squirming modes to n = 1, 2. The overall velocity boundary condition
is therefore given by

uθ = 3
2Vs sin θ (1 + β cos θ ). (3)

The Cartesian coordinates of the spheres’ centers xi and orientations pi (for i = 1, 2) are considered
to lie in the x-y plane. The spheres may be bottom heavy, so when the swimming direction, pi, is
not vertical, the squirmer experiences a gravitational torque,

T grav
i = −ρvhpi × g, (4)

where v and ρ are the cell volume and average density, respectively; h is the displacement of the cen-
ter of mass from the geometric center; and g is the gravitational vector with |g| = g. At each instant
in time, the squirmers each experience forces and torques due to their intrinsic swimming motion
(propulsion), hydrodynamic drag due to the background fluid, mutual hydrodynamic interactions,
and the action of gravity. We also include a repulsive interparticle force to prevent the spheres from
overlapping,

F rep = η0a2κ1κ2
exp(−κ2ε)

1 − exp(−κ2ε)
r̂, (5)

where r̂ is the unit vector along the line of centers and ε is the minimum dimensionless clearance
between the two cells, εa = |x1 − x2| − 2a. We apply κ1 = 10 and κ2 = 100.
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FIG. 1. Calculating squirmer scattering dynamics. (a) The hydrodynamic interactions between a steady
spherical squirmer (radius a, swimming direction p) and a no-slip sphere (radius λa) are calculated in the
lubrication limit ε � 1, resulting in explicit expressions for the hydrodynamic forces and torques, Eq. (6).
The origin of the coordinate system is located on the surface of sphere 2 closest to sphere 1. The vector
eρ points radially in the x-y plane, and the vector eφ is the azimuthal direction. (b) For two squirmers with
initial orientations φ1 and φ2, respectively, separated by distance (|x1 − x2| − 2a)/a = 1, the trajectories are
calculated using Eq. (10). (c) The resultant dynamics can be categorised into (I) nonzero scattering over a finite
time; (II) stationary standoff; (III) pairwise swimming; (IV) anticlockwise orbiting; (V) clockwise orbiting.

To calculate the hydrodynamic interactions between two squirmers, we utilize linearity of the
Stokes equations and solve for the interaction between a squirmer and a no-slip sphere. Figure 1(a)
shows the arrangement of the squirmer-sphere pair used to derive the forces and torques due
to squirming in the lubrication limit. The solution in this frame can be mapped to any relative
position/orientation of squirmers through a linear transformation. Without loss of generality, we
apply the squirming-sphere boundary condition on sphere 1 and zero velocity boundary condition
on sphere 2. The forces and torques acting on the two spheres were previously calculated explicitly
[18], and are given by

F (1)
x = −4

5
η0πa p · ex

λ(λ + 4)

(λ + 1)2

∑
n

BnWn(−p · ez )(ln ε + O(1)),

F (1)
z = −9η0πa

λ2

(λ + 1)2

∑
n

[
BnWn(−p · ez )p · ez + 1

2
BnW

′
n (−p · ez )(p · ex )2

]
(ln ε + O(1)),

T (1)
y = 16λ

5(λ + 1)
η0πa2 p · ex

∑
n

BnWn(−p · ez )(ln ε + O(1)),

T (2)
y = 4λ2

5(λ + 1)
η0πa2 p · ex

∑
n

BnWn(−p · ez )(ln ε + O(1)). (6)

The above expressions are valid for all tangential squirming modes, but henceforth we will consider
only n = 1, 2. We also consider spheres of equal radii, λ = 1.

