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Dynamics and apparent permeability of the glycocalyx layer:
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The response of the endothelial glycocalyx (EG) to variations of the hemodynamic
environment is of vital importance for the regulation of the blood vessel permeability
and the balance of the blood components. Thus, it is necessary to quantify fundamental
properties such as its apparent permeability, in addition to dynamic quantities like drag and
torque on EG nanofibers, which are indicators of the glycocalyx mechanical integrity, and
determine their dependence on the individual geometric features and mechanical properties
of a single fiber. Because of the O(100 nm) height of the fibers and the lack of relevant
technology, these would be difficult to determine experimentally. In the present study, we
model the flow of blood plasma over and past the EGL as a 3D dynamic viscous flow over
and past an array of deformable fibers. We perform in silico start-up and pulsating shear
experiments that typically appear in vessels of different sizes of the circulatory system in
a representative volume of the fibrous glycocalyx layer. Numerical as well as analytical
predictions for the tip displacement vector under steady-state conditions show that the
horizontal and vertical components scale linearly and quadratically with the inverse block-
age ratio, respectively. The dimensionless apparent permeability and the spatial-average
velocity in the EG layer follow the same scalings as the vertical tip displacement. In the
start-up shear flow, the fiber elasticity is found to contribute only to the transient phase,
not to the steady value of the dimensionless apparent permeability, which is determined
exclusively by the geometric ratios of the matrix. In the pulsatile flow only, backflow
develops with the thickness of the order of the fiber radius and introduces asymmetries in
the forward and the backward evolution of important quantities. Moreover, and for small
ratios of the elastic to viscous forces, the time-average apparent EGL permeability is larger
by at least an order of magnitude from the Darcy permeability for rigid EGL fibers. This
finding gives an alternative perspective to the efficiency of paracellular and transcellular
transport processes of biological molecules, plasma ions, and viruses.

DOI: 10.1103/PhysRevFluids.7.013102

I. INTRODUCTION

The fibrous layer covering the luminal surface of the vascular endothelium is called endothelial
glycocalyx layer (EGL) [1]. Research on it has been increasing since it has been associated with
multiple biological processes in microcirculation. Functions such as angiogenesis [2,3], cancer
metastasis [4], haemostasis [5], fluid and solute exchange [6], coagulation [7], and inflammatory
responses [8] depend on phenomena occurring close to the endothelial surface. Many experimental
studies [9,10] demonstrate the existence of this hairy-like pericellular network attached to the
surface of the endothelium, which is mainly composed of membrane-bound glycoprotein and
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glycolipid chains [1,11,12]. Over the past decades, insight has been gained into the role of the
EG, which has been identified to be the main mechanosensor and mechanotransducer of blood
shear-stress on endothelial cells [13–15]. It also acts as a molecular filter that limits access of
circulating blood plasma constituents to the endothelial cell membrane and the intercellular space
between neighboring endothelial cells [16–20] affecting paracellular and transcellular transport
processes (e.g., drug delivery or entry of viruses), since it controls the capillary permeability
[21].

In an effort to improve the understanding of the role of the glycocalyx in biochemical processes,
some studies systematically investigated and finally identified the sophisticated geometrical pattern
of the fibers on the surface of endothelial cells. Specifically, Squire et al. [22] proposed a geometrical
model representing the EG as a quasiperiodic arrangement. This model was later advanced by
Weinbaum et al. [13] into an ideal periodic bush-structure with distinct spatial characteristics. In
theoretical hemodynamics, where the effective medium theory has been used to model blood plasma
flow in the porous EGL, the findings of Squire et al. [22] proved significant and constituted the basis
of all subsequent efforts to evaluate the EGL’s hydrodynamic properties such as its permeability, i.e.,
the capability of EGL to allow fluid transmission [23].

Pioneering in the determination of the normal to the flow permeability constant (kpm) are the
general studies of Kuwabara [24], Hasimoto [25], and Sangani and Acrivos [26], who reported
solutions for flows past randomly and equidistantly distributed impermeable solids of spherical
and cylindrical shape. Specifically, the last authors presented numerical solutions for the slow flow
perpendicular to square and hexagonal periodic arrays of cylinders and managed to analytically
express the dimensionless drag force in terms of the volume fraction c of the cylinders. Their
conclusions were adopted by several authors [27–36] and were associated with the evaluation of
kpm of the layer consisting of a fibrous network. However, these studies were performed under
the assumption that the fibers maintain their initial position and cylindrical shape during the flow
development and exert a time-independent drag force, which diverges from the actual biological
process of blood flows in microvessels, where transient hemodynamic and structural phenomena
arise. Thus, critical issues associated with the motion of the glycoproteins and their effect on EGL
apparent permeability cannot be addressed and remain unanswered. Indicatively, two major open
questions related to these issues are: Does the motion of the EG because of fiber flexibility play
a crucial role in determining the apparent permeability of the EGL when the latter is treated as
a porous medium? If so, what is the effect of the EGL elasticity on the apparent permeability?
Answering these questions is the motivation for the present work.

In general, there are limited theoretical studies that consider the elastic response of EGL
irrespective of the determination of its permeability or not. Damiano et al. [37] treated the EGL as a
deformable layer implementing a biphasic mixture model to describe the poro-elastohydrodynamics
of the layer. The elastic behavior of the EGL was also examined by Vink, Duling, and Spaan [38].
They measured the transient restoration of the EGL after it was almost entirely compressed by the
passage of a white blood cell in a tightly fitting capillary, finding that the characteristic time for
this restoration is approximately 0.4 s. Damiano and Stace [39], Weinbaum et al. [13], and Han
et al. [40] attempted to predict this characteristic time using an electrochemical mechanism, linear
elastic theory, and large-deformation theory, respectively, to describe the recoil of the crushed EGL.
Even though in a way, these macroscopic approaches incorporate the EGL’s elasticity, the motion
of the fibers is neglected in the determination of the permeability. Such an assumption has been
made in nearly all recent theoretical studies [41–43] for the blood plasma flow in EGL. Apart from
continuum methods, recent studies employed fully atomistic molecular dynamics simulations to
reveal the glycocalyx dynamics. An all-atom glycocalyx model with detailed composition was first
introduced by Cruz-Chu et al. [44]. They studied its response to shear flow and its property to act
as a sieve for fibroblast growth factors, which are associated with functions such as angiogenesis
and wound healing. Despite their revealing results regarding the dynamics of the system, the
flow regime was characterized by velocity fields of magnitude significantly higher than the ones
developed in real physiology. Constructing a similar flow/glycocalyx molecular system, Jiang
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et al. [45] investigated the dynamics of the flow driven by physiologically relevant forces and
outlined shear stress distributions in varying glycocalyx configurations. These studies considered
EG’s complicated structure, composition, and flexibility and shed light on events inside the layer,
enriching the understanding of glycocalyx-related diseases. However, there is a need to seek an
alternative mesoscopic method that can accurately predict such composite structural-hydrodynamic
phenomena with a smaller computational cost.

From a fluid mechanical perspective, the EGL/blood plasma system belongs to the category of
flows over “hairy surfaces” [36,46,47]. Soft, porous beds made of deformable filamentous fibers
which are permeated by viscous fluids are commonly encountered in nature [36,46,48], including
coral reefs and submerged aquatic canopies [49,50], rain forest canopies [51], and have been studied
both for their biological [52,53] and industrial [54–58] importance. Despite the broadness of the
category and the relatively large number of excellent theoretical contributions, no attempts have
been made to answer the open questions mentioned above. This is related to the lack of appropriate
stable numerical algorithms for handling the 3D spatial variations in response to or in conjunction
with the flow fluctuations.

In the present study, we account for the elasticity of EG and its spatial complexity (hexagonal
periodic array of cylinders [13]) to address the open issues mentioned above for the first time.
Through a microscopic 3D simulation employing a mixed finite element method (FEM), we investi-
gate in detail the interaction between blood plasma and the glycocalyx solid structure to predict the
dynamic behavior of the coupled system, e.g., stress, pressure, and velocity fields, and how it affects
the EGL apparent permeability. Specifically, we examine start-up and pulsating shear experiments
characterized by variations in the fiber elastic modulus (E f ) and the fiber-to-fiber distance (D),
to acquire information about the dependency of the apparent permeability and other characteristic
variables on such properties. Finally, the predictions of the DNS simulator are compared with those
of an analytical model at steady-state flow conditions based on the linear deflection theory and the
assumption of slow flow in a porous medium (Appendix B).

II. PROBLEM FORMULATION

It has been documented that red blood cell (RBC) aggregation at low-shear rates and excluded
volume effects lead to compaction of the central cell core, thus forming a core-region rich in
RBCs and a cell-depleted marginal sleeve of suspending fluid (plasma) at the periphery of the
vessel [1,59] also known as cell-free-layer (CFL) [60]. Adopting this hemodynamical process of
RBCs migration in a microvessel of radius Rvessel = 20 μm [Fig. 1(a)], we consider the 3D incom-
pressible plasma flow perpendicular to the fibrous network in the EG attached on the vascular wall
[Fig. 1(b)].

