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We study the mechanically driven flows of non-Newtonian fluids in narrow and confined
configurations. Using the Lorentz reciprocal theorem, we derive a closed-form expression
for the flow rate–pressure drop relation of complex fluids in such geometries, which holds
for a wide class of non-Newtonian constitutive models. For the weakly non-Newtonian
limit, our theory provides the first-order non-Newtonian correction for the flow rate–
pressure drop relation solely using the corresponding Newtonian solution, eliminating the
need to solve the non-Newtonian flow problem. In particular, for the flow-rate-controlled
situation, we find that the first-order non-Newtonian pressure drop correction may increase,
decrease, or not change the total pressure drop for a viscoelastic second-order fluid,
depending on the geometry, but always decreases it for a shear-thinning Carreau fluid.
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I. INTRODUCTION

Pressure-driven flows of non-Newtonian fluids in narrow and confined geometries are ubiquitous
in natural processes and technological applications. Examples include blood flow in microvessels,
such as arterioles and venules [1,2], polymeric flows in industrial processes [3], and non-Newtonian
flows in microfluidic devices, such as a microviscometer [4] and viscoelastic fluidic rectifier
[5–7]. For such confined flows, which are usually created either by imposing the flow rate q or
pressure drop �p, one of the main interests is to understand the relationship between the flow
rate and pressure drop for a given geometry. Beyond the aforementioned examples, understanding
the q-�p relation is also important in medical applications, for instance, for precise estimation
of the injection force of subcutaneous drug administration, which may exhibit non-Newtonian
rheology [8,9]. Conventionally, obtaining the flow rate–pressure drop relation requires first solving
the governing equations for the detailed distribution of the velocity and pressure fields, which may
involve cumbersome calculations for non-Newtonian flows even in simple geometries. However,
as we show, these detailed calculations of the non-Newtonian flow problem can be bypassed, at
least in some cases, by applying the Lorentz reciprocal theorem [10]. While we hereafter consider
stable flows to analyze the q-�p relation, it should be noted that the flow of non-Newtonian fluids
within nonuniform geometries may become unstable above a certain flow rate even at low Reynolds
numbers due to the fluid’s complex rheology [11–13].

The reciprocal theorem for low-Reynolds-number hydrodynamics has been applied widely to
facilitate some calculations by eliminating the need for calculating the detailed flow and pressure
fields (e.g., [14]). The reciprocal theorem is not limited to the flow of Newtonian fluids and has been
extended to describe the motion of particles in non-Newtonian flows [15–19], in particular, to the
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FIG. 1. Schematic illustration of the geometry consisting of a two-dimensional spatially varying shallow
channel of height h(x) and length �. The channel contains a non-Newtonian fluid steadily driven by an imposed
flow rate q resulting in the pressure drop �p.

determination of the non-Newtonian contribution to the forces and torques on particles [20–23], and
to calculate the speed [24–30] and force moments [31,32] of self-propelled particles in a complex
fluid. All of the above studies considered the weakly non-Newtonian limit, thus enabling the use
of the Newtonian solution for the flow field to find the first-order non-Newtonian effects without
solving the detailed flow field in the non-Newtonian problem.

The integral form of the reciprocal theorem is particularly convenient for calculating integrated
hydrodynamic quantities such as force, torque, and flow rate [14]. Thus, given this convenience, one
would expect to find the application of the reciprocal theorem to determine all of these quantities.
However, to date, its use has been primarily limited to obtaining the force and torque acting on
particles in unbounded and semibounded flows of Newtonian and non-Newtonian fluids, and only
a few studies have utilized the reciprocal theorem to obtain the flow rate of Newtonian fluids in
channel flows [33–35]. Moreover, to the best of our knowledge, no application of the reciprocal
theorem has been presented to date for obtaining the flow rate–pressure drop relation for the flow of
non-Newtonian fluids.