Consistent with previous works [18,39], the total dimensional force F i and torque T i on each
squirmer are scaled according to F̄ i = F i/(η0πa) and T̄ i = T i/(η0πa2), so they each have units of
velocity. We introduce a dimensionless number Gbh defined as

Gbh = 4πρgah

3η0Vs
, (7)
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which measures the relative importance of gravitational torques compared to viscous torques for the
squirmers. The gravitational torque on each squirmer can then be written as

T̄ grav
i = − 1

π
VsGbh pi × ĝ. (8)

Each squirmer is subject to a propulsive force of constant magnitude, parallel to its orientation
vector, according to

F̄prop
i = 6Vs pi, (9)

which ensures propulsion of an isolated squirmer at the prescribed swimming speed Vs. The
complete resistance formulation for the two spheres in Stokes flow is then given by

R ·
(

V
aω

)
= −

(
F̄sq + F̄ rep + F̄prop

T̄ sq + T̄ grav

)
, (10)

where the resistance matrix is R = Rsq−sq + Rdrag. The matrix Rsq−sq incorporates the hydrodynamic
forces and torques acting on both spheres, arising from their linear and angular velocities. These ex-
pressions correspond to squeezing, shearing, and rotation of no-slip spheres in the lubrication limit,
and can be found in full in Refs. [18,40]. The diagonal matrix Rdrag represents the hydrodynamic
drag due to the translation and rotation of an isolated sphere in Stokes flow, and is given by

Rdrag =
( −6I4 0

0 −8I2

)
, (11)

where In is the n × n identity matrix. On the right-hand side of Eq. (10), the forces, F̄sq, and torques,
T̄ sq, arise due to the squirming motion of each sphere. We refer the reader to Ref. [18] for detailed
expressions noting that a change of reference frame must be made for each pair for the expressions
to apply. The resistance formulation in Eq. (10) can be written in the form

R(x) · ẋ + S(x) = 0, (12)

where x is a 6×1 vector containing the position and orientation of both spheres (confined to lie
in the x-y plane), and both R and S depend on x. This enables us to calculate the linear and
angular velocities of both squirmers based on their respective positions and orientations. However,
we note that interparticle interactions—mediated through Rsq−sq, F̄sq, T̄ sq, and F̄ rep—occur only
in the lubrication limit. The squirming forces and torques exhibit a logarithmic dependence [18]
on the interparticle spacing, ε = (|x1 − x2| − 2a)/a, so ε = 1 is a natural choice for the limit for
lubrication interactions.

For widely separated squirmers (ε > 1), the resistance matrix is diagonal, and therefore Eq. (10)
can be solved explicitly to yield

V i = Vs pi, aωi = − 1

8π
VsGbh(pi × ĝ). (13)

As expected, solitary squirmers will swim at a speed Vs in a direction pi which can change due to
the presence of gravitational torques.

III. RESULTS FOR NON-BOTTOM-HEAVY SQUIRMERS

In the absence of gravitational torques, widely separated squirmers swim with a constant velocity,
Vs pi. Deviations from these trajectories only occur if the spacing is sufficiently close (ε � 1) so as
to facilitate hydrodynamic interactions. To characterize the pairwise scattering dynamics of non-
bottom-heavy squirmers, it is therefore sufficient to consider pairs whose initial nondimensionalized
separation is exactly ε = 1. The cases where squirmers begin with a larger separation will either
have the squirmers fail to come into close contact with one another and continue in straight lines or
reach a point where ε = 1 so the remaining path is described by our results. We consider the initial
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positions of the spheres to lie on the x axis, as shown in Fig. 1(b), with orientations φi measured
anticlockwise from the positive x axis. Equation (12) is integrated directly over t ∈ [0, 200] to find
the position and orientation of both squirmers as functions of time. The duration of these simulations
is long enough to ensure that squirmers had either departed from each other’s vicinity (ε > 1)
and thereafter drifted away from one another in straight lines or entered a state that they would
stay in indefinitely, such as a steady state, closed orbiting pattern, or periodic motion. At the end
of each simulation, the final angles �i were recorded for each squirmer i. We also recorded the
duration of the interaction, τ , defined as the length of time for which the two squirmers interact
hydrodynamically (ε � 1). Unless otherwise stated, all positions and distances will be considered
as being nondimensionalized with respect to the sphere radius a.

Although it might appear natural to express the outgoing squirmer angles �i in terms of incoming
angles φi, we note that half of the possible initial conditions result in squirmers immediately
swimming apart from one another. Furthermore, these configurations do not correspond to initial
collisions between straight-swimming squirmers, since reversing the direction of time would result
in hydrodynamic interactions. When characterizing the scattering properties of the squirmers,
it is therefore most appropriate to consider the outgoing angles �i in terms of the difference,

 = (φ2 − φ1)/π , and sum, � = (φ2 + φ1)/π , of the incoming angles. Figure 1(c) classifies the
different dynamics observed in the numerical simulations.