A. Theoretical modeling of the process

The physical domain consists of two subdomains representing the solid (elastic fibers) and
fluid (blood plasma) phases [Fig. 1(b)], the complexity of which emerges from the sophisticated
structure of the EG hairy network. The glycocalyx fibers are modeled as deformable, hyperelastic
cylindrical rods with density ρ f and Young’s modulus E f , anchored vertically to the endothelium
of the vessel. The subscripts p and f denote the blood plasma and EG fiber phases, respectively.
We do not consider any interactions (e.g., nematic, Van der Waals forces, etc.) among them except
those induced by the flow. Since there is evidence that the proteinic clusters that form EG exhibit a
hexagonal spatial periodicity [22], we assume that the fibers follow the idealized pattern proposed
by Weinbaum et al. [13], and shown in Fig. 2(a). Both experimental [61] and theoretical studies
[62] have concluded that blood plasma exhibits non-negligible viscoelastic properties; however, in
the present study, we will consider blood plasma as a Newtonian fluid with density ρp and dynamic
viscosity ηp. This simplification originates from the fact that the gyroscopic radius of the proteins
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FIG. 1. (a) A representation of the vessel lumen and its RBC-rich core region. (b) The region of the vessel
that is under investigation and a representation of the EGL and CFL. The cylinders inside the EGL represent
the fibers, while the remaining space is occupied by blood plasma.

that attribute elasticity to blood plasma [62] are of the same order of magnitude as the glycocalyx
fibers and their relative distance. Thus, in the length scale that we examine, the response of the
solvent is necessarily viscous. Finally, the curvature of the EGL is neglected due to the small ratio
of the height of the glycocalyx fibers to the radius of the vessel [O(0.01)].

We define the connecting straight line between two adjacent fibers as the x-coordinate, and we
assume that the angle of attack (AoA) of blood flow is zero with respect to it. Due to the hexagonal
distribution of the fibers, our formulation holds for every AoA = nπ/3, where n = 0, 1, 2, . . . .

Estimated values for the fiber radius R f , and fiber-to-fiber distance D can be found in the literature
[22,13] to be approximately 5–6 nm and 20–30 nm, respectively. Even though the instantaneous
fiber vertical height h(t ) retains a physiological scaling, its value presents variations primarily
associated with the blood vessel type and size and the organism the EG belongs to. Squire et al.
[22] reported that a typical value of ho in a frog mesenteric microvessel is 50–100 nm reaching up
to 300–400 nm in the case of inflamed vessels. Marsh and Waugh [63] suggested that the luminal
layer thickness of human umbilical vein endothelial cells (HUVECs) is about 380 nm, and generally,
a qualitative agreement in measurements of ho can be found in several studies [13,64–66] indicating
that EG can be up to 500 nm in height. In the present paper, we consider R f = 5 nm, D = 20–30 nm,

and the initial undeformed fiber height ho = 150 nm; these values are close to those of EG of
HUVECs.

Furthermore, determining the computational domain representative of the entire structure and
minimizing the computational cost proved to be quite challenging. The microscopic nature of
our approach does not allow considering a large domain of many glycocalyx fibers. Instead, we
identified an elementary periodic 3D space, which reflects the scale of the luminal layer. We develop
a minimal spatial configuration [Figs. 2(a) and 2(b)], which is utilized in our analysis and can
accurately represent the EGL through the concepts of symmetry and periodicity. The height of the
blood plasma region, referring to the CFL thickness L is of the order of 1 μm in microvessels
[67,68]. In this study, we set L = 820 nm. Then L + ho is the location of the upper boundary of the
physical domain.
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FIG. 2. (a) Top view of the periodic hexagonal structure of EG. A graphical representation from [13,22].
The minimal elementary domain is represented by the solid, black-lined rectangle, which follows vertical
periodicity (in the x-direction) and horizontal symmetry (in the z-direction). (b) Side view of the 3D periodic
structure with undeformed fiber height equal to ho [= h(t = 0)], (c) the finite element tessellated plasma
domain, and (d) the finite-element tessellated fibrous domain.

B. Governing equations

We scale all lengths with the fiber radius R f , velocities with the velocity of the core VCFL, and
times with the characteristic flow time R f /VCFL. In addition, both the pressure and stress components
are scaled with a viscous scale, ηpVCFL/R f . The dimensionless groups that arise are the Reynolds
number, Re = ρpVCFLR f /ηp, the density ratio, dR = ρ f /ρp, the ratio of the elastic to viscous
forces, HK = E f R f /(ηpVCFL), the aspect ratio of the fiber AR = h0/R, and the blockage ratio
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BR = 2R f /D, which takes values between 0 and 1. The governing equations for each subdomain, in
their dimensionless form, are presented below.

The blood plasma dynamics are governed by the momentum balance [Eq. (1)] and continuity
equation [Eq. (2)]

Re

(
∂up

∂t
+ (up − wp) · ∇up

)
= ∇− · σ

p
, (1)

∇− · up = 0. (2)

The Cauchy stress tensor σ
p

is given as σ
p
= −ppI + (∇ up + ∇ uT

p ). Equation (1) is expressed

in the arbitrary Lagrangian-Eulerian (ALE) formulation, in which the fluid domain is moving,
requiring the introduction of the mesh velocity wp in the convective term [69–73]. In the fluid
domain, this velocity is related to the displacement vector of the mesh nodes through the following
expression:

∂d p

∂t
= wp, (3)

where d p is the displacement vector subjected to

∇− 2d p = 0. (4)

The glycocalyx structural dynamics is governed by the momentum balance [Eq. (5)], continuity
equation [Eq. (6)], and the relation [Eq. (7)] for the isotropic part of the stress tensor p f in the EG
fibers:

Re dR

∂u f

∂t
= ∇− · �

f
, (5)

det
(
F

) = 1, (6)

p f = λ
(
trG

)
, (7)

where u f is the local velocity of the fibers. Since solid kinematics follow the Lagrangian framework,
u f is related to the mesh displacement vector d f and mesh velocity vector w f via the following
expressions:

∂d f

∂t
= u f , (8)

w f = u f . (9)

In this study, the fibers are considered to be hyperelastic solids following the Saint Venant–
Kirchoff model, which is expressed via the second Piola-Kirchoff stress tensor as S

f
= p f I + 2μG,

where λ and μ are the dimensionless Lame constants, and G = 1
2 (F T · F − I ) is the Green strain

tensor. The first Piola-Kirchoff stress tensor �
f

is related to S
f

by the expression �
f
= F · S

f

where F = I + ∇ d f is the deformation gradient tensor. Also, σ
f
= det(F )−1F · S

f
· F T , where

σ
f

is the Cauchy stress tensor. The dimensionless Lame constants are related to solid mechanical

properties of elasticity and compressibility through the expressions μ = HK
2(1+ν ) and λ = νHK

(1+ν )(1−2ν ) ,
where ν is the Poisson ratio. The assumption that the fibers are hyperelastic solids has been made
to allow for large displacements, which linear elastic models cannot account for. The Saint Venant–
Kirchoff is a widely used hyperelastic stress-strain constitutive model suitable for computational
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fluid-structure interaction formulations and proved to preserve stability when modeling structures
with large displacements [74]. Moreover, it has only two parameters that can be determined easily.

C. Boundary conditions

The fluid-structure interaction between the plasma and the fibers comes with the imposition of
the conditions on their interfacial boundary. There, we set a balance between forces from blood
plasma and fiber sides [Eq. (10)], equality between the corresponding velocities [Eq. (11)], and
finally, equality between the corresponding local grid velocities [Eq. (12)]:

σ
f
· n f = u

p
· np, (10)

u f = up, (11)

w f = wp, (12)

where n f , np are the outward unit normal vectors of the respective domains. On the interface be-
tween the CFL and the core region [top boundary, y = AR + L/R f , in Fig. 2(b)], the dimensionless
velocity is assumed to be either unity or time-varying in the x-direction [Eq. (13)]:

up = utop
p ex. (13)

More details on utop
p are given in the Results section.

On the surface of the immobile endothelial cells [bottom boundary, y = 0, in Fig. 2(b)], we
impose the no-slip and no-penetration conditions for the velocity.

On the CFL-core region interface, as well as on the surface of endothelial cells, the mesh remains
fixed [Eq. (14)]:

wp = 0. (14)

The front and back, z = 0, of the unit representative volume [Fig. 2(b)] are assumed symmetry
planes, while at the left and right boundaries, x = 0, 2BR, [Fig. 2(b)] periodicity is applied.

D. Numerical method

The governing equations are spatially discretized using the mixed finite element method (FEM).
For the solution of the fluid-structure interaction problem, we implement the fully monolithic
coupling methodology with the global unknown vector being X = {u, p, w}. The corresponding
mixed element is the P2-P0-P1 element. The use of the P0 element is necessary to resolve the
pressure discontinuity between the two phases. The fibrous and plasma domains are tessellated in
tetrahedral meshes of elements, as shown in Figs. 2(c) and 2(d), respectively. The unstructured
mesh of tetrahedral elements is generated using the Netgen algorithm [75]. In all simulations,
except for the mesh convergence study, the basic Netgen parameters that we used are the following:
Max element size = 1.8, Min element size = 0.4, and Fineness = moderate. Finally, for the
time integration, we use the fully implicit Euler method with the timestep dt = 10−2 and initial
conditions X 0 = {0, 0, 0}. The usual tests have been performed to determine convergence of the
results with mesh and timestep refinement (see Appendix A).

E. Fiber and blood plasma properties

The material properties used in our simulations are summarized in Table I. Their values are
taken from the indicated papers. For simplicity, we consider that blood plasma density and dynamic
viscosity are close to those of water [62]. On the other hand, the choice of EG’s material and
mechanical properties turned out to be rather challenging. Given that the backbone molecules of
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TABLE I. Typical material properties.

