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Coordinated cilia are used throughout the natural world for micronscale fluid transport.
They are often modeled with regular filament arrays on fixed planar surfaces. Here we
simulate hundreds of interacting active filaments on spherical surfaces, where defects in
the cilia displacement field must be present. We see synchronized beating towards or about
two defects for spheres held fixed. Defects alter filament beating, which causes the sphere
to move once released. This motion feeds back to the filaments, resulting in a whirling state
with metachronal behavior along the equator.
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Motile cilia are slender, flexible, and active organelles found throughout the natural world [1].
They provide many swimming microorganisms with a mechanism for propulsion [2] and enable the
tissues in larger organisms to pump and move the fluids that surround them. In our own bodies, cilia
are responsible for the proper function of many organs, such as the lungs [3] and brain [4], and play
critical roles in processes such as fertilization and embryo development [5].

Fluid motion generated by cilia often relies on the coordinated movement of large groups. These
groups can cover the entire surface of a microorganism or can be distributed in patches on tissue
surfaces. Cilia-driven fluid flows inspired the seminal works in biological fluid mechanics providing
the swimming sheet [6] and squirmer models [7,8]. Along with experiments utilizing cells and
model organisms [9–13] and physical models constructed from colloidal particles [14,15], modeling
efforts have focused on how the coordinated motion itself emerges as a result of the various
mechanisms that are present in these systems. Both minimal rotor and rower models [9,16–22]
where the cilia are represented by spherical particles that travel along closed paths and more
detailed, largely computational models [23–30] that treat the cilia as filaments have been able to
recover important features of the individual dynamics, such as the spontaneous onset of beating, as
well as collective synchronization and metachronal waves.

These studies encompass many variations in how the cilia move, but by and large focus on
coordination for regularly spaced cilia in one-dimensional chains or two-dimensional arrays on
rigid planar surfaces. The surfaces of swimming microorganisms, however, are moving through the
surrounding fluid and are typically topologically equivalent to a sphere leading to defects in cilia
motion that yield intricate flow patterns [11]. Initial studies have shown that rotor chains with paths
parallel to the surface form metachronal waves on planar surfaces but instead synchronize on the
sphere [31]. Metachronal behavior is recovered once the rotor path is perpendicular to the surface
[32]. Additionally, recent simulation work [33,34] with prescribed filament kinematics has shown
that cilia motion accounts for the dominant contribution to the viscous dissipation and hence the
details regarding their motion, surface density, and distribution cannot be ignored when quantifying
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the propulsive efficiency of ciliates. In this Letter we perform simulations that allow filament motion
to evolve dynamically and study their coordination on spherical surfaces. Particular attention is paid
to the defects in the filament displacement field due to the spherical topology and whether or not the
underlying surface can move subject to the force- and torque-free condition.

We simulate the motion of M active elastic filaments attached to either a spherical rigid body of
radius R or a flat planar surface. The system is immersed in a viscous fluid and the inertia of the fluid,
filaments, and attached bodies is ignored. Filament motion is driven by a follower-force applied to
the filament’s free end. Follower forces have been used previously to mimic dynein motor activity
on a filament and the resulting motion has been studied in both two [35,36] and three [37–39]
dimensions. Simulations are performed using the computational framework and models described
by Schoeller et al. [40]. We summarize the model here and provide a more detailed description in the
Supplemental Material [41]. Each filament of length L and cross-sectional radius a is inextensible,
but can bend and twist. At time t , the shape of the filament is described by the space curve Y (s, t ),
where s ∈ [0, L] denotes the arclength. The orientation of the filament cross section is described
by an orthonormal material frame {̂t (s, t ), μ̂(s, t ), ν̂(s, t )}, wherêt is constrained to be the tangent
to the filament centerline througĥt = ∂Y/∂s. The filament dynamics is provided by the force and
moment balances

0 = ∂�

∂s
+ f H , (1)

0 = ∂M
∂s

+̂t × � + τH , (2)

respectively, where � is the internal force on filament cross sections, M is the internal elastic
moment, and f H and τH are, respectively, the forces and torques per unit length exerted on the
filament by the surrounding fluid. The internal force � arises from the constraint ̂t = ∂Y/∂s
and the elastic moment is expressed in terms of the orthonormal frame vectors as M(s, t ) =
KB̂t × ∂̂t/∂s + KT (̂ν · ∂μ̂/∂s)̂t, where KB is the bending modulus and KT is the twist modulus.
At the distal end (s = L), the filament is moment-free, M(L, t ) = 0, while the force is given by the
compressive follower force

�(L, t ) = − f KB̂t (L, t )

L2
, (3)

whose magnitude is controlled by the dimensionless parameter f . The force �(0, t ) and moment
M(0, t ) at the filament base act to enforce a clamped-end condition.