A. Neutral squirmers

We begin by examining the simplest case of two interacting neutral squirmers (β = 0). For any
initial conditions (φ1, φ2)—or, equivalently (
,�)—it is sufficient to consider the outgoing angle
of squirmer 1, namely, �1. The deflection angle of squirmer 2 can be found by symmetry, since
the squirmers are situated in an infinite domain. However, for illustrative purposes, both angles
are shown alongside one another in this section. Figures 2(a) and 2(b) show the deflection angles
δ1 = (�1 − φ1)/π and δ2 = (�2 − φ2)/π , respectively, in terms of the initial conditions 
 and �.
Pairs of black arrows in (a) depict the example initial squirmer orientations.

There are several configurations which give rise to permanent bound states. We refer the reader
to Fig. 1(c) for classification of the states. For 
 = 0 (or equivalently 
 = 2), the two neutral
squirmers swim parallel alongside one another (case III). When both 
 = 1 and � = 1, the two
squirmers are initially pointed directly at one another, and as time progresses, they swim together
to form a stationary standoff (case II). All of these bound states are depicted in Fig. 2(d) with
extended interaction duration, τ = ∞. While the value of exactly 
 = 1 and � = 1 results in
a permanent standoff, this configuration is highly unstable. The greatest deflections are observed
close to this point, when � = 1 and 0 < |
 − 1| � 1. Under these conditions, the extrapolation of
the squirmer’s trajectories from t = 0 would cross one another. The squirmers undergo substantial
deflections beyond π/2 (δ ≈ ±0.60), and both swim off in either the positive y direction (Fig. 2(c)ii;
movie 1 [41]) or negative y direction [Fig. 2(c)iii], depending on the sign of 
 − 1.

For squirmers whose initial orientations would not lead to intersecting trajectories, the squirmers
slide past one another and depart in opposite directions with only a minor deflection from the
initial orientations [e.g., Fig. 2(c)iv]. Although the interaction duration of cases (iii) and (iv) are not
substantially different (11.4 s and 5.0 s, respectively), the former case exhibits eight times greater
deflection (δ1 = −0.60 vs δ1 = −0.074), the key determinant being whether the initial configuration
of squirmers would see their future trajectories intersecting or not.

Despite the weak deflection for 0 < 
 � 1, the two squirmers swim with almost collinear
trajectories, and therefore remain close to one another for an extended period of time [see movie 2
[41] and Fig. 2(d)]. Along the top and bottom boundaries of Fig. 2(d) (� ≈ 0 or � ≈ 2 with
intermediate 0 < 
 < 2), the interaction duration is extremely short-lived because squirmers tend
to swim off quickly in distinct directions.
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FIG. 2. Hydrodynamic interactions between neutral squirmers (β = 0). Deflection angle δi = (�i − φi )/π
for (a) squirmer 1 and (b) squirmer 2, as a function of initial configuration 
 = (φ2 − φ1)/π and
� = (φ2 + φ1)/π . (c) Example trajectories, in which symbols (i–iv) correspond to labels in a. (d) The interac-
tion duration, τ , represents the time taken for the squirmers to separate (ε > 1). For 
 = 0, 
 = 2, or 
 = � = 1,
the squirmers exhibit a permanent bound state (τ = ∞). All other configurations result in scattering.

B. Varying β

When β �= 0, the two squirmers exhibit fore-aft asymmetry in their tangential velocity boundary
condition, with the magnitude of β capturing the effective stresslet strength. We now examine the
deflection, δ1, of squirmer 1 as a function of the initial difference, 
, and sum, �, of the squirmer
orientations. For brevity, we omit the deflection of squirmer 2, noting that it can be obtained by
symmetry from the results for δ1.