Property Symbol Values used Literature

Topology – Hexagonal Hexagonal [13],
quasihexagonal [22]

Fiber radius Rf 5 nm 5–6 nm [13,22]
Velocity at the
CFL/core interface

VCFL 1 mm/s 0.1–10 mm/s [31]

Fiber spacing
(between their
centerlines)

D 15–35 nm 20 nm [13,22]

Initial fiber height h0 150 nm 150–400 nm [13],
50–100 nm [22]
∼380 ± 50 nm [63]
118–878 nm [78]

Fiber Young
modulus

Ef 1–100 kPa 0.7–1.2 kPa [63],
0.39 kPa [76]

Fiber Poisson ratio ν 0.49
Fiber density ρ f 1410 kg/m3 1410 kg/m3 [76]
Plasma density ρp 1000 kg/m3 1025 kg/m3 [62]
Plasma dynamic
viscosity

ηp 10−3 Pa s 1.95×10−3 Pa s [62]

the glycocalyx are proteoglycans and glycoproteins of high molecular weight, we assume that
EG’s density can be approximated by ρ f = 1410 kg/m3 [76]. As already discussed, research on
the mechanical properties of glycocalyx is quite limited; however, there have been reports that
indicate that EG’s Young modulus is of the order of 1 kPa [63,77,78]. All the aforementioned
studies on the geometrical and mechanical properties of the glycocalyx are cornerstones to the
present work for restricting the parameter values used within physiological margins. In addition to
the parametric analysis regarding the spacing between adjacent fibers, we investigate the dynamics
of glycocalyx characterized by Young’s modulus with the reported order of magnitude and one to
two orders higher, reaching the asymptotic state of undeformable rigid bodies. In Table II the derived
dimensionless groups are summarized. Since Re � 1, inertia could be neglected from Eqs. (1)
and (5). However, the time dependency of the model is associated with the ALE and Lagrangian
description of the fluid and solid phases [Eqs. (3) and (8)], respectively.

III. CALCULATION OF MACROSCOPIC QUANTITIES

To quantify the effect of basic geometric parameters and material properties such as the fiber-to-
fiber distance and the fiber flexibility on the response of the glycocalyx, we calculate the apparent

TABLE II. Derived dimensionless groups.

Dimensionless number Symbol Definition Value

Ratio of the elastic to viscous forces HK Ef Rf /(ηpVCFL) 8.9–890
Reynolds Re ρpVCFLRf /ηp 3.12×10−6 � 1
Aspect ratio AR h0/Rf 30
Blockage ratio BR 2Rf / D 0.25–0.7
Density ratio dR ρ f /ρp 1.41
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FIG. 3. Part of the physical domain, which corresponds to the porous layer and where fluid and solid phases
coexist.

permeability of the porous medium formed by the glycocalyx layer, as well as the drag force and
the torque exerted on a fiber.

A. Apparent permeability calculation

When the layer where the solid obstacles are present is treated as a porous medium (pm), the
momentum balance is simplified to include the flow resistance resulting in the Brinkman equation,
which for a creeping flow [79] and in dimensionless form is given by

0 = ∇− · σ − 1

kpm
upm, (15)

where the term − 1
kpm

upm is the flow resistance, kpm = K
R f

2 ( ηpm

ηp
) is the dimensionless effective

permeability, ηpm is the effective dynamic viscosity of the fluid in the porous medium, and K is
the permeability constant. In our microscopic 3D simulations, the flow resistance that the EG exerts
on plasma can be calculated after solving Eqs. (1)–(14) as a dimensionless drag force FD:

FD = Ft · ex =
[∫ (

np · σ
p

)
dSint

]
· ex, (16)

where Sint is the fluid-solid interface area, and np the normal unit vector with respect to the fluid
subdomain. In Eq. (15), upm refers to the velocity vector inside a homogeneous apparent medium,
which combines solid and fluid material properties. To find a representative velocity from the
velocity field computed by the 3D fluid-solid interaction model, we compute the average velocity

Ū =
∫∫∫


p
updxdydz + ∫∫∫


 f
u f dxdydz∫∫∫


p+
 f
dxdydz

(17)

in a control volume, which encompasses the region of both fluid and solid (Fig. 3). In the above
relationships, 
p and 
 f are the fractions of the EGL occupied by the plasma and EG, respectively.
Given that the front and back planes of the control volume are assumed symmetry planes, and the
right and left boundaries are periodic, a mass balance at the control volume in Fig. 3 leads to the
fact that Ū is in the x- direction and can be expressed as Ū = Ū ex. Thus, we get a velocity vector
that corresponds to a single-phase approximation of the glycocalyx-plasma system. Moreover, we
approximate upm by the average velocity of the domain Ū . The resisting force F R of the apparent
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FIG. 4. A comparison between the steady apparent permeability calculated by Eq. (20) and those derived
from the expressions in [27,28] for βR = 0.286, 0.33, 0.40, and 0.50 for rigid cylinders.

porous medium with permeability kpm can now be calculated:

F R = δx δy δz
Ū

kpm
≡ Q

kpm
, (18)

where Q = δx δy δz Ū is the integral of the velocity calculated after solving Eqs. (1)–(14) over the
3D domain presented in Fig. 3.

If we equate the two forces under the action-reaction statement, F R = −Ft , and using Eqs. (16)–
(18), we can determine the apparent permeability constant:

kpm = ‖Q‖
‖Ft‖

. (19)

Similar to Eq. (19), correlations between drag force and permeability constant are commonly
found in the literature [27,28,33], expressing the inverse proportionality of flow resistance and
permeability [80]. However, in contrast to these relations, Eq. (19) emerges directly from the
dynamics of the system and provides the way to explicitly determine the permeability in the case
of interacting fluid-solid phases neglecting limitations regarding the shape, rigidity, orientation, and
spatial distribution of the solid obstacles.

We compare our predictions with those suggested by Tsay and Weinbaum [27] and Hidgon
and Ford [28] for the case of flow past a periodic hexagonal array of rigid cylinders for βR =
0.286, 0.33, 0.4, and 0.5. Assuming η f

ηp
≈ 1, their analytical expressions for K in terms of kpm are

kpm = 0.0572

[
2

(
1

BR
− 1

)]2.377

(20)

and

kpm = ln (c−0.5) − 0.745 + c − c2

4

4c
, (21)

respectively, where c = π

2
√

3
B2

R is the volume fraction of fibers, having a maximum value equal to
cm = π

2
√

3
. Our results are in very good agreement with those derived by Eqs. (20) and (21), as

shown in Fig. 4, and reveal that Eq. (21) is closer to the DNS predictions.
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B. Drag force and torque on a fiber

Another important feature in our analysis is the direct measurement of quantities such as the
drag and torque that plasma flow exerts on a single EG fiber. Both quantities are useful for
representing the fiber dynamics and are associated with the estimation of EGL relaxation time using
elementary bending models [30,44]. Due to the nature of the computational domain represented
as the elementary blue hexahedron in Fig. 2(b) that confines two quarters and a half of a fiber, or
equivalently a complete fiber in total, Eq. (16) gives the drag force that a single fiber is subjected
to. Such a force acts in the same direction as the plasma flow, namely here in the x-direction. To
this end, to calculate the total torque on a single nanofiber with respect to its fixed base at y = 0,
we need to find the coordinate y of the equivalent point load of the distributed force per unit area
np · σ

p
on Sint , which is given by

ypoint =
∫ (

np · σ
p

) · exy dSint

∫ (
np · σ

p

) · e
x

dSint
. (22)

Then we can determine the total torque on a single EG fiber as

T D = (
ypointey

) × (FD ex ). (23)

C. Space-averaged velocities inside the EGL

Essential definitions are also those of the space-averaged velocity of plasma (p) and the EG ( f )
inside the EGL. The corresponding space-averaged velocities Ū p and Ū f are given by Eqs. (24) and
(25):

Ū p =
∫∫∫


p
updxdydz∫∫∫


p
dxdydz

, (24)

Ū f =
∫∫∫


 f
u f dxdydz∫∫∫


 f
dxdydz

(25)

IV. RESULTS

A. Start-up shear

1. Local dynamics and effect of blockage ratio

We begin our analysis by investigating the most common rheometric flow, the start-up shear
[81]. To this end, we assume that the main bloodstream is steady. A typical value of the velocity
at the CFL-core interface, VCFL, in a microvessel of radius Rvessel ∈ [10 μm, 40 μm] is of the order
of 1 mm/s [82]. Here, we assume VCFL = 0.624 mm/s. The corresponding dimensionless shear
velocity in the x-direction, utop

p = 1, is applied as a boundary condition [Eq. (13)] in the CFL-core
interface. This provides information about the magnitude of the elastic effects compared to the
viscous effects of a complex interacting system, and it is commonly used in in vitro rheometric
experiments [83] and theoretical studies [35], and also is often assumed in the microcirculation
[84,85].

Under these conditions, our results indicate a rapid increase in the deformation of the fibers at
the beginning of the simulation, followed by an asymptotic steady state (see also the supplemental
material, movie 1 [86]). The deformations are associated with the bending of the fiber body, which
is increased in the proximity of the fixed base of the fiber producing a substantial change in its
orientation. In Fig. 6(a) below one can see the fiber deformation with time along with the blood
plasma streamlines. By defining the orientation angle θ as the angle between the fibers’ initial and
instantaneous normal directions of its top surface, we monitor the changing orientation of the fibers,
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FIG. 5. (a) The transient response of EG fibers to a constant shear plasma flow at t0 = 0, t1 = 1×103,

t2 = 3×103, t3 = 6×103, t4 = 12×103. (b) Time evolution of the orientation angle of a fiber θ . All presented
data were computed for BR = 0.33, HK = 89.

which for BR = 0.33 and HK = 89 is presented in Fig. 5(b). We notice the swift increase in θ from
θ = 0 at the very beginning of the simulation to θ = 0.502 in steady state. The evolution of the angle
is an exponential function of time. The cofactor of the dimensionless time is −261, i.e., exp(−261t ).
Provided also the very small value of the characteristic time of the flow O(5 μs), the relaxation time
of the fiber motion is calculated to be of O(19 ns). This means that the phenomenon is ultrafast and
makes the accuracy of previous experimental studies questionable [38].