In this Letter, we show that the reciprocal theorem allows one to obtain the flow rate–pressure
drop relation for flows of non-Newtonian fluids in channels of arbitrary shape, bypassing the detailed
calculations of the non-Newtonian flow problem. We first employ the shallowness of the geometry
and derive a general expression for flow rate–pressure drop relation in nonuniform lubrication flows,
which holds for a wide class of shear-thinning and viscoelastic non-Newtonian constitutive models.
Considering the weakly non-Newtonian limit, we then show that calculation of the first-order non-
Newtonian correction for the q-�p relation involves only the use of the corresponding Newtonian
solution in the same geometry without the need to solve for non-Newtonian flow at this order.
We illustrate the use of our approach for the weakly viscoelastic second-order fluid model and
the weakly shear-thinning Carreau fluid and show that the first-order non-Newtonian pressure drop
correction can increase, decrease, or not change the total pressure drop, depending on the flow
geometry.

II. GOVERNING EQUATIONS AND LUBRICATION SCALING

Consider incompressible steady flow of a non-Newtonian fluid in a two-dimensional nonuniform
channel of height h(x) and length �, where h � �, as shown in Fig. 1. We assume that the fluid
motion with velocity u = (u, v) and pressure distribution p is induced by the imposed flow rate q
(per unit depth), and we are interested in determining the resulting pressure drop �p for a given
q. There is no loss of generality in considering the two-dimensional case, as contrasted with an
axisymmetric configuration or a three-dimensional case provided the Newtonian flow solution is
known.

We consider low-Reynolds-number flows so that the fluid motion is governed by the continuity
equation and Cauchy momentum equations in the absence of inertia,

∇ · u = 0, ∇ · σ = 0, (1)
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where σ is the stress tensor, which is assumed to take the form [16,26]

σ = −pI + τ = −pI + 2η0E + A with E = 1

2
(∇u + (∇u)T). (2)

Here, I is the identity tensor, τ is the deviatoric stress tensor, η0 is a constant viscosity, E is the
rate-of-strain tensor, and A is a symmetric tensor, which may represent a deformable microstructure,
but see below for an application to the Carreau model, which is an example of a generalized New-
tonian fluid. The term 2η0E represents the Newtonian contribution to the deviatoric stress, while A
represents the contribution that gives rise to the non-Newtonian effects. The governing equations (1)
and (2) are supplemented by the no-slip and no-penetration boundary conditions along the channel
walls, u = 0 at y = 0, h(x), and the integral constraint for the flow rate,

∫ h(x)
0 u(x, y) dy = q.

We introduce nondimensional variables based on lubrication theory,

X = x

�
, Y = y

h0
, U = u

q/h0
, V = v

εq/h0
, (3a)

P = p − pref

η0q/(ε2h0�)
, H = h

h0
, �P = �p

η0q/(ε2h0�)
, (3b)

Axx = Axx

η0q/(ε2h0�)
, Axy = Axy

η0q/(εh0�)
, Ayy = Ayy

η0q/(h0�)
, (3c)

where h0 is the height at x = 0, pref is an appropriate reference pressure, and ε = h0/� is the aspect
ratio of the configuration, which is assumed to be small, ε � 1. The nondimensional shape of
the channel is denoted H (X ) and will be an important parameter in our main results below. With
this nondimensionalization, the governing equations (1) and (2) take the following form for two-
dimensional flows:

0 = ∂U

∂X
+ ∂V

∂Y
, (4a)

∂P

∂X
= ε2 ∂2U

∂X 2
+ ∂2U

∂Y 2
+ ∂Axx

∂X
+ ∂Axy

∂Y
, (4b)

∂P

∂Y
= ε2

[
ε2 ∂2V

∂X 2
+ ∂2V

∂Y 2
+ ∂Axy

∂X
+ ∂Ayy

∂Y

]
. (4c)

From Eq. (4), it follows that P = P(X ) + O(ε2), i.e., the pressure is independent of Y up to O(ε2),
consistent with the classical lubrication approximation.

III. RECIPROCAL THEOREM FOR NON-NEWTONIAN FLOWS IN NARROW GEOMETRIES

Let û and σ̂ denote, respectively, the velocity and stress fields corresponding to the solution of the
Newtonian problem in the same domain with the same viscosity η0. The corresponding governing
equations are

∇ · û = 0, ∇ · σ̂ = 0 with σ̂ = −p̂I + 2η0Ê. (5)