To begin, we consider β > 0, corresponding to pairs of pullers. Figures 3(a) and 3(c) show the
deflection of squirmer 1 for β = 1 and the associated duration of the hydrodynamic interaction,
respectively. The duration of the interaction is extremely similar to the neutral squirmer case [see
Fig. 2(d)], with permanent steady states only for 
 = 0, 
 = 2 (parallel swimming), or 
 = � = 1
(standoff). All other configurations result in scattering (see, for example, movies 3 and 4 [41]). As in
the β = 0 case, squirmer 1 tends to rotate away from squirmer 2 (i.e., δ1 > 0 when 
 � 1 and δ1 < 0
when 
 � 1). The strongest deflections for β = 1 are accompanied by relatively long interaction
times [see Fig. 3(c)].

Although the scattering angles for strong pullers, β = 5 [see Fig. 3(b)] are similar to the β = 1
case, the dynamics of the squirmers are qualitatively different (e.g., see movie 6 [41]). Approx-
imately 36% of initial incoming configurations (0 � 
 � 2 and 0 � � � 2) result in permanent
bound states. Figure 3(d) reveals values of 
 and � for which this permanent trapping occurs. In the
red shaded region (denoted III), the squirmers each adopt a constant final orientation, with the pair
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FIG. 3. Hydrodynamic interactions between pullers (β > 0). Deflection angle for squirmer 1, δ1 = (�1 −
φ1)/π , for (a) β = 1 and (b) β = 5. Results are shown as a function of initial configuration 
 = (φ2 − φ1)/π
and � = (φ2 + φ1)/π . The interaction duration, τ , shown for (c) β = 1 and (d) β = 5 represents the time taken
for the squirmers to separate (ε > 1). Solid red regions correspond to permanent trapping. The classification of
dynamics (I, II, etc.) follows the definitions in Fig. 1(c).

swimming together in a linear fashion (e.g., see movie 5 [41]). As before, the single symmetric case

 = � = 1 results in a stationary standoff (case II) and 
 = 0, 2 also results in parallel swimming.

We now consider the results corresponding to pushers (β < 0). As in all previous cases, two
squirmers directly facing one another (
 = � = 1) result in a permanent standoff. However, the
broader results are markedly different from the neutral and puller cases. The deflection angles for
β = −1 and β = −5 are shown in Figs. 4(a) and 4(b), respectively. Within region I of these figures,
squirmers again exhibit a finite interaction time, resulting in deflected squirmers with independent
outgoing angles. However, in comparison with neutral squirmers and pullers, the deflection angle
does not vary as dramatically across the range of initial conditions. For β = −1, strong scattering
occurs only for � ≈ 1 (close to symmetrically oriented squirmers, e.g., movies 7 and 8 [41]). This
value corresponds to squirmers whose anterior hemispheres collide. The tangential slip velocity
in this anterior region tends to rotate the two squirmers toward one another, resulting in strong
deflections. The dark red regions of Fig. 4(c) represent prolonged, but not permanent, trapping.
With the exception of the singular standoff and parallel swimming cases, squirmers with β = −1
ultimately depart.

For strong pushers, β = −5, we observe qualitatively different dynamics. For 23% of the
possible initial conditions, the squirmers exhibit permanent bound states [red shaded region of
Fig. 4(d)]. When � = 1, the squirmer configuration is symmetric about the y axis, and so the bound
state corresponds to pairwise swimming in a straight line (case III). However, for |� − 1| > 0,
the squirmers do not approach symmetrically, and instead may adopt a bound state in which cells
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FIG. 4. Hydrodynamic interactions between pushers (β < 0). Deflection angle for squirmer 1, δ1 = (�1 −
φ1)/π , for (a) β = −1 and (b) β = −5. Results are shown as a function of initial configuration 
 = (φ2 −
φ1)/π and � = (φ2 + φ1)/π . The interaction duration, τ , shown for (c) β = −1 and (d) β = −5 represents
the time taken for the squirmers to separate (ε > 1).

orbit one another in an anticlockwise (case IV) or clockwise (case V) manner, depending on
the sign of � − 1 (e.g., see movie 9 [41]). These orbiting states are characterized by squirmers
whose orientations differ by exactly π , but whose swimming axes are slightly offset. We note
that deflection angles in Fig. 4(b) for these permanently bound squirmers do not represent final
equilibrium outgoing angles, but the instantaneous deflection of the circular orbit at the end of the
simulation.