An advantage of the 3D configuration implemented herein is the direct calculation of the flow
field in regions such as the interface between EG fibers and blood plasma, which are hardly
accessible when utilizing other macroscopic approaches [13,31,39,40]. Indicatively, in Figs. 6(a)
and 6(b), where we present the plasma streamlines past the glycocalyx fibers in top and side view,
respectively, one can see that in the bulk of the EGL, plasma follows a path affected mainly by
the spatial distribution of the fibers. At steady-state conditions, EG acts as an obstacle to the
flow, allowing the plasma to traverse in the x-direction through the gap between adjacent fibers
and leading to the development of notable gradients in the y- and z-directions, respectively. This
hydrodynamic behavior is commonly encountered in flows past rigid cylinders or rigid objects in
general. Moreover, due to the tilted cylindrical shape of the fibers, the flow field exhibits variations
in each xz-plane in the y-direction. Over the fiber tips [Fig. 6(b)], which define the EGL-CFL
interface, streamlines develop a periodic profile due to the low effect of inertia and the distribution
of the deformed fibers. Also, we observe that plasma moves periodically from the CFL to the EGL
and back. Studies of flowing liquids over slits and substrates [87] reveal similar hydrodynamic
phenomena of fluid entrapment and periodic variations and demonstrate how periodic topography
impacts the respective flow fields.

Our results regarding the plasma velocity magnitude are displayed in Figs. 6(c) and 6(d) for the
characteristic planes at y = 0.93AR and z = √

3/BR, respectively. Inside the EGL, the plasma flows
mainly in the x- direction and is intensified between the narrow spacing of the fibers, reaching up
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FIG. 6. (a) 3D top view of the plasma flow field in the EGL (looking from the top in the negative y-
direction). (b) 3D side view of the plasma flow field over the EG fiber tips (looking from the right side in the
negative z-direction). (c) Top view of the plasma velocity magnitude contours at y = 0.93AR (close to the fiber
tips). (d) Side view of the plasma velocity magnitude contours at z = √

3/BR. The slip length lslip is the vertical
distance between the fiber tip and the point below where the plasma velocity is negligible. All presented data
are at steady state for BR = 0.33, HK = 89.

to umax
EGL = 2.6×10−3. At the fluid-solid interface, the interaction of the two phases, subject to the

no-slip/no-penetration restrictions, causes the plasma to have the same velocity as the fiber. Close
to the fiber tips, one notices that the plasma velocity rapidly decreases as it enters the EGL, forming
a distinct subdomain of EGL with a thickness in the y-direction known as slip length [88], in which
the hydrodynamic phenomena are considered significant. By defining as ycr the y-coordinate of the
point at which the plasma velocity, uEGL, starts becoming finite for the given discretization, e.g.,
uEGL
umax

EGL
� ε = 10−2, we determine the dimensionless slip length, lslip, as lslip = hss − ycr , where hss

is the fiber height at steady state specifying also the EGL thickness in the y-direction [Fig. 6(d)].
The same feature has been studied by Hosoi [79] and is referred to as penetration depth. Based on

her study, lslip scales as lslip ∼
√

ηpmK
ηpR2 or lslip ∼ √

kpm, so it is reasonable to assume that lslip can be

approximated by

lslip = C1

√
kpm + C2, (26)
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FIG. 7. (a) Slip length (lslip), (b) drag (FD), and (c) torque (TD) at steady state for a range of BR and HK = 89.
lslip is compared to the one computed by Eq. (26). FD is compared to the drag computed by the analytical
expression of [26].

where C1, C2 are constants to be evaluated. This is also proven in Appendix B. For different values
of BR, our numerical predictions for lslip and kpm suggest that Eq. (26) is satisfied for C1 = 3 and
C2 = 1. In Fig. 7(a) we present our model predictions for lslip at steady state for different values
of BR, and we compare them with those of Eq. (26) where kpm is computed from Eq. (21) for the
associated BR values. For mildly deformable fibers, we confirm that lslip scales linearly with the
inverse of the blockage ratio 1/BR, for values up to 4. Consequently, under steady-state conditions,
the drag force exhibits a similar linear dependence on 1/BR [Fig. 7(b)], because only the flow within
the slip layer exerts hydrodynamic forces on fibers. The same conclusion could be drawn if one
examines Fig. 7(c), where the corresponding variation of torque (TD) is shown.

The concept of the slip length has become the subject of systematic investigation due to its
broad interest and its importance in micro- and nanofluid mechanics [89–91]. Herein we discuss if

the 1/BR dependence of lslip (= l̂slip

R f
) is consistent with the findings of previous studies in different

systems, which have major common features with our flow domain. According to Ybert et al. [91],
at steady-state conditions, l̂slip/D varies linearly with 1/Br in the limit of slow flow over a sparse
bed of rigid circular posts under incomplete wetting conditions

l̂slip

D
=

(
l̂slip

R f

)(
R f

D

)
= 0.332√

π
4 Br

− 0.421. (27)
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FIG. 8. The displacement components of the fiber tip (a) in the x-direction and (b) in the y-direction as
functions of time for BR = 0.286, 0.33, 0.40, 0.50, and 0.66 and HK = 89.

If we rescale it by introducing the radius of the fiber, we get the following expression:

lslip =
(

l̂slip

R f

)
= 0.664√

π
4 Br

2
− 0.842

Br
. (28)

As we can also see in Fig. 7(a), the theory by Ybert et al. [91], and Davis and Lauga
[89] can provide reasonable predictions for the variation of the dimensionless length scale for
a wide range of the blockage ratio. However, there is an increasing deviation at the dense
limit because of the 1

Br
2 term, which represents contributions from an inviscid substrate fluid

(e.g., gas).
In order to quantify the EG response to the flow field, we measure the displacement of the fiber

tip; the part of the fiber body, which is the most susceptible to deformations and whose location
coincides with the dynamically changing EGL-CFL interface position. In Figs. 8(a) and 8(b), we
present the evolution of the fiber-tip displacement components for different values of BR. We notice
that smaller values of the blockage ratio or larger gaps between the fibers are associated with a
considerable increase in the displacement of the fiber tips since blood plasma has more space to
flow freely, transferring larger amounts of momentum to the fibers.

Quite remarkable is the tracking of the EGL-CFL interface position and specifically the EGL
compression resulting from the evaluation of the fiber tip displacement in the negative y-direction.
This feature is extensively studied in [13,40] in simulations where the layer is crushed after the
passage of red and white blood cells and left to recoil back to its steady state at simple shear
flows. Even though their findings reveal the response of the layer to such intense hemodynamical
conditions, the elasticity of the EG is several orders of magnitude larger than that suggested
by later reports [63,77]. As a result, their models predict very small EGL compression caused
exclusively by the shear plasma flow. On the contrary, our simulations for BR = 0.286 demon-
strate that the layer under shear flow is compacted more than 11% of its initial thickness in the
y-direction.

The scaling of the components of the tip displacement vector under steady-state conditions is
discussed extensively with the aid of the small deflection theory in Appendix B. There we show that
dx and dy scale linearly and quadratically, respectively, with the inverse of the blockage ratio in the
limit of sparse, porous media (see also Fig. 8). Another significant issue related to the deformation
of the fibers is their structural stresses, which is discussed in Appendix C.

Figure 9 gives the space-averaged velocity Ū of the mixed solid-fluid phase within the EGL as a
function of time for different values of BR. We observe that in short times, Ū is substantially larger
than in steady state. It is the motion of the fibers that due to their elasticity gets more restricted
as time progresses and contributes to the decrease in Ū . Particularly in steady state, the fibers are
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FIG. 9. Time evolution of the space-averaged velocity of the mixed solid-fluid phase within the EGL and
for a step change in the shear-stress field and BR = 0.33, 0.4, 0.5, and HK = 89.

immobilized to their final deformed position maximizing their resistance to the flowing plasma.
Moreover, our analysis suggests that a decreased BR facilitates plasma traversal and favors the
development of higher values of Ū . Indicatively, for BR = 0.33 and 0.5, the values of Ū differ
by almost an order of magnitude. Plotting Ū as a function of the blockage ratio at steady conditions,
we observe that it scales quadrately with the inverse of the square of BR. Thus, it is mainly affected
by the compressive response of the glycocalyx layer, which is represented by the dependence of dy

on BR.
In conclusion, this velocity field intensification with the reduction of the blockage ratio leads to

the development of higher drag and torque produced by the flowing plasma on the EG (see also
Fig. 7). Based on the analytical expression for the dimensionless drag proposed by Sangani and
Acrivos [26] for the slow flow past a hexagonal periodic array of rigid cylinders, we compare our
numerically computed drag FD with their expression

F ∗
D = 4π

ln (c−0.5) − 0.745 + c − c2

4

h Ūp, (29)

where c is the solid volume fraction and Ūp is the component of the calculated Ū that refers only
to the blood plasma phase and results from the numerical calculations. The corresponding data at
steady state are presented in Fig. 7(b). The results of the numerical and analytical approaches are in
very good agreement, revealing that the tilted cylindrical shape of the fibers is of little importance
for the drag calculation. As we analytically show in Appendix B, the velocity component in the
flow direction—which is the major factor to the magnitude of the drag force—decays exponentially
within the glycocalyx. It takes nonzero values along the slip layer and scales inversely to the
blockage ratio. Thus, the reduction of the height of the glycoproteins, which is accounted for in
our simulations but was not taken into consideration in the derivation of Eq. (29) by Sangani and
Acrivos [26], does not affect the slip length making the value of the drag-force at steady-state almost
independent of the glycocalyx elasticity.

