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Paths to caustic formation in turbulent aerosols
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The dynamics of small, yet heavy, identical particles in turbulence exhibits singularities,
called caustics, that lead to large fluctuations in the spatial particle-number density, and
in collision velocities. For large particle inertia, the fluid velocity at the particle position
is essentially a white-noise signal and caustic formation is analogous to Kramers escape.
Here we show that caustic formation at small particle inertia is different. Caustics tend
to form in the vicinity of particle trajectories that experience a specific history of fluid-
velocity gradients, characterized by low vorticity and a violent strain exceeding a large
threshold. We develop a theory that explains our findings in terms of an optimal path to
caustic formation that is approached in the small inertia limit.

DOI: 10.1103/PhysRevFluids.6.L062302

Ensembles of heavy particles in turbulence, such as water droplets in turbulent clouds [1] or
dust grains in the turbulent gas of protoplanetary disks [2,3], may exhibit large fluctuations of the
particle-number density and of their relative velocities [4–7]. These fluctuations are enhanced by
the formation of caustics [8–10], i.e., folds of the particle distribution over configuration space.
Caustic formation is an effect of particle inertia, driven by the fluid-velocity gradients, that gives
rise to a multivalued particle-velocity field. Due to this multivaluedness, often called the “sling
effect” [11,12], particles may approach each other, and possibly collide, at large relative velocities.
Accordingly, caustics have an important impact on the distribution of relative velocities [13–16],
and are a crucial ingredient to theories for collision rates and collision outcomes [17–19]. In effect,
caustic formation may increase the variance of the particle size distribution in turbulent aerosols
because, on the one hand, caustics facilitate particle growth by enhancing collision rates [14,16].
Increased collision velocities may, on the other hand, lead to fragmentation and thus to reduced
particle sizes [3].

Caustics have been extensively studied in direct numerical simulations (DNSs) of particles in tur-
bulence [12] and model flows [9,20–25]. Recent numerical studies [26,27] found that high-velocity
collisions tend to occur where the turbulent strain is large, but this cannot be explained in terms
of the white-noise models usually used to study caustic formation [8–10]. A precise understanding
of how caustics form at small particle inertia, including the local flow conditions that lead to their
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FIG. 1. Illustration of caustic formation in two spatial dimensions. Shown are three nearby particles. A
caustic is formed when faster particles overtake slower ones. At a caustic, the area V̂ of the parallelepiped
spanned by separation vectors between the three particles, shown in gray, vanishes.

formation, is crucial for the identification of caustics in experiments [28] and for sampling them
efficiently in DNSs [12].

In this Letter, we describe a significant step towards a detailed understanding of how caustics
form in turbulence. Using a DNS of two-dimensional turbulence, we show that whether a caustic
forms or not depends on the history of the fluid-velocity gradients experienced by close-by particles,
not just upon instantaneous correlations between particle positions and flow gradients (preferential
concentration [7,29,30]). When particle inertia is small, we find a most likely history, i.e., an
“optimal path” to caustic formation. To determine this path is an optimal-fluctuation problem,
similar in nature to localization due to optimal potential fluctuations in disordered conductors [31],
population extinction due to environmental and population-size fluctuations [32,33], and shock
formation in Burgers turbulence [34,35]. Based on this observation, we develop a theory that
explains how the strain and vorticity change along the optimal path to caustic formation: The fluid
strain performs a time-localized, violent fluctuation that exceeds a large threshold, while vorticity
remains small. Our results explain qualitatively why DNSs of particles in turbulence show increased
collision rates in straining regions [26,27]. Even at finite inertia, the optimal path leaves a clear
mark in the data, providing criteria for the identification and the efficient sampling of caustics in
experiments and in DNSs.

In a dilute suspension of small, heavy, spherical particles, the dynamics of a single particle is
approximately given by Stokes’ law [7],

d

dt
x(t ) = v(t ),

d

dt
v(t ) = τ−1

p {u[x(t ), t] − v(t )}. (1)

Here, x and v denote particle position and velocity; τp = 2a2ρp/(9ρfν) is the particle-relaxation
time which depends on the particle size a, the kinematic viscosity ν of the fluid, and the particle and
fluid densities, ρp and ρf, respectively. The turbulent fluid-velocity field, evaluated at the particle
position, is denoted by u[x(t ), t].