The results in Figs. 2–4 reveal qualitatively different interactions across the discrete values of β

studied so far (β = 0,±1,±5). Aside from specific symmetries, neutral squirmers did not exhibit
hydrodynamic trapping. Conversely, pullers and pushers tended to exhibit pairwise linear swimming
(case III) and periodic orbiting (cases IV–V), respectively. To further investigate the dependence
of dynamics on stresslet strength, we calculated—for various values of β—the probability that
a squirmer pair will exhibit scattering, pairwise swimming, or periodic orbiting from the initial
conditions 
,� ∈ (0, 2). The results are presented in Fig. 5. The dynamics for specific values of

 = 0, 2 (parallel swimming) and 
 = � = 1 (squirmer standoff) are present across all values
of β studied. Moreover, they constitute infinitesimally small regions of 
 × � space and are
therefore overlooked in the probability calculation. This is accomplished by using a uniform mesh
for η � 
 � 2 − η and η � � � 2 − η with an even number of points and 0 < η � 1.

The results of Fig. 5(a) generalize the results found earlier in Figs. 2–4. Neutral squirmers do
not exhibit hydrodynamic bound states (with the exception of specific 
 = 0, 2, 
 = � = 1 cases)
but rather scatter with finite interaction time. The likelihood of trapping increases monotonically
with |β|. For pullers (β > 0), these states consist exclusively of pairwise linear swimming, while
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FIG. 5. (a) Characterisation of the squirmer interactions as a function of β. For each value of β, the
probability is calculated that squirmers will exhibit transient scattering, indefinite side-by-side swimming,
counterclockwise orbiting, or clockwise orbiting. These results are shown for Gbh = 0. (b) Changes in the
scattering angles due to a 3D offset in the squirmers initial positions (normalized by sphere radius). Results are
shown for several representative collisions and squirmer parameters.

pushers (β < 0) tend to exhibit orbiting motion, with no net drift in the orbit center. By symmetry,
clockwise and counterclockwise orbiting are equally likely.

To examine the sensitivity of the results to out-of-plane perturbations, we calculated the 3D
trajectories of squirmer pairs whose initial orientations were confined to lie in the x-y plane, but
positions were offset by distance dz in the z direction. The boundary element method (BEM) [15]
was utilized to calculate trajectories for various initial orientations, squirmer parameters, and values
of dz. In each case, we compared the outgoing scattered angles for dz > 0 with the equivalent
values in the case dz = 0. In most cases, the scattering angles differed only by up to ∼6◦, even
with z offset up to half the squirmer radius [see Fig. 5(b)]. However, we note that bound states, e.g.,
Fig. 1(c)III, can be disrupted by small perturbations in the z direction, since they require highly
symmetric configurations to persist.

C. Comparison with full numerical model

To this point, the pairwise dynamics of the squirmers have been calculated with hydrodynamic
interactions limited to those arising from lubrication regions (ε � 1). Here we compare calculated
trajectories of squirmers with those arising from full BEM simulations of Ishikawa et al. [15] but
with the short-range repulsive force switched on [see Eq. (5)]. We first examine collisions between
squirmers whose initial velocity vectors are opposite in direction. The initial coordinates of the
squirmers are chosen to match Ref. [15], with x1 = (−δx/2, 5), x2 = (+δx/2,−5), φ1 = −π/2,
and φ2 = +π/2. This separation is sufficiently large so as to ensure that initial interactions in
the fully coupled case are negligible, and squirmers in both cases will swim in straight lines.
Figure 6 illustrates the trajectories of squirmers approaching one another with δx = 1, 2, 3, 5, 10
for LT [Fig. 6(a)] and BEM [Fig. 6(b)]. In the absence of gravitational torques, squirmers subject
only to LT interactions swim in straight lines until ε = (|x1 − x2| − 2a)/a � 1. It follows that for
δx > 3, LT squirmers do not experience any near-field interactions and thus do not deviate from their
linear trajectories [see Fig. 6(a)]. Conversely, the BEM squirmers for δx > 3 do exhibit deviations
from their initial trajectories due to longer range interactions. However, despite the small horizontal
translation, we note that the swimming direction in these cases remains essentially unchanged. For
initial conditions with δx < 3, we observe good agreement between the LT and BEM methods. In
both cases, the magnitude of the angular deflection increases as δx is reduced.