Each filament is divided into N segments of length �L = L/N and Eqs. (1) and (2) are discretized
to obtain force and torque balances for each of the segments. This results in a low-Reynolds-number
mobility problem whose solution is the velocities and angular velocities of the segments, and those
of the spherical body, if present and free to move.

The segment mobility matrices are provided by the Rotne-Prager-Yamakawa (RPY) tensors [42]
for both translations and rotations. For planar surfaces, we utilize versions of these matrices [43]
that incorporate the no-slip boundary condition. For spheres, we discretize their surfaces into NRPY

RPY particles that are constrained to translate and rotate as a single rigid body following [44]. If the
sphere is fixed, the mobility problem is solved with the condition that the surface velocity is zero.
For the free sphere, the force and torque on the sphere are set to ensure the total force and torque
are zero [41].

The segment and the body positions and orientations are updated using the second-order back-
ward differentiation formula (BDF2), taking advantage also of quaternions and geometric time
integration [45] to handle rotations. Applying the BDF2 scheme yields a nonlinear system of
differential equations that we solve iteratively using Broyden’s method [46].

In the simulations, each filament is discretized into N = 20 segments of length �L = 2.2a.
We consider spheres with radius R/L = 3 or 5 and discretize their surfaces using NRPY = 7000
or 16 500 RPY particles, respectively. This resolves the sphere mobility with error less than 0.1%
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FIG. 1. (a) Beat period Tf and long-time dynamics of an isolated filament. (b) Simulation snapshot of
M = 1024 filaments on a no-slip planar surface. (c) Snapshots of the tip-displacement vector field from the
simulation illustrated in (b). (d) Variance of the beat angle θ over time for arrays of M = 400 filaments for
f ∈ {200, 250, 300, 350}. The inset shows a plot of θ vs the probability density function (PDF) at different
times for f = 250. (e) Dynamics of an isolated filament ( ), a filament from the array in (b) ( ), and an
equatorial filament on a fixed sphere with R/L = 3 and ρ = 16.7 ( ) for f = 220.

as in [33]. We have also checked the convergence of our surface discretization to ensure that the
no-slip condition is well resolved for the flows generated by the filaments (see [41]). For spheres,
the dimensionless filament number density is given by ρ = 4πL2 × M/4πR2. Finally, the positions
of these RPY particles and the filament segments attached to the sphere are distributed nearly
uniformly by first seeding the particle along spirals [47] and then evolving them under a repulsive
potential to reach their final positions.

We first revisit the long-time dynamics of an isolated follower-force driven filament that is
attached to a planar no-slip surface. Varying f , we observe [see Fig. 1(a)] the same sequence of
bifurcations as in [37] with the static-to-whirling transition occurring at f ≈ 36.5, the whirling-
to-symmetric beating at f ≈ 137.5, and finally the symmetric beating-to-writhing transition at
f ≈ 475. These are indicated by the sudden changes in the period of filament motion Tf at these
values. In our studies of collective dynamics, we consider only planar beating (137.5 � f � 474)
and use T = T220 as the timescale when presenting our results.

To compare with coordination on spherical surfaces, we examine the collective dynamics for
filaments arranged in regular square arrays on planar surfaces. We find that all filaments eventually
synchronize and align their beating. The synchronization occurs for all values of f and for all
trialed filament spacings (0.67L − 1.5L). A snapshot from one simulation (see video in [41]) for a
32×32 (M = 1024) array with f = 220 and filament base separation 1.5L is shown in Fig. 1(b).
Figure 1(c) shows the tip-displacement vector fields at different times taken from this simulation.
The filaments evolve from the random initial conditions to forming patches of synchronized motion
with defects to alignment and synchrony of their motion. Filaments near the boundaries do not
completely align due to the finite size of the array. The alignment of filament motion is quantified
using the distribution of the angle θ between the beat plane of each filament and the x direction
(see [41] for computational details). Filaments at the array boundaries are excluded. For M = 400,
the variance of this distribution decreases with time [see Fig. 1(d)] as the distribution itself evolves
from being approximately uniform to peaking at θ = 0 as time passes. We also observe that aligned
motion emerges faster at higher f values. Finally, examining the motion of a representative filament
in Fig. 1(e), we see that the filament shape is largely unchanged by the collective motion.