2. Effect of fiber elasticity

We proceed bt varying HK and maintaining the fibrous mesh size, and BR = 0.5. In Figs. 10(a)
and 10(b) we observe that dx and dy decrease hyperbolically with increasing HK , which is also

computed analytically in Appendix B. The absolute value of the curve slopes | ddx
dHK

| and | ddy

dHK
|

increases at small values of HK , suggesting that the EG elasticity alterations in this range strongly
affect the fiber response to flow. For the extreme value of HK = 890, the displacement of the fibers
is negligible, leading to the conclusion that beyond that value of HK , the elastic forces dominate
over the viscous ones, making EGL stiff enough to be considered undeformable.
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FIG. 10. (a), (b) Fiber-tip displacement components, (c) drag and (d) torque as functions of HK at steady
state for BR = 0.5. Drag is compared to the one computed by the analytical expression of [26], which does not
depend on HK .

In Figs. 10(c) and 10(d), we summarize our results regarding FD and TD as well as the drag
calculated from Eq. (29). Overall, we notice that FD is consistent with the analytical expression
in Ref. [26], taking values slightly higher than 0.04. Nevertheless, our findings indicate that the
drag force is a slightly increasing function of HK . This behavior is related to the deformed shape
of the fibers, the upper free edge of which tends to align with the flow direction. This phenomenon
is intensified as the viscous forces exceed the elastic ones, or else for decreasing HK , causing the
reduction of the surface area of the fibers opposing the flow and, consequently, the forces they are
subjected to. With the reduction of the active surface area close to the fiber tips, the hydrodynamic
load distribution on more easily tilted cylindrical bodies is concentrated around a point much
lower (in the y-direction) than the corresponding point load of more stiff ones. For this reason,
the reduction rate of the torque with decreasing HK is larger compared to that of the drag.

3. Apparent permeability

The EGL dimensionless effective permeability of the glycocalyx as a function of time is pre-
sented in Figs. 11(a) and 11(b) for different BR and HK , respectively. At steady state the flexibility
of EG does not seem to affect significantly the EGL apparent permeability kpm. In particular, the
parametric studies regarding HK and BR suggest that at steady state, kpm has approximately the
same value with rigid fibers (HK → ∞). Plotting kpm versus BR, we conclude that the former is
inversely proportional to the square of the latter. This is another indication of the impact of the
vertical bending motion of the glycoproteins in the average quantities of the fibrous layer.

Nonetheless, at the beginning of our simulations, we observe that kpm is two to three orders
of magnitude higher than at steady state because then the fibers are free to move, and the plasma
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FIG. 11. The EGL transient apparent permeability as a function of time for (a) BR = 0.33, 0.4, 0.5 and
HK = 89, and (b) BR = 0.5 and HK = 44–890 for start-up shear.

traversal is favored. Considering that the duration of the fiber motion increases as HK decreases, we
observe that the slope of kpm decreases as well. Consequently, we conclude that when the flexible
fibers can move and deform, the ability of the EGL to allow fluid transition intensifies and that this
ability is increased as the viscous effects overwhelm the elastic ones, or else, as HK decreases.

B. Pulsating shear

1. Local dynamics and effect of blockage ratio

The second part of our analysis involves the oscillatory shear flow, which simulates the pulsatile
blood flow in large and small vessels, but it also represents the oscillatory rheometric protocol
([81,84]). Typical waveforms of the blood flowrate found in the literature [92–94] suggest that
vessel-core velocity oscillates between zero and a finite value Am within a period T ∗. Approximating
this waveform by a sinusoidal function of time (t∗) of the form Amsin2( πt∗

T ∗ ), we assume that the
transient velocity on the CFL-core interface is expressed as V t

CFL = VCFL sin2(πt∗)[ mm
s ], where

T ∗ = 1 s (this corresponds to the typical human pulse of 60 bpm) and we set utop
p = V t

CFL
VCFL

. Now, the
imposed dimensionless velocity on the top boundary oscillates from zero to unity within a period
T = VCFL

R f
(T ∗) and the plasma-glycocalyx system is monitored for three periods, neglecting any

phase difference between the vessel-core velocity and utop
p , due to blood thixotropic phenomena

[95–98]. The parametrization of the waveform represents the hemodynamics encountered in a small
vessel of a healthy human individual in a physiological state, where their heart beats with a 60 bpm
pulse.

The fiber response to the plasma flow is presented in Fig. 12(a) (see also the Supplemental
Material, movie 2 [86]). It should be mentioned that the initial transient effects are not shown,
but we focus our discussion on the periodic state. Glycocalyx fluctuates periodically between its
initial undeformed state and a position of maximum deflection in the flow direction, while the same
frequency and phase describe its motion as utop

p . Besides the different evolution over time, the fiber
configurations resemble those predicted for steady shear, which are also characterized by bending
with notable fiber orientation changes. The impact of oscillatory plasma flow on the EG’s orientation
is displayed in Fig. 12(b) for the same BR = 0.33 and HK = 89. We notice a sinusoidal temporal
evolution in θ from θ = 0 when utop

p = 0 to θ = 0.52 ∼= π/6 when utop
p = 1.

The simulations under oscillatory flow conditions reveal some very interesting features that make
it significantly different from unidirectional flows (e.g., start-up shear). One of them is related
to the time evolution of space-averaged quantities (e.g., velocities) in the EGL. In Fig. 13(a) we
present the time evolution of the space-averaged velocity of the fibers (Ūf ), the plasma (Ūp), and
the fiber-plasma combined (Ū ) in the control volume of EGL with BR = 0.33 and HK = 89. Four
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FIG. 12. (a) The transient response of a single fiber to pulsatile plasma flow in a period, T , for BR = 0.33
and HK = 89 at t0 = 0, t1 = 0.25T, t2 = 0.5T, t3 = 0.75T, t4 = T . (b) The evolution of the orientation angle
θ in time in three periods.

distinct time segments characterize the fiber motion through a period. From t = 0 to t = 0.22T ,
Ūf increases monotonically from Ūf = 0 reaching its maximum Ūf = 1.02. In this timespan, the
hydrodynamic forces dominate over the fiber’s elastic ones causing an acceleration until t = 0.22T ,
when equilibrium is established. Next, even though the main bloodstream continues to accelerate,
the accumulated stress inside the fibers generates an opposite force that overwhelms the hydrody-
namic one leading to fiber deceleration. The EG velocity decreases to zero at t = 0.5T , which is the
time when the main bloodstream velocity is maximized, and the fibers acquire their fully deformed
shape. The fibers accelerate in the opposite direction to the main bloodstream until the appearance
of a second stationary point at t = 0.77T . Up to this instant, most of the stresses stored in the elastic
fibers have been released through the recoil to their initial position, and the hydrodynamic load
begins to dominate once again. After t = 0.77T , the EG gradually returns to its undeformed state
with a descending negative velocity, and the whole cycle starts over at t = T .

Regarding the plasma velocity dynamics, at the beginning of the cycle, Ūp increases due to the
flow of the main bloodstream [Fig. 13(a)]. However, the fiber elasticity opposes viscous stresses and
Ūp reaches its peak of 1.9 around t = 0.36T , much earlier than the maximization of the imposed
velocity. From this point on, Ūp descends passing through zero at t = 0.68T where the effect of
the two forces on the flowing plasma balance each other. In the time window t ∈ (0.68T, T ), the
plasma inside the EGL is swept away by the recoiling fibers in the opposite direction to the main
bloodstream.

Provided that the plasma occupies most of the space inside the EGL, Ū as a function of time
is only slightly different from Ūp. Nonetheless, the influence of the fibers is perceived through the
development of a backflow caused by their recoil, even though far from the EGL, blood flows solely
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FIG. 13. (a) Time evolution of the space-averaged velocity of the fibers, the plasma, and the fiber-plasma
pair combined inside the EGL under oscillatory blood flow at 60 bpm. (b) An illustration of the backflow
region, which extends over the fiber tips and inside the CFL with a thickness δ(t ). At t = 0.94nT the thickness
of the backflow region inside CFL takes its max value, δ(t = 0.94nT ) = 1.35R. (c) The time evolution of the
plasma recirculation. The center of the vortex is located on the border between the backflow generated by the
fiber and the main plasma region and keeps moving forward and above the fiber tip. All presented data were
computed for BR = 0.33 and HK = 89.

in the positive direction. This is another notable feature of the oscillatory flow. There are times
within a period that the phenomenon of the reversed plasma flow extends from the interior of the
EGL to a small region of the CFL, the so-called backflow region [Fig. 13(b)]. When the reversed flow
appears inside the CFL for the first time, the backflow region is confined just on top of each fiber.
In contrast, when it is maximized, it also occupies a space of finite thickness in the y-direction, δ,
and extending in x- and z-directions throughout the domain. Specifically, the corresponding region
appears at t = 0.85nT , where n = 1, 2, . . ., [Fig. 13(c), left], which is maximized just before
the end of each period at t = 0.94nT [Fig. 14(c), right] with δ = 1.35R f , and then vanishes at
t = nT . Between the backflow region and the region of the main plasma flow, the plasma is locally
recirculating. The center of each recirculation is located on the border of the respective areas and
above each fiber tip, where the effect of the fiber recoil is enhanced. The lifespan of the vortices
coincides with that of the reversed flow inside the CFL.
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FIG. 14. The dimensionless fiber-tip displacement, x-component (a) and y-component (b) as functions of
time for BR = 0.286, 0.33, 0.4, 0.5 and 0.66, and HK = 89.