From Eqs. (1) and (5), it follows that (∇ · σ) · û = 0 and (∇ · σ̂ ) · u = 0, and thus ∇ · (σ · û) − σ :
∇û = 0 and ∇ · (σ̂ · u) − σ̂ : ∇u = 0. Using the latter result, incompressibility, and the symmetry
of the stress tensor, we obtain ∇ · (σ · û) − σ : Ê = 0 and ∇ · (σ̂ · u) − σ̂ : E = 0. Subtracting
these identities and using Eqs. (2) and (5) yields ∇ · (σ · û) − ∇ · (σ̂ · u) = A : Ê. This equation
can be integrated over the entire fluid volume V bounded by the surface of the top and bottom walls
Sw, and the surfaces at the inlet and outlet S0 and S� at x = 0 and x = �, respectively. Then, applying
the divergence theorem over the fluid domain V leads to the reciprocal theorem in the form∫

S0

n · σ · û dS +
∫

S�

n · σ · û dS −
∫

S0

n · σ̂ · u dS −
∫

S�

n · σ̂ · u dS =
∫
V

A : Ê dV, (6)
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where n is the unit outward normal to S0, �, and we have used the fact that the integrals over the
walls Sw vanish since there u = û = 0.

Previously, the reciprocal theorem in a form equivalent to Eq. (6) has been applied to analyze
the motion of active and passive particles [15–19,24–29,31,32] and calculate the non-Newtonian
contribution to the forces and torque on particles [20–23] in unbounded and/or semibounded non-
Newtonian flows. Instead, here, we use the reciprocal theorem to calculate the flow rate–pressure
drop relation of complex fluids in confined and narrow geometries. Our derivation applies to a wide
class of non-Newtonian constitutive models and assumes only negligible fluid inertia, a shallow
geometry, ε � 1, and two-dimensional flow, where the last assumption is for simplicity and clarity
of presentation.

Using the scaling analysis and Eqs. (2), (3), and (5), the terms A : Ê, n · σ · û, and n · σ · û,
appearing in Eq. (6), are approximately

A : Ê = η0q2

h4
0

[
Axx

∂Û

∂X
+ Axy

∂Û

∂Y
+ O(ε2)

]
, (7a)

n · σ · û|X=0, 1 = ∓η0q2�

h4
0

[[−P + Axx]Û + O(ε2)]X=0, 1, (7b)

n · σ̂ · u|X=0, 1 = ∓η0q2�

h4
0

[−P̂U + O(ε2)]X=0, 1, (7c)

where the minus sign in Eqs. (7b) and (7c) corresponds to S0 and the plus sign corresponds to S�.
Substituting Eq. (7) into Eq. (6), we obtain∫ H (0)

0
[(P − Axx )Û ]X=0dY −

∫ H (1)

0
[(P − Axx )Û ]X=1dY −

∫ H (0)

0
[P̂U ]X=0dY

+
∫ H (1)

0
[P̂U ]X=1dY =

∫ 1

0

∫ H (X )

0

[
Axx

∂Û

∂X
+ Axy

∂Û

∂Y

]
dY dX + O(ε2), (8)

where H (X ) is the nondimensional shape of the channel. Noting that P = P(X ) + O(ε2), P̂ =
P̂(X ) + O(ε2), and

∫ H (X )
0 UdY = ∫ H (X )

0 ÛdY = 1, and defining �P = P(0) − P(1) and �P̂ =
P̂(0) − P̂(1), Eq. (8) yields the reciprocal theorem for two-dimensional flows of non-Newtonian
fluids in narrow geometries:

�P = �P̂ +
∫ H (0)

0
[AxxÛ ]X=0dY −

∫ H (1)

0
[AxxÛ ]X=1dY

+
∫ 1

0

∫ H (X )

0

[
Axx

∂Û

∂X
+ Axy

∂Û

∂Y

]
dY dX + O(ε2). (9)

The solution of the corresponding Newtonian lubrication problem is well-known to be (see, e.g.,
[36])

�P̂ = 12
∫ 1

0

dX

H (X )3
, Û = 6

H (X )3
Y (H (X ) − Y ), V̂ = 6

H (X )4

dH (X )

dX
Y 2(H (X ) − Y ). (10)

Equation (9) is the main result of this Letter, clearly indicating that the pressure drop of non-
Newtonian flow in a narrow channel consists of four contributions. The first term on the right-hand
side of Eq. (9) represents the Newtonian contribution to the pressure drop. The second and third
terms represent the contribution of the non-Newtonian normal stress of the complex fluid at the
inlet and outlet of the channel. Finally, the last term represents the non-Newtonian contribution due
to elongational (Axx∂Û/∂X ) and shearing (Axy∂Û/∂Y ) effects within the fluid domain V .