To describe caustic formation, we consider the parallellepiped spanned by d + 1 nearby particles
in d spatial dimensions. How the spatial volume V̂ (t ) of this object contracts or expands under
the nonlinear dynamics (1) is determined by the spatial Jacobian Ji j[x(t0), t] = ∂xi(t )/∂x j (t0),
namely, V̂ (t ) = | det J(t )|. Since the dynamics (1) takes place in 2d-dimensional phase space,
spatial subvolumes V̂ may collapse in finite time, V̂ → 0, when a caustic forms [7]. Figure 1
shows a typical particle configuration that leads to a caustic in two spatial dimensions. As is well
known, caustic formation is closely related to the dynamics of the particle-velocity gradients, which
reads, in dimensionless form [7,11],

St
d

dt
Z(t ) = −Z(t ) − Z(t )2 + A(t ), (2)

with initial condition Z(t0) = A(t0). Here, the Stokes number St = τp/τK is a dimensionless measure
of particle inertia; Zi j = τp∂vi(t )/∂x j (t ) and Ai j = τp∂ui(t )/∂x j (t ) are the dimensionless matrices
of particle-velocity gradients and fluid-velocity gradients, respectively. In Eq. (2), time is ded-
imensionalized by the Kolmogorov time, τ 2

K = 〈∑2
i, j=1(∂ui/∂x j )2〉s = τ 2

p 〈Tr(AAT )〉s, where 〈·〉s
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FIG. 2. Path to caustic formation for St = 0.31. Numerical results using a DNS of two-dimensional
turbulence. The path density is color coded, normalized to unity along each slice of constant Z to improve
visibility. (a) Path density in the Z-A2 plane. The dashed line shows the approximation, Z ∼ A2. The solid line
shows the evolution of the stable fixed point according to Eq. (6). The dot marks the bifurcation to instability
(see main text). (b) Individual contributions from strain (Z vs σ 2, positive axis) and vorticity (Z vs −ω2,
negative axis). (c) Path densities for σ 2 (positive axis) and −ω2 (negative axis) as a function of time before
caustic formation at t = 0.

denotes a steady-state ensemble average. Here and in the following, we use the abbreviations
Z(t ) = Z[x(t ), t] and A(t ) = A[x(t ), t]. Using (2), one finds [7]

V̂ (t ) = V̂ (t0) exp
∫ t

t0

dsZ (s), (3)

where Z = TrZ is the divergence of the field of particle-velocity gradients. Hence, a necessary
condition for caustic formation is that Z escapes to negative infinity.

Apart from the Reynolds number Re that specifies the turbulence intensity, the particle dynamics
is determined by the Stokes number St. For small St, particle detachment is characterized by A − Z,
which is typically of the order of St, and thus small. Caustic formation requires the activation of
the nonlinear term in Eq. (2) that drives the particle-velocity gradients into a caustic. This, in turn,
requires rare and violent fluctuations of the fluid-velocity gradients A of the order of unity.

We determine the dominant events that drive caustic formation by measuring the statistics of
paths in the joint space of Z and the fluid velocity gradients A. In isotropic turbulence, the properties
of any statistical quantity must be invariant under rotations. In addition to Z , we therefore map out
the paths of the invariants obtained from the symmetric (S) and antisymmetric (O) parts of the
fluid-velocity gradient matrix A: ω2 = TrOOT and σ 2 = TrSST. Figure 2 shows the paths to caustic
formation obtained by numerical simulation, using a DNS of two-dimensional incompressible
turbulence. Our simulations are performed in a periodic box forced at the large scales, in the
regime of direct cascade of enstrophy. A drag-friction term ensures steady-state turbulence; see
the Supplemental Material (SM) [36] for more details. The path density in Fig. 2 is color coded,
with the highest densities shown in yellow.

Figure 2(a) shows paths to caustic formation in the Z − A2 plane, where A2 = σ 2 − ω2 =
Tr(A2) is the Okubo-Weiss parameter [37,38] that discerns hyperbolic from elliptic regions in
the flow. We see that most paths (yellow regions) that reach a caustic at Z = −∞ pass a large
fluid-gradient threshold A2 ≈ 0.2. The solid and dashed lines are explained in our analysis below.