The results of Fig. 6(a) can be interpreted through Fig. 3(b) by considering the point at which
the two squirmers first come within a distance ε � 1 of one another (valid only for δx � 3). This is
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FIG. 6. Trajectories of squirmers subject to (a) lubrication-only hydrodynamic interactions [see Eq. (12)]
and (b) full hydrodynamic interactions. Parameters are given by β = 5, Gbh = 0. (c) Deflection angle experi-
enced by each squirmer, as a function of initial spacing, δx.

equivalent to the case where 
 = (φ2 − φ1)/π = 1 and � = (φ2 + φ1)/π = 1 − 2 arcsin(δx/3)/π .
Figure 3(d) confirms that all such cases of the off-axis approach result in finite interactions and
scattering of squirmers, except the symmetric head-on case of δx = 0 (corresponding to � = 1),
which results in a stand-off. Figure 6(c) shows the angular deflection experienced by each squirmer
as a function of the initial spacing, δx. Results are shown for both the LT and BEM and exhibit good
agreement across different spacings.

FIG. 7. Trajectories of squirmers subject to (a)–(c) lubrication-only hydrodynamic interactions and (d)–(f)
full hydrodynamic interactions. The initial conditions are given by x1 = (0, 10), x2 = (10 − δx, 0), φ1 = 0,
and φ2 = π/2, where δx = 1, 2, 3, 5. Results are plotted for β = −1, 1, 5, with Gbh = 0 in all cases.
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We further examined the scattering dynamics of squirmer pairs whose initial velocity vectors
differ by π/2 (see Fig. 7). There is good agreement between all trajectories for β = −1. For β = 1
[Figs. 7(b) and 7(e)], the agreement is reasonable except for the case where δx = 1 (solid lines): the
LT simulations predict squirmers whose paths do not cross, while the BEM model exhibits crossing
trajectories. The differences are more pronounced for the β = 5 case [Figs. 7(c) and 7(f)], and the
reasons for this are discussed later.

IV. RESULTS FOR BOTTOM-HEAVY SQUIRMERS

Many microorganisms, including Volvox [9], Chlamydomonas [42], and Heterosigma akashiwo
[43], exhibit a displacement between their geometric center and center of mass, resulting in an
effective bottom heaviness. We now consider the effect of an external gravitational torque, as
outlined in Eq. (4), on the pairwise dynamics of spherical squirmers. To exhibit representative
dynamics, we focus on the case where α = 0, so the direction of gravity is perpendicular to the
line joining the spheres’ centers (see Fig. 1), though, in principle, this could be varied. An isolated
squirmer whose initial orientation p is not parallel to the gravitational field g will experience an
external torque which balances the viscous torques of rotation to gradually reorient the squirmer
until p is antiparallel to g. However, for pairs of squirmers, the hydrodynamic interactions provide
additional forces and torques which can facilitate richer dynamics.

For sufficiently strong Gbh, the gravitational torque is expected to dominate the dynamics,
resulting in upward swimming motion of the squirmer pair. Figures 8(a) and 8(b) show represen-
tative results for Gbh = 10, with β = 1 and β = 0, respectively. The hydrodynamic interactions
temporarily compete with gravitational torques but ultimately the squirmers’ swimming direction
is righted against gravity. Figure 8(c) reveals an interesting bound state in which both stronger
gravity (Gbh = 50) and greater stresslet (β = −5) result in fluctuations in the spacing between the
squirmers. With the squirmers splayed away from one another, they interact solely through their
posterior regions. The pusher boundary condition on each squirmer provides a torque which opposes
that due to bottom heaviness. Based on their orientations, the cells have a tendency to swim away
from one another. However, this is balanced by the fact that pushers (β < 0) draw fluid away from
their equator and therefore attract one another in this region.

