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Helical turbulent nonlinear dynamo at large magnetic Reynolds numbers
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The excitation and further sustenance of large-scale magnetic fields in rotating astro-
physical systems, including planets, stars, and galaxies, is generally thought to involve a
fluid magnetic dynamo effect driven by helical magnetohydrodynamic turbulence. While
this scenario is appealing on general grounds, it, however, currently remains largely
unconstrained, notably because a fundamental understanding of the nonlinear asymptotic
behavior of large-scale fluid magnetism in the astrophysically relevant but treacherous
regime of large magnetic Reynolds number Rm is still lacking. We explore this problem
using local high-resolution simulations of turbulent magnetohydrodynamics driven by an
inhomogeneous helical forcing generating a sinusoidal profile of kinetic helicity, mim-
icking the hemispheric distribution of kinetic helicity in rotating turbulent fluid bodies.
We identify a transition at large Rm to a nonlinear state, followed up to Rm � 3 × 103,
consisting of strong, saturated small-scale magnetohydrodynamic turbulence and a weaker,
traveling coherent large-scale field oscillation. This state is characterized by an asymptoti-
cally small resistive dissipation of magnetic helicity, by its spatial redistribution across the
equator through turbulent fluxes driven by the hemispheric distribution of kinetic helicity,
and by the tentative presence in the tangled dynamical magnetic field of plasmoids typical
of reconnection at large Rm.

DOI: 10.1103/PhysRevFluids.6.L121701

Introduction. Magnetic fields pervading astrophysical fluid systems such as stars and galaxies
are commonly thought to be excited and further sustained by a variety of self-amplifying magne-
tohydrodynamic (MHD) dynamo effects converting kinetic energy of turbulent flows of electrically
conducting fluid into magnetic energy [1–7]. In order to sustain large-scale magnetic fields via
a turbulent dynamo, however, some underlying system-scale symmetry-breaking is generically
required. Typically, this is provided in astrophysical systems by large-scale rotation and/or shear.
In particular, by breaking the parity or mirror invariance of an otherwise isotropic, homogeneous
turbulence, rotation makes the turbulence helical. This creates the conditions for statistical dynamo
effects that can in principle amplify large-scale magnetic fields exponentially on a rotation timescale
[8–11]. The most well known, the α effect [12], is generally considered a key ingredient of
magnetic-field generation in the sun.

While a helical turbulent dynamo provides an appealing phenomenological explanation for the
large-scale magnetism of rotating astrophysical bodies, there remain major open questions regarding
its actual viability and efficiency in the regime of large magnetic Reynolds numbers Rm and
comparable flow turnover times and correlation times, an astrophysically relevant nonperturbative
limit for which no analytical theory is available [13,14] (Rm = UL/η is larger than 106 in the
sun, and 1020 in galaxies; U denotes a typical velocity field amplitude, L is the typical scale of
the turbulence, and η is the magnetic diffusivity). Numerical studies have shown that large-scale
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exponential dynamo growth driven by helical turbulence, such as rotating convection, is possible at
mild Rm < O(100) [15,16] (see also Refs. [5,6,17] for reviews in various astrophysical contexts),
however, this regime is still far from asymptotic in practice.

First of all, a distinct small-scale fluctuation dynamo mechanism is activated beyond Rm =
O(100), which amplifies magnetic fields on fast time and spatial scales comparable to the flow
turnover scales [18–22]. This dynamo populates a large-Rm turbulent MHD fluid with dynamical
small-scale fields affecting the structure of the flow much faster than the helical dynamo can grow
a large-scale field [23–25]. Besides, independently of a small-scale dynamo, turbulent tangling of
a growing large-scale field produces dynamical magnetic fluctuations at increasingly smaller scales
as Rm increases (typically ∝ Rm−1/2), resulting in small-scale dynamical feedback on the flow well
before the large-scale field has itself saturated [26]. In the case of homogeneous helical turbulence
producing an α effect, this problem takes a particular pathological form: the large-scale field does
ultimately reach superequipartition levels, but it can only do so on a long, system-scale resistive
time, a consequence of a resistive bottleneck in the dissipation of small-scale magnetic twists also
responsible for the dynamical reduction of the α effect [16,27–29]. This is usually referred to as the
catastrophic α-quenching problem. Finally, the resistive-scale dynamics of saturated MHD dynamos
may undergo a fast-reconnection transition at Rm = O(Sc), where Sc = O(104) is the critical value
of the Lundquist number S = LVA/η at which MHD reconnection becomes fast [30–32] (assuming
an Alfvén speed VA ∼ U in the saturated regime). Its implications for the dynamics of helical fields,
such as produced by the α effect, have so far barely been touched on [7,33–38].