Expression (9) is not restricted to a particular choice of the constitutive rheological equa-
tion and can be used with various constitutive models, provided the deviatoric stress can be
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written as τ = 2η0E + A. For example, we can use Eq. (9) with viscoelastic models such
as the Oldroyd-B, second-order fluid, finite-extensibility nonlinear elastic model introduced by
Chilcott and Rallison (FENE-CR) [22], finite-extensibility nonlinear elastic model with the
Peterlin approximation (FENE-P) [37], Phan-Thien-Tanner, and Giesekus models, and shear-
thinning models such as the Carreau model [38,39]. We note that although the FENE-P
and Phan-Thien-Tanner constitutive models do not exactly take the form of Eq. (2), they agree with
it for the weakly non-Newtonian limit, and thus our approach allows assessing the non-Newtonian
correction to pressure drop for these models as well.

IV. THE WEAKLY NON-NEWTONIAN LIMIT

Equation (9) clearly shows that the pressure drop depends on the Axx and Axy components of the
non-Newtonian contribution to the deviatoric stress, and thus, generally, requires the solution of the
nonlinear non-Newtonian problem. However, in the weakly non-Newtonian limit, where the non-
Newtonian deviatoric stress τ = 2η0E + A is slightly perturbed from a Newtonian stress τ = 2η0E,
we can apply the reciprocal theorem (9) to obtain the non-Newtonian correction to pressure drop
only with the knowledge of the solution of the Newtonian problem.

To this end, we expand the velocity and pressure as {U,V, P} = {U0,V0, P0} + α{U1,V1, P1} +
O(α2) and A as {Axx,Axy,Ayy} = α{Axx,0,Axy,0,Ayy,0} + O(α2), where α � 1 is a small di-
mensionless parameter indicating the deviation from Newtonian behavior, for example, small
Carreau number or small viscosity difference for shear-thinning fluids [27] or small Deborah (or
Weissenberg) number for weakly viscoelastic fluids [16,26]. Substituting these expansions into
Eq. (9), at the leading order we obtain the Newtonian contribution to the pressure, �P0 = �P̂,
while the first-order terms yield the non-Newtonian correction,

�P1 =
∫ H (0)

0
[Axx,0Û ]X=0dY −

∫ H (1)

0
[Axx,0Û ]X=1dY

+
∫ 1

0

∫ H (X )

0

[
Axx,0

∂Û

∂X
+ Axy,0

∂Û

∂Y

]
dY dX, (11)

where Axx,0 and Axy,0 depend on the corresponding Newtonian flow field (U0,V0) = (Û , V̂ ).
To illustrate the use of these results, in subsequent sections we calculate the first-order non-

Newtonian correction to the pressure drop for a weakly viscoelastic second-order fluid and a weakly
shear-thinning Carreau fluid.

A. Viscoelasticity: Second-order fluid

Viscoelastic fluids exhibit both viscous and elastic responses to applied shear and extensional
rates. For low-Deborah-number flows, De � 1, where the relevant De is defined below, viscoelastic-
ity may be described using the second-order fluid model, obtained via the retarded motion expansion
of the deviatoric stress tensor as a polynomial in the rate-of-strain tensors up to second order in the
expansion [38,39],

τ = 2η0E − Ψ1

∇
E + 4Ψ2E · E with

∇
E = ∂E/∂t + u · ∇E − (∇u)T · E − E · (∇u). (12)

Here, η0 is the constant viscosity of the viscoelastic solution, the triangle is the upper-convected
derivative of E, and Ψ1 and Ψ2 are the first and second normal stress-difference coefficients,
respectively. The first and second normal stress-difference coefficients have units of Pa s2, and
Ψ1 > 0 and Ψ2 � 0 for polymer solutions. In this work, we consider steady flows and thus drop

the time derivative ∂E/∂t in
∇
E.