FIG. 8. Calculated trajectories for bottom-heavy squirmers, starting from initial conditions x1 = (−1.5, 0)
and x2 = (+1.5, 0). (a)–(f) The trajectories of squirmers 1 and 2 are shown in blue and red, respectively. The
orientation of each squirmer is shown at intervals of 
t = 4, using translucent black arrows. (g) For each
value of β and Gbh, the probability of the bottom-heavy squirmer pair being in a permanent drifting orbit state
(see panel d) is shown.
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For smaller values of Gbh, an interplay between the hydrodynamic interactions and gravitational
torques can give rise to nontrivial bound states. For strong pushers, pairs of squirmers may exhibit
orbiting motion, with the pair moving diagonally against gravity. Figure 8(d) shows an example
of one such trajectory, which we refer to as a drifting orbit (e.g., see movie 10 [41]). The orbiting
direction depends on the initial angles of the two squirmers. These results can be reconciled with
Figs. 4(b) and 4(d), in which strong non-bottom-heavy pushers may orbit one another. If gravity is
sufficiently weak, it may bias the mean direction of the orbiting pair without disrupting the perpetual
bound state.

To investigate the parameter combinations giving rise to drifting orbits, we calculated the
squirmer trajectories over a range of Gbh, β, 
, and � values. For given Gbh and β, we calculated the
proportion of initial orientations that resulted in drifting orbits, the results of which are summarized
in Fig. 8(g). In Sec. III B, we saw that for β = −5, Gbh = 0, approximately 23% of incoming angles
result in permanent trapping [red shaded region of Fig. 4(d)], effectively all of which were orbiting
dynamics. By increasing Gbh from zero, we see that the overall probability of orbiting decreases up
to a value of Gbh ≈ 2.5, where orbiting no longer occurs, and the squirmers separate.

Highly specific symmetries can give rise to hydrodynamic bound states of downward swimming
squirmers. The squirmers in Fig. 8(e), oriented symmetrically about the y axis with 
 = 1.7 and
� = 1, are subject to gravitational torques which would tend to rotate the squirmers toward one
another. However, this is balanced by the viscous torques generated by pullers interacting through
anterior contact regions. Importantly, the results are qualitatively different to those in Fig. 8(c), since
pullers draw fluid from their poles to the equator and therefore repel one another when aligned close
to parallel. This perfectly balances the propulsive force, giving rise to an equilibrium state. As is the
case for an isolated squirmer, this downward swimming state is unstable, with a small asymmetry in
the initial swimming angles ultimately resulting in a U-turn [see Fig. 8(f) for 
 = 1.75, � = 1.05].
However, we note that the bottom-heavy squirmer pair is capable of swimming downward for a
considerable amount of time before gravitational torques eventually reorient the pair. Specifically,
the bound pair in Fig. 8(f) swim 4.5 times further downward than they would as isolated squirmers,
revealing that hydrodynamic trapping can provide inertia from the influence of external torques.

V. DISCUSSION

The main focus of this paper has been to calculate the dynamics of colliding spherical squirmers
over a range of incoming angles, squirming parameters, and external gravitational fields. Recent
work has demonstrated that the bulk rheology of a concentrated suspension of spherical squirmers
can be quantitatively captured by considering only lubrication interactions [17]—that is, hydro-
dynamic interactions only between cells and their nearest neighbors. Here we have explicitly
calculated the swimming trajectories of pairs of squirmers subject to these short-range hydrody-
namic interactions, revealing good agreement with simulations in which hydrodynamic interactions
are fully resolved using BEMs [15]. Our results reveal a rich range of dynamics, including transient
scattering, stalling motion, pairwise linear, and circular orbits.

We have examined the pairwise dynamics for squirmers with initial angles φ1 and φ2, measured
anticlockwise from the positive x axis. However, it is more appropriate to consider the difference,