We aim to further explore the nonlinear helical dynamo problem at large Rm. A long-envisioned
possible solution to catastrophic quenching is via removal or spatial redistribution of small-scale
magnetic helicity by helicity fluxes [39–47]. The most studied case [48–50] involves expulsion
of magnetic helicity through system boundary winds. Simulations up to Rm � 103 suggest that a
regime with subdominant resistive effects is achieved at large Rm [50]. Alternatively, a similar state
may be achieved via magnetic helicity fluxes driven through an equator by a hemispheric distribution
of kinetic helicity, a simple configuration typical of rotating astrophysical systems [51]. This case
has so far only been studied at low Rm where resistive effects dominate over helicity fluxes [52,53].
The numerical identification, up to Rm � 3 × 103, of a nonlinear helical state with subdominant
resistive effects is the main result of this work.

Model. We address the problem from a standard perspective of magnetic helicity A · B dynamics
[A(r, t ) is the magnetic vector potential, B = ∇×A the magnetic field], a local evolution equation
of which can be derived from the induction equation,

∂

∂t
(A · B) + ∇ · FHm = −2η (∇×B) · B, (1)

where FHm = c(ϕB + E × A) is a magnetic-helicity flux, c is the speed of light, E is the electric
field, and ϕ is the electrostatic potential. We split each field into a mean, large-scale part, defined
below as an average over the (x, y) plane and denoted by an overline, and a fluctuating, small-scale
part, denoted by lowercase letters, B(r, t ) = B(z, t ) + b(r, t ). Manipulating the small- and large-
scale components of the induction equation, using E · B = 0, where E = u × B is the electromotive
force (EMF) for a flow u, one obtains helicity budget equations

∂

∂t
(a · b) + ∇ · FHm,SS = −2E · B − 2η (∇×b) · b, (2)

∂

∂t
(A · B) + ∇ · FHm,LS = 2E · B − 2η

(∇×B
) · B. (3)

In these equations, the first right-hand side (rhs) terms describe the production of magnetic
helicity, the second rhs terms its destruction by resistivity, and the second lhs terms describe
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FIG. 1. Time- and (x, y)-averaged kinetic and current helicity z profiles in a typical simulation (run T06,
Rm � 2800, Re � 700, Lf = 1, Lz = 4).

the transport of magnetic helicity through the divergence of mean fluxes of fluctuating or mean
helicities

FHm,SS = c(ϕ b + e × a), (4)

FHm,LS = c(ϕ B + E × A) = FHm − FHm,SS , (5)

where a and e denote fluctuations of the vector potential and electric field.
We compute these budgets in the Coulomb gauge ∇ · A = 0 [54] for three-dimensional, spatially

periodic Cartesian simulations of nonlinear, helical, incompressible, viscous, resistive MHD, carried
out with the SNOOPY spectral code with 2/3 dealiasing [55]. An inhomogeneous body force inspired
by the Galloway-Proctor flow [56,57] is implemented in the momentum equation,

f (r, t ) = k f A f
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⎟⎟⎟⎟⎠

, (6)

where ω f and A f are a forcing frequency and amplitude, Lx = Ly ≡ L f and k f = 2π/L f is the
forcing wave number. This forcing drives a flow with a statistically steady sinusoidal kinetic helicity
profile in z. Figure 1 shows kinetic and current helicity profiles at saturation. Both are positive
(negative) for z < Lz/2 (z > Lz/2), and change sign at equators z = Lz/2 and z = 0 (replicated at
z = 4 in a periodic setup). The mean, domain-averaged helicities are zero. Hence, this configuration
(i) mimics a hemispheric distribution of kinetic helicity; (ii) can potentially bypass catastrophic
resistive quenching present in the standard homogeneous case by enabling equatorial turbulent
magnetic helicity fluxes; (iii) keeps the system complexity minimal so as to maximize Rm.