From Eqs. (2) and (12), it follows that A = −Ψ1[u · ∇E − (∇u)T · E − E · (∇u)] + 4Ψ2E·E.
Using Eq. (3) and performing order-of-magnitude analysis, we obtain the dimensionless expressions
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for Axx and Axy,

Axx = De

[
(2 + B)

(
∂U

∂Y

)2

+ O(ε2)

]
, Axy = −De

[
U

∂2U

∂X∂Y
+ V

∂2U

∂Y 2
− 2

∂U

∂Y

∂V

∂Y
+ O(ε2)

]
,

(13)
where B = −2Ψ2/Ψ1 � 0 is the ratio of the second to the first normal stress-difference coefficients
and De = Ψ1q/2η0�h0 is the Deborah number, which is the product of the relaxation time scale
of the fluid, Ψ1/2η0, and the characteristic extension rate of the flow, q/�h0. Alternatively, De
can be interpreted as the ratio of the relaxation time to the residence time of the fluid in the
channel, �/(q/h0). The Deborah number De is related to the Weissenberg number Wi = Ψ1q/2η0h2

0
through De = εWi, where Wi is the product of the relaxation time scale of the fluid and the
characteristic shear rate of the flow, q/h2

0. Since we assume ε � 1, De can be small while keeping
Wi = O(1) [40].

Considering the weakly viscoelastic limit, corresponding to De � 1, where now α = De, we
expand the velocity, pressure, and A in powers of De, similarly to the previous section. Noting that
(U0,V0) = (Û , V̂ ) and using Eqs. (10) and (13), we obtain

Axx,0 = 36(2 + B)(H (X ) − 2Y )2

H (X )6
, Axy,0 = 72Y (2Y − H (X ))(4Y − 3H (X ))

H (X )7

dH (X )

dX
. (14)

Substituting Eq. (14) into Eq. (11) provides an analytical expression for the first-order pressure drop
correction of the second-order fluid:

�P1 = 18(5 + 3B)

5

[
1

H (0)4
− 1

H (1)4

]
= 18(5 + 3B)

5

(H (1)4 − H (0)4)

H (0)4H (1)4
, (15)

indicating that �P1 may increase, decrease, or not change the total pressure drop of the viscoelastic
second-order fluid, depending on the geometry. Specifically, Eq. (15) shows that the pressure drop at
the first order solely depends on the height of the channel at the inlet and outlet; for H (1) > H (0) the
first-order correction leads to an increase in the pressure drop, for H (1) < H (0) to a decrease in the
pressure drop, and for H (1) = H (0) there is no first-order in De contribution to the pressure drop.
We note that such an increase (decrease) in the pressure drop for H (1) > H (0) [H (1) < H (0)] is in
qualitative agreement with two-dimensional numerical simulations using the Oldroyd-B model for
abruptly expanding (contracting) channels [41]. We expect the higher-order corrections to depend
on the channel curvature and to have a significant contribution to the pressure drop, similar to the
recent studies of squirmers at low Deborah (or Weissenberg) number that reported large changes to
the results when higher-order corrections were taken into account [28,30,42].

B. Shear thinning: Carreau fluid

Shear-thinning fluids exhibit a decrease in viscosity with applied shear rate. The Carreau model
is an example of a generalized Newtonian model with τ = 2η̃(γ̇ )E, which reproduces the realistic
rheological behavior of shear-thinning fluids over the entire range of shear rates. The constitutive
equation for the Carreau model is τ = 2η̃(γ̇ )E = 2[η∞ + (η0 − η∞)(1 + (λγ̇ )2)(n−1)/2]E [38],
where γ̇ = √

2E : E is the shear rate, and η0 and η∞ are the zero- and infinite-shear-rate viscosities,
respectively. The power-law index n characterizes the degree of shear thinning (0 < n < 1) and λ

is the inverse of a characteristic shear rate at which shear thinning becomes apparent. The Carreau
model can be written in the form of Eq. (2) as

τ = 2η0E + A with A = −2(η0 − η∞)[1 − (1 + (λγ̇ )2)(n−1)/2]E. (16)

Using Eq. (3) and performing order-of-magnitude analysis, we obtain the form of the shear
rate, γ̇ 2/(q2/h4

0) = (∂U/∂Y )2 + O(ε2), and Axx scales as O(ε2). This implies that the non-
Newtonian contribution to the pressure drop of the Carreau fluid arises solely from shearing effects
(Axy∂Û/∂Y ), as represented by the last term in Eq. (11), and Axx does not contribute to the pressure
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drop up to O(ε2). We therefore calculate only the Axy component of the deviatoric stress and find

Axy = −(1 − β )

[
1 −

(
1 + Cu2

(
∂U

∂Y

)2)(n−1)/2]
∂U

∂Y
+ O(ε2), (17)

where β = η∞/η0 and Cu = λq/h2
0 is the Carreau number, which is the ratio of the characteristic

shear rate in the flow, q/h2
0, to the crossover shear rate in the fluid, 1/λ.