 = (φ2 − φ1)/π , and sum, � = (φ2 + φ1)/π , of the incoming angles over the range [0, 2], since
this excludes initial configurations in which squirmers swim directly away from one another. The
simulations were run for sufficiently long so as to determine whether cells would interact transiently,
and swim apart with scattered angles, �1 and �2, or remain bound indefinitely. In all cases, we
calculated the squirmers’ change in orientation δi = (�i − φi )/π due to the interaction. Neutral
squirmers exhibit deflections of magnitude up to ≈2π/3 (δ = ±0.64, see Fig. 2). The results exhibit
strong discontinuities in scattering angles across the line which determines whether squirmers slide
past one another or rotate to swim as a pair. Importantly, all interactions are transient, except for
highly specific symmetric cases (
 = 0, 2 and 
 = � = 1).
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Introducing a stresslet through a nonzero value of β results in qualitatively different results. For
strong pullers (β = 5), squirmers may exhibit pairwise bound states, in which cells swim together
with a constant velocity. For both β = 1 and β = 5, Fig. 3 reveals strong discontinuities in the
outgoing angle emerging with respect to incoming angles. It is also worth noting that as β increases,
the sign of the deflection switches for many of the initial configurations. Pairs of pushers exhibited
the richest behavior, with a large fraction of the initial conditions resulting in hydrodynamic bound
states (see Fig. 4). For strong pushers (β = −5), we observed pairwise linear motion, or circular
orbiting motion in a direction that depends on the squirmers’ initial orientations (clockwise for
� > 1, anticlockwise for � < 1).

Including the effect of bottom-heaviness results in external torques which must balance those
from the squirming motion and the relative motion of the two spheres. Many initial configurations
ultimately converge toward a pair of upward swimming cells, but other observations include periodic
orbiting with drift, downward swimming, or oscillating bound states.

The good agreement between LT results and BEM highlights the utility of the present method
in efficiently calculating the scattering dynamics. Indeed, Ishikawa et al. showed that BEM and
LT predict similar forces and torques for squirmer separations as large as ε ∼ 1 [15]. The ability
for lubrication theory to capture hydrodynamic bound states and orbiting dynamics of Volvox
carteri—an experimental realization of a spherical squirmer—near no-slip boundaries has been
well-documented [9,30] but the scattering dynamics have not been systematically explored. Near-
field hydrodynamics are also known to dominate the collective motions of ellipsoidal squirmers
[44]. Other works involving individual squirmers swimming near a wall [45,46] have demonstrated
hydrodynamic oscillations. For that case, in which the ratio of minimum clearance to squirmer
radius was ∼0.2, lubrication theory interactions were not expected to be very accurate [45]. How-
ever, in the present model of colliding squirmers, the minimum separation is significantly smaller
(e.g., ε ∼ 0.028 for β = 0). For pairs of squirming spheres subject to axisymmetric interactions,
Papavassiliou and Alexander were able to use the reciprocal theorem to find exact solutions for the
dynamics [37]. However, this was only a partial solution, since the nonaxisymmetric components
have not been determined. Moreover, the authors did not consider the effects of external torques, for
example due to gravity. The present lubrication theory scheme provides greater generality across
squirmer configurations and external torques, albeit with some compromise of accuracy, and the
BEM represents an accurate benchmark for assessing solutions.

There has been considerable work examining the interactions of other kinds of microswimmers,
e.g., phoretic particles [47], active droplets [26], active particles [10], and mixed suspensions [48].
However, in addition to hydrodynamic interactions, chemical trails can be far-reaching and therefore
affect the far-field dynamics. By examining only the near-field hydrodynamic interactions, we
have overlooked the structure of the flow field generated by individual squirmers. This could be
important for strong pullers, which generate closed streamlines in their wake. A nearby squirmer
could experience flow in the opposite direction to the tangential boundary condition. This likely
contributes to the discrepancy between LT and BEM methods for β = 5 in the specific case of
orthogonal approach, Fig. 7. However, since organisms generally approach one another and collide
with anterior hemispheres, this is likely to be important only in limited cases.

Although the focus of this paper has been on the interaction between identical squirmers whose
orientations are confined to the same plane, this work could be generalized to nonidentical squirmers
colliding with arbitrary orientation vectors. Another possible extension to this paper involves
considering axial rotation of squirmers while swimming, with particular application to Volvox [39].
Finally, the classification of pairwise collisions presented in this paper could be used to predict
the collective motion of nondilute suspensions of squirmers, in which interactions are dominated
by pairwise collisions. This could be accomplished either using look-up tables (e.g., results of
Figs. 2–4) or through developing a collision integral formulation [49] akin to the study of rarefied
gases.
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