Figure 2(b) shows that typical paths to caustic formation correspond to large strain σ 2. Vorticity
ω2, by contrast, remains small for the majority of paths. Figure 2(c) shows the time evolution of σ 2

and ω2 prior to caustic formation at t = 0. We observe that while ω2 remains small, σ 2 increases
sharply, reaches a large value, and then decreases again. The majority of the large strain, however,
persists until the caustic is formed, suggesting that caustics preferentially form in regions of large
strain. Appealing to optimal-fluctuation theory, our numerical results point towards an optimal path
that underlies caustic formation, characterized by small vorticity and a violent strain. Although the
spread in our data is quite large at the value of the Stokes number we used, St = 0.31, the optimal
path leaves a strong mark in our data, reflected by the yellow streaks in Fig. 2.
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We explain our observations using an optimal-fluctuation approach. The first step is to analyze
the fixed-point structure and the bifurcations of Eq. (2). To this end, we expand the equation of
motion (2) for the 2 × 2 matrix Z in a basis of matrices generated by the identity matrix I and

e1 =
(

0 −1
1 0

)
, e2 =

(
0 1
1 0

)
, e3 =

(
1 0
0 −1

)
. (4)

This basis is orthogonal with respect to the inner product defined for two matrices M and N by
〈M,N〉 = 1

2 Tr[MN], so that 〈ei, e j〉 = gi j = gi j = diag(−1, 1, 1)i j and eT
i = ei = gi je j . Here and

in the following, we use the Einstein sum convention and denote the three-vectors corresponding
to Z and A by zi(t ) ≡ 〈ei,Z(t )〉 and Ai(t ) ≡ 〈ei,A(t )〉, respectively. This formulation in terms of
the Lorentzian metric gi j [39] is convenient because it disentangles the strain and vorticity parts
of the fluid-velocity gradients A. We have O = ωe1, so that A1 = ω describes the vorticity. The
other components, A2 and A3, describe the strain, S = A2e2 + A3e3. Similarity transformations of
Z, Z̃ = PZP−1 leave Z invariant, but transform zi by means of a proper Lorentz transformation,
z̃i = �i

j z
j . The same holds for transformations of A. The matrix Λ which transforms Ai and zi has

the properties ΛTgΛ = g, and det Λ = 1.
Expanding Eq. (2) in the basis (4), we obtain

St
d

dt
Z = −Z − 1

2
Z2 − 2ziz

i, (5a)

St
d

dt
zi = −(Z + 1)zi + Ai. (5b)

As the time derivatives on the left-hand side of Eq. (5) are multiplied by St 	 1, we expect the
dynamics of Z and zi to take place in the vicinity of its stable fixed points, if they exist. For Ai = 0,
we find three fixed points, Z = zi = 0, Z = −2, zi = 0, and Z = −1, zizi = 1/4, whose stability
is determined by the eigenvalues of the stability matrix of (5). The fixed point Z = zi = 0 is stable
for Ai = 0, but a bifurcation occurs at finite Ai, (Z,A2) = (−1 + 1/

√
2, 1/8), where the fixed point

disappears. We conclude that when A2 < 1/8, the dynamics (5) takes place in the vicinity of the
stable fixed point obtained from the implicit equation

−Z (Z/2 + 1)(Z + 1)2 ∼ A2 = σ 2 − ω2. (6)

When A2 = 2AiAi exceeds 1/8, the fixed point ceases to exist and the nonlinear dynamics (5) drives
Z to negative infinity, forming a caustic. The evolution (6) of the stable fixed point as a function of
A2 and σ 2 is shown as the solid lines in Figs. 2(a) and 2(b). The fixed points become unstable at
the bifurcation point, (−1 + 1/

√
2, 1/8) (black dots). Hence, for A2 < 1/8, particle neighborhoods

are stable and are continuously deformed by the fluid-velocity gradients, according to Eq. (6). For
A2 > 1/8, however, the neighborhoods become unstable and collapse after a short time. Expanding
Eq. (6) for small Z , one obtains the approximation Z ∼ −A2 [dashed lines in Figs. 2(a) and 2(b)]
used by Maxey [29] to explain the preferential concentration of heavy particles in incompressible
turbulence [7,30]. This approximation fails to describe caustic formation because it predicts that
Z remains finite, and thus leads to the incorrect conclusion that particle neighborhoods are always
stable.