The displacement of the fibers measured at their free edges demonstrate a symmetric evolution
over time with the same frequency and phase as VCFL. Figure 14 gives the corresponding displace-
ment components as functions of time for a glycocalyx matrix of various BR and HK = 89. We
observe that any decrease in BR increases the fiber-tip displacement in both directions. In particular,
when the central bloodstream velocity is maximized, dx and dy reach up to 2.6, 5.0, 7.7, 10.5,

and 12.4, and −0.13, −0.5, −1.2, −2.3, and −3.3 for BR = 0.286, 0.33, 0.4, 0.5, and 0.66,
respectively. Considering that negative vertical fiber-tip displacement indicates EGL compaction,
our results reveal that the layer is compressed by the oscillatory shear plasma flow up to 0.11AR, or
else, 11% of its original y-directional thickness for BR = 0.286.

A display of the combined fluid-solid phase Ū as a function of time for different blockage
ratio is given in Fig. 15. The simulations show that Ū evolves sinusoidally and symmetrically
in time with the same frequency as utop

p and a shifted phase and amplifies with decreasing BR.
Provided that smaller blockage ratios (BR) result in larger EG deformations (Fig. 14) due to stronger
hydrodynamic load, the fiber displacement in the direction of the flow is enhanced. Hence, more
deflected fibers require larger amounts of fluid momentum hence higher velocity in the negative
x-direction to return to their initial position at the end of each cycle. In spacious EGL matrices,
these mechanisms are responsible for the development of smaller minimum values of negative Ū
and the reduction of the duration �tbackflow, in which Ū is reversed. Furthermore, the effect of fiber
elasticity on the hydrodynamics of the EGL is minimized when the latter becomes more dilute
(lower values of BR), resulting in a reduction in the phase discrepancy between the transient profile
of Ū and utop

p . Specifically, decreasing BR causes Ū to reach its extreme values at instants tmax and

FIG. 15. EGL mixed-phase velocity Ū as a function of time for different BR, and HK = 89.
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TABLE III. Maximum, Ūmax, and minimum, Ūmin, values of the velocity of the plasma-fibers system
combined and the corresponding time instants, tmax and tmin, for different BR. �tbackflow is the lifespan of the
backflow. t top

max and t top
min refer to the instants where the imposed utop

p acquires its extreme values.

BR Ūmax×104 tmax t top
max Ūmin×104 tmin t top

min �tbackflow

0.286 2.5 0.35T 0.5T −0.84 0.85T 1.0T 0.30T
0.33 1.7 0.33T 0.5T −0.73 0.82T 1.0T 0.32T
0.4 1.0 0.29T 0.5T −0.60 0.79T 1.0T 0.35T
0.5 0.6 0.26T 0.5T −0.40 0.77T 1.0T 0.40T
0.66 0.4 0.25T 0.5T −0.27 0.75T 1.0T 0.46T

tmin, which deviate less from those corresponding to utop
p . The corresponding data are summarized

in Table III.
Figure 16 depicts drag and torque on a fiber as a function of time for the corresponding BR

values. Similar to the behavior of the velocity averages, both measures demonstrate a periodic and
symmetric evolution in time, which is in phase with utop

p . Consistently with the findings of the
start-up shear analysis, it is indicated that drag and torque are magnified due to the intensification
of the flow field (Fig. 15). An overview of the measured data is presented in Table IV. We observe
a reduction in the exerted maximum drag and a smaller reduction in the maximum torque. This
can be attributed to the displacement of the fiber in the negative y-direction, which causes drag to
concentrate around a point closer to the EG base. If ypoint is the y-coordinate of the point load on the
fiber’s body, then in the case of elastic fibers, the torque is not linearly dependent on drag, because
in the relation TD = FD × ypoint the length ypoint is not constant under varying BR.

The variation of lslip in time is displayed in Fig. 17. At the beginning and the end of each cycle,
lslip takes values that are about one order of magnitude higher than the corresponding values at the
middle of the period when the fiber deflection is maximized. In terms of analytical expressions,
lslip is proportional to the instantaneous aspect ratio AR(t ) of the fiber, which is in proportion to the
vertical displacement [Fig. 14(b)]. Thus, at the time of maximum deflection, the fibers are immobile,
and the penetration of blood plasma is limited. However, to provide the total impact of the fiber
movement under these flow conditions on lslip, we calculate the time-averaged slip length, 〈lslip〉 =∫ 3T

0 lslip(t )dt/3T , which is presented in Fig. 17(b) for different values of BR. In pulsatile flow and
when the fibers motion is accounted for, our results indicate that 〈lslip〉 can be one order of magnitude
greater. In that case, 〈lslip〉 is a linear function of the inverse of the blockage ratio that is given by

〈lslip〉(BR) = 1.21/BR + 9.73. (30)

FIG. 16. (a) Drag and (b) torque on a fiber as a function of time for BR = 0.286, 0.33, 0.4, 0.5, and 0.66
and HK = 89.
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TABLE IV. Maximum drag, FD,max, and torque, TD,max, for different BR, and HK = 89. ypoint refers to the
y-coordinate of the equivalent point load of FD,max.

BR FD,max TD,max ypoint

0.286 0.131 3.44 0.87AR

0.33 0.103 2.73 0.90AR

0.4 0.065 1.78 0.92AR

0.5 0.041 1.17 0.96AR

0.66 0.025 0.74 0.99AR

2. Effect of fiber elasticity

Here we study of the role of HK on the dynamics of the system under pulsatile flow conditions.
Specifically, in Figs. 18(a) and 18(b), we present the measured fiber-tip displacement components
over the course of three cycles for EG fibers for BR = 0.50, and HK = 8.9–890. We observe that
irrespective of HK , both dx and dy follow the pattern in startup shear flow, but here evolving
periodically and symmetrically in time with the same frequency and phase as utop

p . However,
deviation from the sinusoidal evolution appears at low values of HK . For smaller HK , where the
viscous effects of the flowing plasma overwhelm the elasticity of the fibrous array, the flexible
cylinders demonstrate large displacements in both directions. Additionally, a decrease in HK is
related to a faster response of the fibers to the oscillatory plasma flow denoted by a monotonous
increase in the slope of dx and dy as functions of time as visualized in the vicinity of the beginning
of each period. Regarding the EGL compression, our simulations predict that the layer is compacted
up to 0.08AR, or 8% of its initial thickness for HK = 8.9.

The temporal variation of the mixed-phase velocity Ū inside the EGL is presented in Fig. 19
for different values of EG elasticity. A reduction in E f causes the increase of the mixed-phase
velocity Ū , agreeing with the pattern found with the start-up protocol in Fig. 11. However, for
high enough values of the ratio HK , we observe that Ū evolves symmetrically in time, whereas for
HK � 89 asymmetry arises. Particularly in the cases where HK is smaller, maximum and minimum
values of Ū appear near the start and the end of each period, respectively, and the temporal gap that
separates the corresponding instants is increased. The lifespan of the backflow, �tbackflow, does not
depend monotonically on HK being truncated both for high and small HK values (Table V). The
phenomenon of reversed flow inside the EGL (and occasionally in the bottom part of the CFL) due
to the fibers’ recoil results from their elasticity. Consequently, for the asymptotic cases of (a) totally

FIG. 17. Evolution of the slip length lslip for different BR and HK = 89.
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FIG. 18. (a) Fiber-tip x- and (b) y- displacement components as functions of time for BR = 0.50,
HK = 8.9–890.

rigid EG fibers (HK → ∞) and (b) fibers that are unable to maintain their structural integrity under
shear flow (HK → 0), it is expected that no negative Ū would develop and �tbackflow → 0.

For very small HK ratios and during the reversed motion of fibers, large deformations induce
the emergence of intense negative Ū whose magnitude occasionally surpasses the corresponding
maximum positive value. In particular, for HK = 8.9, the absolute value of Ūmin is over 152% larger
than Ūmax (Table V). For the cases that Ūmin surpasses Ūmax, the highly deflected EG (small HK )
develops amplified velocity to recoil back to its initial position shortly thereafter. However, this
phenomenon should not be misinterpreted as a negative Ū over a period. To support this statement
and avoid any misconception, we present the time-averaged Ū (t ) as 〈Ū 〉 = ∫ 3T

0 Ū (t )dt/3T in
Table V, which is evidently positive in all cases.

The transient evolution of drag and torque on a fiber for different values of HK is presented in
Fig. 20. Both are in phase with utop

p . The effect of variations in HK on the drag is negligible in
the range HK ∈ [8.9, 890]. However, because of the vertical displacement of the fibers, we notice
that around t = T/2, the torque is negatively affected when the fibers become more flexible. As
previously discussed, the drag on highly bent fibers is accumulated closer to their base and results
in reduced torque. Information about the computed data is outlined in Table VI. We observe a
remarkable deviation over 13.5% to the maximum torque between the extreme cases of HK = 8.9
and HK = 890, even though the drag remains constant.

FIG. 19. EGL mixed-phase velocity Ū as a function of time for BR = 0.50, HK = 8.9–890.
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TABLE V. Maximum, Ūmax, and minimum, Ūmin, values of the velocity of the plasma-fibers pair combined
and the corresponding time instants, tmax and tmin, for BR = 0.50, and HK = 8.9–890. �tbackflow is the duration
of the backflow. t top

max and t top
min refer to the instants where the imposed utop

p acquires its extreme values.