We performed a parametric study for different Reynolds Re = urms/(k f ν) and magnetic Reynolds
numbers Rm = urms/(k f η), where urms is the rms flow amplitude (over time and space). We set
ω f = 1, A f = 0.1, L f = 1, and Lz = 4L f in all simulations to ensure a minimal scale separation
between the turbulence forcing scale and the scales of the helical inhomogeneity and emergent
large-scale statistical dynamics. Each run (Table I) was integrated for at least 50 forcing times
2π/ω f (175–200 flow turnover times L f /urms). To isolate the weaker, slow, large-scale signal from
the fast turbulent noise, the magnitude of each term in Eqs. (2) and (3) was estimated by Fourier
filtering them on z scales larger than the forcing scale (kz < k f ), then taking the rms values (over z)
of their time averages after initial growth of the dynamo.

Results. Helicity budgets as a function of Rm are shown in Fig. 2. The results are only weakly
dependent on Re. At low Rm, both budgets are characterized by a balance between resistive
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TABLE I. Run index. Lx, Ly = Lf = Lz/4 for all runs.

Run N(x,y), Nz ν−1 η−1 Re Rm urms Brms Brms

V01 642, 256 500 125 46.7 11.7 0.59 0.49 0.39
V02 642, 256 500 500 46.2 46.2 0.58 0.57 0.42
V03 1282, 512 500 2000 39.9 159.7 0.50 0.54 0.21
V04 1282, 512 500 8000 35.6 570.0 0.44 0.58 0.14
V05 2562, 1024 500 16000 32.9 1054.0 0.41 0.59 0.12

M01 642, 256 2000 125 201.2 12.6 0.63 0.51 0.42
M02 642, 256 2000 500 197.6 49.4 0.62 0.56 0.38
M03 1282, 512 2000 2000 177.0 177.0 0.56 0.59 0.32
M04 1282, 512 2000 8000 163.3 653.2 0.51 0.60 0.18
M05 2562, 1024 2000 16000 165.9 1327.5 0.52 0.60 0.12

T01 1282, 512 8000 125 804.4 12.6 0.63 0.48 0.37
T02 1282, 512 8000 500 846.6 52.9 0.66 0.58 0.42
T03 1282, 512 8000 2000 749.3 187.3 0.59 0.58 0.25
T04 1282, 512 8000 8000 748.1 748.1 0.58 0.60 0.16
T05 2562, 1024 8000 16000 683.4 1366.8 0.54 0.63 0.17
T06 5122, 2048 8000 32000 694.5 2778.0 0.55 0.62 0.12

FIG. 2. Small- and large-scale helicity budgets on large scales in z (kz < k f ) as a function of Rm, for
different Re.
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FIG. 3. Time-averaged helicity budgets on scales kz < k f (T06: Rm � 2800, Re � 700; T01: Rm � 15,
Re � 800).

and helical EMF terms. As Rm reaches 50–100, the large-scale budget transitions to a regime
characterized by a dominant balance between the large-scale z flux of large-scale helicity and
EMF. However, for Rm < 300–500, the dominant balance in the small-scale helicity budget remains
between the resistive dissipation of small-scale helicity and EMF. Hence, the large-scale dynamics
is still affected by resistive effects in this Rm range. This regime is nevertheless interesting in that it
can only be realized for nonuniform flow helicity [51]. It really takes Rm > 1000 to reach a regime
characterized by a dominant nonresistive balance in both large- and small-scale helicity budgets, the
latter now being between the large-scale z flux of small-scale helicity and the EMF term. A weak
residual dependence of both terms on Rm remains in the range of Rm probed.

A detailed comparison, between low- and large-Rm runs with identical viscosity, of the time-
averaged z-dependent quantities in Eqs. (2) and (3), again filtered on z scales larger than the
flow forcing scale, is shown in Fig. 3 to make more explicit the transition between the resistively
dominated and asymptotic regimes. Estimates of the flux divergences carried out in the Coulomb
gauge were always found to be in good agreement with the calculation of the (gauge-independent)
rhs of Eqs. (2) and (3) at large Rm, as expected in a statistically steady state [50]. Hence, we are
confident that the main trends reported here do not depend on our gauge choice.

Figure 4 shows the energy of B as a function of Rm. The results at intermediate Rm are consistent
with a Rm−1 scaling, in line with theory expectations and earlier simulations [52,58]. There is as
yet no clear-cut evidence for an asymptotic regime entirely independent of Rm (maybe because

FIG. 4. Time-averaged energy of B relative to the total magnetic energy, as a function of Rm.
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FIG. 5. Evolution of kinetic and magnetic energy densities (T06: Rm � 2800, Re � 700). Inset: associated
energy spectra in the saturated phase.

the small-scale helicity dissipation term only seemingly decreases slowly as Rm−1/2 at large Rm),
however we observe a clear deviation away of the Rm−1 scaling for the energy of the mean field at
the largest Re and Rm probed. Mean-field models assuming turbulent diffusive expressions for the
helicity fluxes also suggest that convergence of B

2
rms/B2

rms towards an Rm-independent value should
be slow at large Rm [53,58].