Filaments on the surface of a fixed sphere exhibit several differences in their coordination.
First, the defects in tip displacements that emerged, but ultimately disappeared, in the planar case
must remain in the spherical one as a consequence of the Poincaré-Hopf theorem [48]. Depending
on parameter values, we observe both center and source- or sink-type defects corresponding to
azimuthal and polar beating, respectively. At lower ρ values these defects tend to be found close to
the defects in the distribution of filament attachment positions, but in general the defect positions
appear to depend on the initial conditions or even migrate slowly around the surface. As shown in
Fig. 2(a) (see also [41] for videos), simulations with R/L = 5, ρ = 16.7 (M = 417), and f = 220
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FIG. 2. (a) Azimuthal coordination for a fixed sphere with R/L = 5, ρ = 16.7, and f = 220 (left) and
polar coordination for fixed spheres with R/L = 5, f = 330, and ρ = 16.7 (middle) and ρ = 27.8 (right).
(b) Tip-displacement vector fields for the simulations in (a). (c) The f dependence of β, the mean angle between
the filament beats and azimuthal directions. (d) Schematic of the aplanarity measure r2/r1, where r1 and r2 are
the dimensions of the rectangle in the tangent plane at the filament attachment point that tightly bounds the
filament positions during its beat. (e) Variation of r2/r1 with θ for R/L = 5, f = 330, and both ρ = 16.7
(M = 417) and ρ = 27.8 (M = 694).

exhibit azimuthal beating, while those with ρ = 16.7 and ρ = 27.8 (M = 694) but the higher force
value f = 330 display polar beating. For ρ = 27.8 and f = 220 the simulation did not reach a
steady oscillation after 1000T . The corresponding tip-displacement vector fields are shown in
Fig. 2(b). To investigate further the f dependence of the final state, we compute (see [41] for details)
β, the average over all filaments of the angle between the final beat direction and the azimuthal
direction for R/L = 3. Figure 2(c) shows the β transition over a small range of f from values
close to zero to values of nearly π/2, indicating the sudden transition from azimuthal to polar
beating. Incidentally, for planar arrays a similar transition was observed with beating along the
lattice directions at lower f , but along the diagonals at higher values. The qualitative nature of the
collective state appears unaffected by changes in ρ [red symbols in Fig. 2(c)].

At low ρ and away from defects, filament motion remains largely unaltered [see Fig. 1(e)];
however, close to the defects, significant motion out of the expected beat plane is observed. We
measure this deviation using the ratio r2/r1, where r2 and r1 are the dimensions of the rectangle
[computed using principal component analysis (PCA) as discussed in [41]] circumscribing tip
displacements over a beat period [see Fig. 2(d) for a schematic]. Thus, a planar beat has r2/r1 = 0,
while r2/r1 = 1 indicates equal maximum displacements in two orthogonal directions. As shown
in Fig. 2(e) for R/L = 5, ρ = 16.7, and f = 330, the out-of-plane motion increases as θ , the polar
angle as measured from the defect position, approaches θ = 0 and θ = π , where it has a maximum
value of r2/r1 ≈ 0.36. Increasing to ρ = 28.7, altered filament motion is pervasive as aplanarity is
observed over the entire surface.

Microorganism and swimming cells that utilize coordinated cilia move freely through the
surrounding fluid. We now explore filament coordination on spheres that are no longer fixed, but
move subject to force- and torque-free conditions. Here we find that the defect-induced changes
in filament motion, especially for high ρ, lead to motion of the sphere, which then changes the
collective filament dynamics. For ρ = 16.7, collective motion strongly resembles azimuthal beating
(recall Fig. 2) seen in the fixed sphere case. The defects coincide with the body’s rotation axis
and, as for the fixed spheres, they are often found near the filament placement defects when fixed
on the surface, but are also found elsewhere and even found to be mobile in many cases. Unlike
for fixed spheres, only azimuthal beating occurs for all investigated force values between f = 220
and f = 330 on free spheres of radius R/L = 3 and ρ = 16.7. Increasing the filament density to
ρ = 27.8 reveals a novel coordinated state owing to the motion of the underlying surface and was
observed for all values of f between f = 220 and f = 330 on the R/L = 3 sphere. As depicted in
Figs. 3(a) and 3(b) (see also [41] for a video), the majority of filaments divide into two hemispheres:
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FIG. 3. (a) Laboratory-frame illustrations of the different filament motions on the free R/L = 5, ρ = 27.8
sphere at f = 220, alongside a snapshot of the collective state. (b) Tip-displacement vector field corresponding
to (a). (c) Unwrapped equatorial band, illustrating the radial tip displacement h and the azimuthal angle φ.

one where they whirl clockwise (when viewed in the body frame) and the other where whirling
is counterclockwise. While the whirling motion itself is reminiscent of that observed for isolated
filaments for 36.5 � f � 137.5, the motion here results from the filament base moving due to the
sphere wobbling, as shown in Fig. 3(a). In the equatorial region where the hemispheres meet, the
individual filaments undergo a flapping-type motion [see Fig. 3(a)] and propagate a metachronal
wave around the equator. The position of the rotation axis, and hence the defects, coincides with
the peak of the metachronal wave and the defects in the filament attachment positions are found to
be in the vicinity of the equatorial region. The metachronal behavior is shown in Fig. 4(a), which
provides the radial filament tip displacement h [see Fig. 3(c)] as a function of the azimuthal angle
φ and time t . The diagonal banding is consistent with a wave traveling around the equator with a
frequency twice that of the filament motion as there are two peaks in the wave.