Considering the weakly shear-thinning limit, corresponding to Cu2 � 1, where now α = Cu2,
we expand the velocity, pressure, and Axy in powers of Cu2, similarly to the previous sections, and
using Eqs. (10) and (17) we obtain

Axy,0 = −1

2
(1 − β )(1 − n)

(
∂U0

∂Y

)3

= 108(1 − β )(1 − n)
(2Y − H (X ))

H (X )9

3

. (18)

Substituting Eq. (18) into Eq. (11) and recalling that the terms involving Axx scale as O(ε2), and
thus are negligible at this order, provides an analytical expression for the first-order pressure drop
correction of the Carreau fluid:

�P1 =
∫ 1

0

∫ H (X )

0
Axy,0

∂Û

∂Y
dY dX = −648

5
(1 − β )(1 − n)

∫ 1

0

dX

H (X )7
. (19)

Since in a shear-thinning fluid, we have n < 1 and β < 1 and the integrand is always positive,
Eq. (19) indicates that �P1 is always negative and thus reduces the total pressure drop of shear-
thinning fluids at low Carreau number. The decrease in the pressure drop is anticipated for shear-
thinning fluids and is associated with the reduction in viscosity η̃(γ̇ ) with the applied shear rate γ̇ ∼
q/h2

0. Such a decrease can be obtained from scaling analysis �p ∼ η̃(q/h2
0)q�/h3

0, clearly showing
that the pressure drop always decreases. This is in contrast to viscoelastic fluids, where the first-order
correction may enhance, reduce, or not affect the total pressure drop depending on the geometry.
We note that our findings are in qualitative agreement with the results of Akbar and Nadeem [43],
who determined the q-�p relation for a Carreau fluid in a nonuniform cylinder, considering the low-
Carreau-number limit and calculating the detailed first-order flow field. Furthermore, for a straight
channel, our results agree with the q-�p expression recently derived by Boyko and Stone [44] in the
small-Cu limit. Note, however, that in that study the Carreau number was based on the �p rather
than q, and the pressure and flow rate were normalized differently.

V. CONCLUDING REMARKS

In this Letter, we presented a general framework that employs the reciprocal theorem to obtain
the flow rate–pressure drop relation for complex fluids in narrow channels of arbitrary shape. Our
approach applies to a wide class of shear-thinning and viscoelastic constitutive models in the weakly
non-Newtonian limit and allows finding the first-order q-�p correction, bypassing the detailed
calculations of the non-Newtonian flow problem and relying only on the corresponding Newtonian
solution. Our approach is not limited to the case of two-dimensional channels and can be applied to
calculate the first-order pressure drop correction in narrow axisymmetric and three-dimensional
geometries provided the Newtonian flow solution is known. In fact, our results directly apply
to narrow and shallow three-dimensional channels in which h � w � �, to the leading order in
ε = h/� � 1 and δ = h/w �1, where w is the width of the channel. Furthermore, our method is not
restricted to calculating the first-order pressure drop correction and, in the weakly non-Newtonian
limit, can be utilized to determine the pressure drop at higher orders only with the knowledge of the
velocity and stress fields at the previous orders.

The dependence of the pressure drop on the flow rate of non-Newtonian fluids in nonuniform
geometries, such as contracting and expanding channels, is widely studied experimentally and
numerically in the fluid mechanics and rheology communities [5–7,41,45–56]. Therefore, it would
be interesting, as a future direction, to use our theoretical method and calculate the higher-order
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terms of pressure drop for a particular rheological model and compare it with the available
experimental and numerical data. Given the inability of numerical simulations using the elastic
dumbbell models such as the Oldroyd-B and FENE-CR models to predict the experimental q-�p
behavior of viscoelastic fluids in some cases (see, e.g., discussions in [49,51]), such a comparison
is of fundamental importance as it may provide insight into the cause of this disagreement.
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