HK 104 × Ūmax tmax tV c f l
max [s] 104 × Ūmin tmin[s] tV c f l

min [s] �tbackflow[s] 104 × 〈Ū 〉
8.9 1.34 0.096T 0.5T −2.05 0.938T T 0.33T 0.19
44 0.86 0.216T 0.5T −0.83 0.818T T 0.39T 0.02
89 0.60 0.265T 0.5T −0.42 0.770T T 0.40T 0.01
890 0.22 0.409T 0.5T −0.13 0.914T T 0.16T 0.01

3. Apparent permeability

Consistently with the EGL mixed-phase velocity, the transient apparent permeability demon-
strates asymmetric oscillations (Fig. 21). Specifically, the minimum values of kpm appear when the
EG fibers are close to their most deformed state, and their resistance to the flow is maximized.
On the contrary, the maximum kpm occurs when they are almost undeformed and flexible to move
in the direction of the plasma flow, underlining that the EG flexibility favors the EGL apparent
permeability. In terms of the model parameters, kpm monotonically increases with increasing BR and
decreasing HK . To quantify this behavior, we introduce the time-averaged apparent permeability
〈kpm〉 = ∫ 3T

0 kpm(t )dt/3T . In Fig. 22(a) the dependence of 〈kpm〉 on BR is compared to the case
of totally rigid fibers. For moderate or high values of the fiber elasticity, the time-averaged 〈kpm〉
exhibits a monotonic dependence on BR, but with significantly different rates of growth. More
importantly, our results suggest that when the fiber flexibility is accounted for, 〈kpm〉 can be more
than one order of magnitude higher than that for undeformed fibers. Also, we notice that the growth
rate of 〈kpm〉 as a function of 1/BR is increased for the case of elastic fibers. This observation
can be justified considering that a broadening of the gap between adjacent fibers intensifies their
resulting displacement in time (Fig. 14) or equivalently their velocity. The fiber velocity favors the
mixed fiber-plasma velocity inside the EGL and consequently increases 〈kpm〉 [Eqs. (17)–(20)]. This
phenomenon is absent in the case of rigid bodies, and the only mechanism that affects 〈kpm〉, when
BR varies, is purely geometrical. The least-square fitting of 〈kpm〉 as a function of BR is given by

〈kpm〉(BR) = 0.89 /BR
2 − 1.07 /BR + 1.18, (31)

where BR ∈ [0.286, 0.66] and HK = 89.
The impact of the fiber elasticity on the permeability of the EGL is presented in Fig. 22(b). We

notice that in the limit of HK → 0, 〈kpm〉 tends to become asymptotically large, corresponding to
a nonporous medium, where resisting forces due to solid obstacles are absent. For large values of

FIG. 20. (a) Drag and (b) torque on a fiber as functions of time for BR = 0.50, HK = 8.9–890.
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TABLE VI. Maximum drag, FD,max, and torque, TD,max, for BR = 0.50, HK = 8.9–890. ypoint refers to the
y-coordinate of the equivalent point load of FD,max.

HK 8.9 44 267 445 712 890
FD,max 0.04 0.04 0.04 0.04 0.04 0.04
TD,max 1.04 1.11 1.16 1.18 1.19 1.19
ypoint 0.87AR 0.93AR 0.96AR 0.98AR 0.99AR 0.99AR

HK , the permeability 〈kpm〉 asymptotically reaches the value related to a layer consisting entirely of
rigid cylindrical fibers, which are spatially distributed in a hexagonal pattern. As our findings reveal,
〈kpm〉 is a rational function of HK of the form

〈kpm〉(HK ) = (
6.8×10−7HK

2 + 3.7×10−3HK + 4.5×10−2)−1
, (32)

where HK ∈ [8.9, 890] and BR = 0.5. Expressions like Eq. (31) and (32) are very useful for
conducting continuous multilayer modeling and simulation in networks of microvessels, where the
role of EGL is critical since it controls the hemodynamics [98] (e.g., apparent viscosity of blood)
and the homeostasis of the tissue.

V. CONCLUSIONS

A 3D model has been developed for studying the fluid dynamics of a Newtonian fluid through an
array of flexible hyperelastic fibers in a periodic hexagonal arrangement. Specifically, the analysis
is focused on the dynamics of the EGL and the kinematics of the surrounding blood plasma
under start-up and oscillatory flow conditions featuring a fluid-structure interaction (FSI) algorithm.
Our model incorporates the material properties of the corresponding phases and an elementary
geometrical configuration that builds the EGL physical domain through the concepts of symmetry
and periodicity. Under more typical physiological conditions (pulsatile flow), our findings reveal that
the motion of the elastic fibers heavily affects the hydrodynamics of the circulating blood plasma,
the respective layer’s instantaneous thickness, and its ability to allow fluid permeation. In contrast
to previous theoretical works [13,85,99], they also reveal that the two-way coupling of the solid and
fluid balances is necessary for reproducing all relevant phenomena accurately.

The model allows us to draw conclusions about the dynamics of individual fibers and the whole
system. Under constant shear blood flow, the total hydrodynamic drag exerted on a fiber is relatively
unaffected by the variations of the shear modulus, but it is augmented when the fiber matrix becomes
denser. At long times, when steady state conditions have been established, we found that the

FIG. 21. The dimensionless apparent permeability of the EGL as a function of time (a) for BR = 0.33,

0.4, 0.5 and HK = 89, and (b) for BR = 0.5, and HK = 8.9–890.
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FIG. 22. Time-averaged apparent permeability of the EGL as a function of (a) 1/BR and (b) HK and
comparison with the corresponding permeability of totally rigid fibers.

drag force can be approximated by the analytical expression of Sangani and Acrivos [26] for the
case of hexagonal periodic arrays of cylinders, but this expression fails to represent the transient
phase accurately. On the other hand, the total hydrodynamic torque on a fiber is an increasing
function of both elasticity (HK ) and blockage (BR) ratio. For the examined range of flow and
structural parameters, the elevated values of hydrodynamic forces applied on the EGL fibers move
them in the flow direction and bend them vertically downwards at 11% from their initial height.
Also, the vertical squeeze of the fibers temporarily increases under oscillatory flow conditions and
has multiple implications in the macroscopic response of the EGL (e.g., apparent permeability).
Regarding the periodic regime, the total hydrodynamic drag and torque on a fiber exhibit a periodic
temporal evolution in phase with the imposed plasma flow. Both flow measures, as functions of BR

and HK , present the same behavior detected in the analysis under constant shear flow.
In general, the two flow protocols exhibit similarities but also significant distinctions in the

evolution of the flow features. In both cases, the development of a slip layer within the upper part of
EGL guarantees that the membrane of endothelial cells is slightly sheared by the plasma, while fibers
are essential elements for transmitting the mechanical signal to the cytoskeleton of the endothelial
cells [100]. It should be mentioned that at a steady state, the thickness of the slip layer (or the
slip length) inside the EGL scales with the square root of the dimensionless apparent permeability
or the inverse of the blockage ratio BR. These findings are consistent with the predictions of our
analytical model based on the linear beam deflection theory presented in Appendix B as well as
with the boundary layer approximation proposed by Hosoi [79]. Regarding the permanent reduction
of the EGL height, −dy, it scales as B−2

R , while the permanent horizontal extension dx, it scales
as of B−1

R for a fixed value of the elasticity number. The space-averaged velocity Ū in the EGL
and the dimensionless apparent permeability follow the same scaling law as dy, implying that its
compressive response controls the flow dynamics in the layer. For fixed spacing of the glycoproteinic
fibers, both components of the tip displacement vector vary as H−1

K .
Above the EGL, the local flow field can be strongly affected by the imposed flow and the

mechanical characteristics of the fibers. In the start-up shear field, the velocity field varies almost
linearly along with the CFL, but in the proximity of the CFL-EGL interface denoted by the fiber
tips, the plasma alternately transitions from CFL to EGL, enhancing the mixing of the contained
proteins. When a pulsating flow is imposed, a thin backflow layer is developed above the fiber
tips, its area varies within a cycle, and its thickness is of the order of the fiber radius. The layer is
formed because of the hydrodynamic interaction of the plasma inside and on top of the EGL, which
evolves periodically in time with different phases from the imposed oscillatory plasma flow, with
the recoiling fibers, which results in a backflow.

Compared to the case of completely rigid fibers, we underline that, under pulsatile flow condi-
tions, that normally appear in large to small vessels, the time-average apparent permeability of the
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EGL can be one or two orders of magnitude larger than what Darcy law predicts. This finding gives
an alternative perspective to the efficiency of paracellular and transcellular transport processes of
biological molecules, plasma ions, and viruses. From a modeling viewpoint, should a macroscopic
approach be employed, in which the EGL is treated as a porous medium, both the motion and the
deformation of the EG should definitely be accounted for. Moreover, our simulation results reveal
that the time-averaged apparent permeability varies as a second-order polynomial function of 1/BR

and a rational function of HK . But, under steady state flow conditions, the apparent permeability of
EGL is not affected by HK variations and can be determined by the analytical approximations for
rigid EG fibers [27,28].
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APPENDIX A: MESH-CONVERGENCE STUDY

The ALE numerical scheme, along with the discontinuous approximation for the pressure field,
is a stable formulation that guarantees the accuracy of all variables, even their gradients at the fluid-
solid interface and in the bulk. To investigate the mesh and timestep convergence of our numerical
solutions we apply the FE formulation on three different meshes with three different time steps.
Although we have conducted studies on the mesh-independence of the numerical solutions for both
rheometric protocols, here we present only the convergence of the start-up shear flow for AR = 30,

BR = 0.33, and HK = 89. In particular, Table VII summarizes the main characteristics of these
meshes. Meshes M2 and M3 are generated by sequentially doubling the elements of M1 in each
direction, while the time steps of the simulations associated with M2 and M3 are also sequentially
halved. All meshes are uniform in both directions.