While the azimuthal beating and whirling-filament collective dynamics described above seem
to be different classes of collective motion, a closer examination shows that they are in fact special
cases of a more general behavior that depends continuously on ρ. As illustrated in Fig. 4(b), filament
bases away from defects move in loops that are slender ellipses for low ρ, corresponding to motion
indistinguishable from azimuthal beating, and approach circles as ρ increases. This is confirmed
quantitatively by computing (see [41] for details) α, the trajectory aspect ratio, which increases
monotonically with ρ from values close to 0 to 0.7 [Fig. 4(b)]. Also shown in Fig. 4(b) is the
time-averaged angular speed of the body 
, which also increases with ρ. We find that to very
good accuracy the angular velocity can be expressed as �(t ) = f (t )p + g(t )p⊥, where p and p⊥
are PCA-computed (see [41]) orthonormal vectors spanning a body-fixed plane. The components

(a) (b) (c)

FIG. 4. (a) Contour plot of the radial displacement of the filament tip h against time t and the azimuthal
angle φ. (b) The time-averaged angular speed 
 and α, the aspect ratio of the filament base path, in-
crease linearly as ρ increases. (c) Components of �(t ), f (t ), and g(t ). Lighter curves correspond to higher
densities ρ.
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f (t ) and g(t ) are shown in Fig. 4(c). While the component f (t ) varies only slightly as ρ increases,
g(t ), which is out of phase with f (t ), grows in magnitude. It is this increase that is responsible for
the corresponding increases in both α and 
. At low ρ, g(t ) is close to zero and �(t ) is close to
an oscillatory rotation about a fixed axis, yielding the slender-loop trajectories of the filament bases
(small α). As ρ increases, so too does |g|, which widens the filament base paths.

It is clear that the effects of surface topology and motility conspire to yield large qualitative
changes in filament collective dynamics; however, it is interesting to note that in our case the surface
motion is purely due to rotations. We do not observe any significant translation (total displacements
are approximately L over 1000T of beating), hence swimming, of the body. Any translation is likely
due to slight nonuniformity in the distribution of the filaments over the surface. For simulations that
we have performed with very few filaments that are placed at the vertices of Platonic solids, there is
no translation at all, only the wobbling described above. With this in mind, it is important to recall
that the beat of an isolated filament is itself symmetric. Polar beating on the fixed sphere retained
this symmetry, and releasing the sphere altered the coordinated state rather than yielding symmetry
breaking and spontaneous motion, as seen for symmetric phoretic particles at sufficiently high Péclet
numbers [49,50]. Unlike our simulations where the final collective state emerges in the absence of
prescribed beat orientations, the collective motion of cilia and flagella used by microorganisms
for propulsion are often dictated by different structural elements that restrict beating to particular
directions. A single cilium exhibits an asymmetric beat driven by the action of dynein molecular
motors along its length (as opposed to only the tip as in our model) and consists of the well-known
effective and recovery strokes [2]. The beat plane itself is linked with the orientation of the central
microtubule pair in the axoneme [51]. With this in mind, it is worth noting that nodal cilia involved
in embryogenesis lack this central pair [52] and are instead observed to whirl [5]. Finally, the basal
body and specifically the basal foot to which the cilia are anchored establish the beat direction
(see, for example, [53]) relative to the cell and ultimately, for multicellular organisms, aligns the
beat directions with the organism’s anterior-posterior axis and fixes the locations of defects in
the cilia displacement field. For example, the somatic cells in Volvox are aligned such that their
flagella beat toward defects that coincide with the anterior and posterior poles, ensuring also that
the effective stroke is directed toward the posterior [10,54]. The strong link between beat direction
and the colony’s anterior-posterior polarity should perhaps be expected. The anterior-posterior
differences in Volvox extend beyond flagella beat alignment and in particular the size and number of
light-detecting eyespots are greater in the anterior [55]. As flagella provide motility, the correlation
between the placement of the sensory organelles used by the colony and its established swimming
direction due to flagellar motion are likely needed to enable important responses to external stimuli
such as phototaxis and chemotaxis. While our simulations do not attempt to capture these important
built-in structural limits on cilia motion and their collective states, they do provide the backdrop
illustrating that even under minimal restrictions, hydrodynamic interactions between the filaments
provide a mechanism for synchronization, even on spherical topologies.

The authors gratefully acknowledge support from EPSRC Grant No. EP/P013651/1. T.A.W. is
also thankful for funding through an EPSRC Studentship (No. 1832024).
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