Our stability analysis of Eq. (5) explains the qualitative shape of the paths in Fig. 2(a). However,
it misses some of the important results of our DNS. In particular, the stability analysis does not
explain why only the strain contributes to caustic formation and vorticity remains small [Fig. 2(b)],
and it has no bearing on the time evolution of the large gradient fluctuations shown in Fig. 2(c).
Finally, we observed in Fig. 2(a) that the threshold reached by most paths is actually slightly larger
than 1/8 = 0.125, the value predicted by our stability analysis.

In order to explain these parts of our observations, we need to go beyond the stability analysis
and consider how the fluid-velocity gradients reach the large threshold required to render particle
neighborhoods unstable. We do this in the following by computing their optimal fluctuation.
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The steady-state correlation functions of S and O, evaluated along particle trajectories in isotropic
and homogeneous turbulence, have the general form

〈Sik (t )S jl (t
′)〉s = CS

i jkl〈TrS(t )ST(t ′)〉s, (7a)

〈Oik (t )Ojl (t
′)〉s = CO

i jkl〈TrO(t )OT(t ′)〉s, (7b)

and 〈Sik (t )Ojl (t ′)〉s = 0. In two spatial dimensions, the tensors in Eqs. (7) are given by CS
i jkl =

1/4(δi jδkl + δilδ jk − δikδ jl ) and CO
i jkl = 1/2(δi jδkl − δilδ jk ). We express Eqs. (7) in terms of the

basis (4) to obtain the steady-state correlations of Ai,

〈A1(t )A1(t ′)〉s = 1
2 〈TrO(t )OT(t ′)〉s,

〈A2(t )A2(t ′)〉s = 〈A3(t )A3(t ′)〉s = 1
4 〈TrS(t )ST(t ′)〉s. (8)

All other correlations of Ai are zero in the steady state. The right-hand sides of Eqs. (8) are
parametrized as

〈TrS(t )ST(t ′)〉s = St2CS(St) f [(t − t ′)/s], (9a)

〈TrO(t )OT(t ′)〉s = St2CO(St)g[(t − t ′)/o], (9b)

with the nondimensional correlation times s and o of S and O, respectively. For tracer particles
with St = 0, one has CS(0) = CO(0) = 1/2. Inertial particles with St > 0 tend to avoid vortical
regions due to preferential concentration [29,30], so that CO(St) < 1/2. The amplitude CS, on the
other hand, remains approximately equal to 1/2 [26]. In our two-dimensional numerics, we also
find CS(St) ≈ 1/2 for Stokes numbers between 0.21 and 0.51. The functions f and g in Eqs. (9) are
normalized to unity, f (0) = g(0) = 1. Their time dependencies are well approximated by f (t ) =
exp(−t2) and g(t ) = exp(−t ) (see Fig. 1 in the SM [36]).

To describe how the fluid-velocity gradients reach the required threshold values, we model
Ai(t ) as independent, stationary Gaussian processes with zero mean. For this class of processes,
the most probable (optimal) fluctuation Ai

opt(t ) to reach a given threshold can be obtained by
optimal-fluctuation methods, as we show in the SM [36]. By minimizing the action associated
with the path probability, we find that the optimal fluctuation of the fluid-velocity gradients is free
of vorticity, ω2

opt = 0, in agreement with our DNSs in Figs. 2(b) and 2(c). This result is intuitive:
Vorticity contributes to A2 with a negative sign, so that any fluctuation of A2 = σ 2 − ω2 that reaches
the large threshold A2

th with finite vorticity requires an even larger strain contribution, to make up for
vorticity. The optimal way to reach the threshold value is thus through paths that are vorticity free,
whereas the probabilities of paths with finite vorticity are exponentially suppressed. The optimal
path for the strain, by contrast, is found to be a time-localized fluctuation, σ 2

opt = A2
the−2(t−tth )2/s2

,
given by a Gaussian function peaked at time tth < 0 [36].