Figure 23 depicts our results for the fiber-tip displacement components using M1, M2, and M3.
As we can see, the proposed numerical scheme features mesh and timestep independence between
M2 and M3. To this end, no remeshing of the computational domain has been performed, and in all
cases, in terms of the Netgen parameters, a mesh equivalent to M2 is used.

APPENDIX B: ANALYTICAL SOLUTIONS BASED ON THE LINEAR THEORY
FOR BEAM DEFORMATION

A question that typically arises is whether the linear theory for beam deformation [13,101] can
be safely applied for predicting the characteristic features of the fiber dynamics, such as the vertical
compression −dy and the horizontal extension dx of the fiber tip. Based on the Sangani and Acrivos’s
expressions [26] in the limit of sparse or dense arrays of fibers and the analytical solutions for the
velocity profile of a Newtonian fluid flowing over and through a porous medium in a Couette channel
by Martys, Bentz, and Garboczi [102] (see also [79,103]), we derive analytical approximations for

TABLE VII. Main characteristics of the meshes used in start-up shear flow.

Mesh Min. element size Max. element size Total no. elements Total no. nodes Time step dt

M1 0.7 1.8 85 668 14 958 0.02
M2 0.4 1.8 171 497 25 297 0.01
M3 0.18 1.8 342 671 65 355 0.005
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FIG. 23. Fiber-tip displacement components versus time using three different spatial and temporal resolu-
tions. These cases were computed for AR = 30, BR = 0.33, and HK = 89.

the slip length, the ratio of the interfacial to the CFL velocity, and the displacement of the fibers as
functions of the vertical direction.

We start with the dimensional form of the Euler-Bernoulli equation for cantilever beams (i.e., the
fibers in our case) under steady-state conditions and loading, which depends on the flow conditions
via the drag force per unit length ( fd )

E f If
d4w(y)

dy4
= fd (y), (B1)

where

fd (y) = 4π

fc
ηpṼ (y) (B2)

for sparse porous media formed by a hexagonal array of cylinders, fc, is given by

fc = ln(c−0.5) − 0.745 + c − c2

4
, with c � 1, (B3)

while for dense porous media, fc obeys the following relationship:

fc = 4
√

2

7

(
1 −

(
c

cm

)1/2)5/2

, cm = π

2
√

3
, with c − cm � 1, (B4)

where cm is the maximum volume fraction for the hexagonal array and E f If is the flexural rigidity
of a fiber, which is the product of the Young modulus E f and the second moment of area I f for
cylindrical fibers:

I f = π

4
R4

f . (B5)

Ṽ (y) is the velocity distribution in the flow direction within the porous medium (i.e., glycocalyx
layer), and according to Martys et al. [102] it is given by

Ṽ (y) = V exp

{
+(y − ho)

√
np

npmK

}
, (B6)

where V (or umax
EGL in dimensionless notation) is the velocity at the interface between the plasma and

the porous medium. Ṽ corresponds to ux in the basic control volume presented in Fig. 2.
Furthermore, we assume that the area of the cross section of a fiber is very small compared to the

surrounding area, making the effect of the applied force and torque on its tip negligible. At the basis
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of the fiber, its slope and its local deflection are zero. These four constraints constitute the boundary
conditions for Eq. (B1) [104,105].

The dimensionless slip length is calculated after the assumption that Ṽ (y = ho − lslipR f ) = ε V ,
where ε is the zero-velocity threshold and takes values O(10−2):

lslip = −ln(ε)
√

kpm, (B7)

which agrees with Hosoi’s assumption for the thickness of the boundary layer and the extracted
Eq. (26).

Solving Eq. (B1) analytically along with its boundary conditions, we determine the variation of
the deflection along the y-direction and calculate critical quantities such as the maximum deflection
and slope. The local deflection follows

w(y) = − 1

E f If

4πηpV( np

npmK

)2
fc

⎡
⎣exp

(
(y − ho)

√
np

npmK

)
−

( np

npmK

) 3
2

6
y3

⎤
⎦

+ 1

E f If

2πηpV( np

npmK

)
fc

(
1 −

√
np

npmK
ho

)
y2 + 1

E f If

4πηpV( np

npmK

)3/2
fc

exp

(
−ho

√
np

npmK

)
y

+ 1

E f If

4πηpV( np

npmK

)2
fc

exp

(
−ho

√
np

npmK

)
. (B8)

The dimensionless maximum deflection arises at the fiber tip and in the limit of high enough
fibers is given by

dx = w(h0)

R f

∼=
[

16

fc
Vr

1

HK
k2

pm

(
1 − 1

6
k−3/2

pm A3
R

)
− 8

fc
Vr

1

HK
kpm A2

R

(
1 − ARk−1/2

pm

)]
, (B9)

while the maximum slope follows is

θB = tan−1(−w′(ho)) ∼= tan−1

[
16

fc
Vr

1

HK
k

3
2
pm

(
1 − 1

2
k−1

pmA2
R

)
− 16

fc
Vr

1

HK
kpm AR

(
1 − ARk

− 1
2

pm
)]

,

(B10)

where Vr stands for the ratio of the velocity at the plasma/porous medium interface to the CFL
velocity

Vr = V

VCFL
= 1

1 + 1√
kpm

(
L

R f

) , (B11)

and kpm is given by

kpm = fc

4c
. (B12)

The dimensionalization of the variables is based on the characteristic scales defined in Sec. II.
From the maximum slope, the dimensionless temporal height of a fiber is estimated by the

following relationship of Deng et al. [88]:

h ∼ ARcos(θB), (B13)

while the decrease in height in comparison to its initial value approximately is

−dy ∼ AR.[1 − cos (θB)] (B14)
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FIG. 24. Variations of the fiber-tip displacement components under steady-state conditions as functions of
(a), (b) the inverse of the blockage ratio (AR = 30, HK = 89), and (c), (d) the elasticity number (AR = 30,

BR = 0.50). Three methods are used for extracting the results: diamonds correspond to predictions based on
the theoretical linear beam deformation theory for dilute porous media [Eq. (B3)], squares are also based on
the same theory but in the limit of dense glycocalyx [Eq. (B4)], and circles are outcomes of our simulations.

This is an approximation because the small-deflection theory does not account for the variation
in the vertical direction. Of course, there are more realistic 1D models that account for it, such as
the large deflection model used by Pozrikidis [104,105] and Wexler et al. [106], but they have no
closed-form analytical solution and must be solved numerically.

The analytical model presented herein captures the dependence of the fiber-tip displacement
component on the blockage ratio (BR) and the elasticity number (HK). dx and dy vary linearly
and quadrately with the inverse of both dimensionless parameters (Fig. 24). There is a distinct
deviation between the predictions of our numerical simulations and the solution of the analytical
model. Their discrepancy is smaller when the fibers become stiffer or the spacing among them larger
because basic features of the model have been derived under such assumptions [Eqs. (B1), (B3),
(B6), (B11)]. In all cases, the dense-limit approximation [Eq. (B4)] provides larger predictions than
the sparse-limit one [Eq. (B3)], and both systematically overestimate the tip displacement vector
for the whole range of our simulations. Both conclusions agree with the range of validity of each
analytical formula [26]. Indicatively, the sparse-limit formula is valid for c < 0.4 or BR < 0.65.
Thus, the answer to the initial question of the appendix is that analytical models can not be safely
used for extracting accurate predictions for basic features of the glycocalyx layer. This holds even
for the current approximate model, which is more complete than previous ones (see [79,30]) for the
flow through an array of flexible fibers. These findings can explain the failure of Weinbaum et al.
[13] to provide a reliable estimation of the flexural rigidity of fibers using the Euler-Bernoulli model
for point loading and experimental data from the recoiling of glycoproteins after the passage of a
white blood cell.
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FIG. 25. (a) Shear stress σxy and (b) normal stress σyy distribution on an EG fiber. Presented data were
computed at steady state for BR = 0.33, HK = 89, and AR = 30.

APPENDIX C: EGL STRUCTURAL STRESSES

The proposed large-scale model provides valuable data for the structural dynamics of the fibers.
The stresses resulting from the deformation of the glycoproteins are indicators of their biological and
mechanical integrity. Regions with a high accumulation of stresses along the fiber body are locations
for initiating a failure. Moreover, any mechanical signal which corresponds to a variation of the
structural stresses is transmitted from the fiber body to the endothelium, controlling its dynamical
response and homeostasis. A typical example of a cascade of events could be an increase in blood
velocity, which causes large deformations of the glycoproteins and signals the increased production
of NO, a vasodilator causing the widening of the vessels.

In Fig. 25 we present contours of the shear σxy and normal σyy stress on the surface of a fiber
at the final sufficiently deformed state for BR = 0.33, HK = 89, and AR = 30. Given that plasma
flow and fibers displacement is in the x-direction, in (a) one can see that high positive values of σxy

up to 1.03 appear at the curved part of the fiber elongated by the deformation of the fibers, while
high negative values up to 0.44 appear at the shortened curved part. On the other hand, the normal
stress is increased at the bottom part of the body of the fiber. Specifically, at the left side of the
fiber [Fig. 25(b)], where tension dominates, normal stress reaches values up to 3.28. Accordingly,
negative normal stress due to compression is observed at the right side with the highest absolute
value of 3.07 at the base of EG. The value of both stress components is zero near the fiber tips in
steady state revealing how glycocalyx may feel and translate lateral forces imposed by the plasma
flow into concentrated stress close to the endothelial membrane, supporting its role as a transducer
of mechanical stress [13–15].
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