For our parameters, convincing access to a regime with subdominant resistive contributions
required a (spectral) resolution of 512 per L f (run T06, Rm � 2800, Re � 700). The evolution of
energy densities, and time-averaged energy spectra in the statistically steady state of T06 are shown
in Fig. 5. The evolutions of the large-scale field component Bx(z, t ) and large-scale magnetic energy
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FIG. 6. Evolution of (top) Bx (t, z) and (bottom) energy density of mean field (T06: Rm � 2800, Re � 700).
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FIG. 7. (x, z) (top) and (x, y) (bottom) out-of-plane magnetic-field snapshots (T06: Rm � 2800,
Rm = 700).

densities are shown in Fig. 6. B displays bursty oscillations, on a timescale ∼50–60 ω−1
f (∼30

turnover times), that appear to propagate spatially towards the equator associated with the node of
kinetic helicity at z = 2, a likely consequence of the symmetry-breaking flow helicity profile in z
[58]. Snapshots at the end of the run (Fig. 7) show complex, turbulent magnetic structures with
tentative nascent plasmoids typical of reconnection in nonlinear tangled magnetic fields at large Rm
[7,38], e.g., at (x, z) � (0.5, 0.75); (0.75, 1.3); (0.8, 3.2); (0.75, 3.5). The small-scale horizontal
structure visible in the bottom plot is the direct imprint of the forcing at L f and is distinct from
the weaker, but larger-scale emergent statistical order in z visible in Fig. 6.

Discussion. Numerical results showing a similar transition in the presence of advective wind
boundary losses of helicity have been obtained previously [50], albeit with a larger transition Rm
(their simulations at lower Rm with no wind also hinted at solutions involving turbulent diffusive
fluxes, but with different symmetries). In all cases, the strong dependence of the saturated state on
η is circumvented at large Rm by nonresistive helicity fluxes. The nonlinear state achieved here,
anticipated in Refs. [52,53,58], is particularly appealing in that it stems from a very simple inhomo-
geneous, hemispheric distribution of kinetic helicity also typical of rotating astrophysical systems.
While the solution is dominated by small-scale fields, a clear magnetic activity pattern migrating
towards the equator is present on scales larger than the flow forcing scale. Further investigations
are needed to determine whether a mean shear may boost the generation of a streamwise azimuthal
large-scale field, and how such a shear, or the transition to the low-Pm, large-Rm regime typical of
stellar dynamos may affect the properties of the identified traveling wave pattern.

Modeling helicity fluxes as turbulent diffusive fluxes also suggests that the transition Rm (to
the regime with a subdominant resistive term) scales as (k f /k)2, where k, the scale of B, should
be comparable to the helicity modulation scale [53]. If this scaling applies, something we could
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unfortunately not test due to limited computing resources, the asymptotic regime of large-scale
astrophysical dynamos typically involving large-scale separations may be at significantly higher
Rm than that determined here for Lz/L f = 4. As global simulations are currently limited to Rm
of a few hundreds (also uncomfortably close to the small-scale dynamo threshold), this raises the
question of their lack of asymptoticity for the foreseeable future. Our results may provide a useful
reference point to assess such future simulations in this respect.

An in-depth understanding of this large-Rm MHD state remains to be developed. One may be
tempted to interpret it classically as the nonlinear outcome of an α effect dynamo [1,8,12] (see also
Ref. [39] for theoretical work involving helicity fluxes). Oscillations of a weak large-scale field on
top of helical turbulent MHD background also suggest a (possibly connected) phenomenological
interpretation in terms of simple large-scale magnetoelastic waves in small-scale tangled fields
[59]. Finally, while we may have tentatively observed reconnection plasmoids in these simulations,
providing a new independent estimate of the minimal (spectral) resolution required to accommodate
fast reconnection in turbulent MHD, much more numerical work will be required in the future at
even higher resolution to fully characterize it, and its so far poorly understood possible effects on
large-scale magnetic field generation at asymptotically large Rm.
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