Using the optimal gradient fluctuation (σ 2
opt, ω

2
opt), we now obtain the explicit form for the

optimal path (Zopt, σ
2
opt ) as a function of time. For St 	 1, the left-hand sides of Eqs. (5) are small

most of the time. To evaluate Zopt, we therefore use Ai
opt as an input into Eq. (5). Making use of

the fact that the vorticity is zero along the optimal path, ωopt = 0, we find that Aopt = Ai
optei and

Zopt = 1/2Zopt + zi
optei can be brought into diagonal form by a Lorentz transformation [36]. The

equations for the diagonal entries (eigenvalues) λ±
opt of Zopt decouple into two equations,

St
d

dt
λ±

opt = −λ±
opt − (λ±

opt)
2 ± Ath√

2
e−(t−tth )2/s2

, (10)

with initial conditions λ±(t0) = ±Athe−(t0−tth )2/s2
/
√

2. The uncoupled Eqs. (10) are solved numeri-
cally, which yields the optimal path Zopt using Zopt = λ+

opt + λ−
opt.
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FIG. 3. Optimal paths obtained from theory and path density for St = 0.31 from DNS. (a) (Zopt, σ
2
opt ) from

theory (dashed line). The color-coded path density is the same as in Fig. 2(b). (b) σ 2
opt(t ) from theory (dashed

line). The color-coded path density is the same as in Fig. 2(c).

We note that for finite St, the threshold value A2
th, determined numerically [36], exceeds the

value 1/8 obtained from the stability analysis, in agreement with our DNSs. The reason is that the
optimal strain fluctuation σ 2

opt(t ) decreases for t > tth. In order for Zopt to reach negative infinity,
σ 2

opt(t ) must exceed 1/8 for a finite time so that Zopt can become large and negative. The time for
which the threshold must exceed 1/8 decreases as St becomes smaller, and we recover A2 → 1/8
in the limit St → 0.

In Fig. 3, we compare our theory and DNSs. The dashed line in Fig. 3(a) shows (Zopt, σ
2
opt )

obtained from Eqs. (10), with St = 0.31 and dimensionless correlation time s = 2.1 determined
numerically. We observe qualitative agreement between the theoretically obtained optimal path and
the (yellow) regions of high path density. However, Eqs. (10) slightly overestimate the threshold
value A2

th. The likely reason is that the Stokes number in our DNS is too large to closely follow our
analytical results, valid for St 	 1.

Figure 3(b) shows the time dependence of σ 2
opt(t ) obtained from theory with St = 0.31 (dashed

line) and the corresponding path density from our DNS. We observe that the theory correctly
predicts the localized, violent fluctuation of the strain prior to the formation of the caustic, which
occurs at t = 0. A considerable fraction of the large strain required to initialize the caustic persists
at the time of caustic formation, which explains why caustics form preferentially in regions of large
strain [26,27]. For other Stokes numbers between 0.24 and 0.51, our DNS results lead to the same
conclusion (data not shown).

In conclusion, we explained caustic formation in turbulent aerosols at small particle inertia as
an optimal-fluctuation problem. In order for caustics to form, the fluid-velocity gradients must
follow an optimal path, characterized by small vorticity and a violent strain that exceeds a large
threshold. The remnants of the optimal fluctuation at the time of caustic formation result in a strong
instantaneous correlation between large strains and caustic events.

Since caustics give rise to a multivalued particle-velocity field, and thus to high relative particle
velocities, our results provide an explanation for the recently observed, instantaneous correlation
between particle collisions and intense strain [26,27]. The characteristic shape of the optimal path
to caustic formation will allow one to identify caustics in experiments, and the strong instantaneous
correlation of caustics and strain makes it possible to efficiently sample caustics in simulations.

The stability analysis described in this Letter can be generalized to three dimensions, where
it reveals that particle neighborhoods become unstable when the two invariants Q = −TrA2/2
and R = −TrA3/3 reach large thresholds in the Q-R plane. We therefore speculate that optimal-
fluctuation methods also explain caustic formation in three-dimensional turbulence at small Stokes
numbers.
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