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The macroscopic dynamics of a droplet impacting a solid is crucially determined by
the intricate air dynamics occurring at the vanishingly small length scale between droplet
and substrate prior to direct contact. Here we investigate the inverse problem, namely,
the role of air for the impact of a horizontal flat disk onto a liquid surface, and find an
equally significant effect. Using an in-house experimental technique, we measure the free
surface deflections just before impact, with a precision of a few micrometers. Whereas
stagnation pressure pushes down the surface in the center, we observe a liftup under the
edge of the disk, which sets in at a later stage, and which we show to be consistent with a
Kelvin-Helmholtz instability of the water-air interface.
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Spectacular phenomena occur in nature when a liquid slams into a solid, observed when, e.g.,
ocean waves crash against a harbor quay [1], a stone lands in a lake [2], or seabirds catch their
prey [3]. Similar phenomena can be seen during the operation of ocean vessels [4] or the landing of a
space vehicle on the ocean [5]. The traditional understanding of these impact phenomena is achieved
in the context of macroscopic potential flow analysis, which involves the transfer of momentum from
the solid to the liquid phase, known as the added mass effect [6–14].

More recently, it is becoming clear that this macroscopic picture is insufficient to fully understand
the underlying physics. By acting mostly on a microscopic scale, the intermediate air phase causes
effects that may propagate towards the largest scales, i.e., determining whether or not a splash
occurs, which can correspondingly be controlled by changing the air pressure [15–17], or the wetting
properties of the substrate [17] during droplet impact. Vice versa, on small scales the remnant of the
air layer can be the entrapment of a tiny air bubble at impact, whose size is set by force balances on
a much larger scale [18,19].

In all the above cases, however, the phenomena arise from the existence of a small length scale
in lateral direction, namely. the impact point. What happens when the impact region is laterally
more extended, i.e., for the impact of a flat disk onto a liquid surface? In this paper we will address
this question and show how the water surface is affected in the very last stages before impact,
when the air is squeezed out from the gap between the liquid and the disk at increasing speeds.
We will experimentally demonstrate that the resulting surface deformation is quite different for this
case, supporting and substantiating prior speculations based on qualitative grounds [20–23], and on
numerical [24,25] and theoretical arguments [23,26–28]. Here we combine high-speed imaging with
a novel deflectometric technique which allows us to measure the vertical movements of the water
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FIG. 1. (a) Experimental setup. A light source illuminates a reference pattern O with printed lines, which
reflects from the water-air interface into a high-speed camera. At high incident angle θ , the water-air interface
acts as a mirror, and the camera records the mirror image O′, as indicated by the light rays (in gray). (b) Image
of a stationary air-water interface reflecting the reference pattern. (c) Deformed air-water interface reflecting a
distorted image of the reference pattern.

surface just before the impact of a flat disk with micron precision and succeed to experimentally
characterize the motion of the free surface.

Our setup (Fig. 1) consists of a flat steel disk of diameter D (3–12 cm) which impacts on a
quiescent demineralized water bath with a controlled speed V = 1 m/s. The Weber number of
impact, We = ρwaterV 2D/σwater-air, typically varies from 400 to 2500. To visualize the water surface
hidden under the disk, we use total internal reflection, where the liquid-air interface acts as a
mirror and is monitored from below. A high-speed camera and an illuminated reference pattern
are placed on either side of the tank [Fig. 1(a)] and positioned such that an incoming light ray
from the pattern is fully reflected at the interface. While a stationary free surface simply reflects
back the image of a reference pattern [Fig. 1(b)], the deformed free surface reflects a distorted
image [see Fig. 1(c) and Supplemental Movie [29]). Using the ray optics in the setup [30,31], the
liquid surface is reconstructed with a method inspired by the (refraction based) synthetic Schlieren
technique [32,33]. The displacement fields quantified from stacks of images of deforming pattern
(such as those in Movie 1 [29]) are collected and used for a full spatial reconstruction of the free
surface with an unprecedented precision of a few micrometers.

The typical deformation of the free surface just before impact is shown in Fig. 2(a) and in
Supplemental Movies 2 and 3 [29]. The azimuthally averaged profile h(r, τ ) is plotted as a function
of the radial coordinate r (with r = 0 the point just below the impacting disk’s center) for varying
times before impact τ . The initially quiescent liquid-air interface is deformed by the air flow more
than 50 ms before the disk makes direct contact with the bath. The free surface gets increasingly
pushed down with time and forms a 200-μm-deep cavity just before impact. In addition, an opposite
effect is observed in the last 5 ms: the free surface is lifted up by ∼10 μm close to the disk edge
[visible in Fig. 2(a)]. Both effects are seen for a range of disk sizes as presented in Fig. 2(b), where
we plot the free surface profile just before impact (at τ = 0.033 ms). The liftup of the free surface is
more pronounced for larger disks. As a result, the solid surface of the impacting disk makes its first
contact with the water surface along its periphery, thereby entrapping an air bubble upon impact.
This local pull and the central push on the free surface were both already reported in a qualitative
manner by Verhagen [20] but thus far could not be measured.

Both these effects are a consequence of the squeezed air flow, escaping from below the disk.
The average velocity profile of air in the gap between the undeformed liquid surface and disk is
estimated using a depth-integrated continuity equation (more details in Supplemental Material [29]
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FIG. 2. (a) Free surface profiles h(r), azimuthally averaged about the disk center, shown at different times
τ before impact (occurring at τ = 0) from an experiment with an 8-cm-wide disk (edge shown by vertical gray
line) approaching the free surface at 1 m/s. (b) Free surface τ = 0.033 ms before impact for a range of disk
diameters as indicated in the legend [shared with panel (c)]. (c) Nondimensionalized water-surface profiles at
nondimensionalized time τV/D = 0.01 before impact for the same disk sizes. See Supplemental Material [29]
(Movies 2 and 3) for videos of the time evolution of the surface profile for D = 50 and 80 mm.

and Refs. [34,35]),

Vr,gas = r

2τ
êr . (1)

Note that the Reynolds number in the air gap of width d = V τ under the disk edge, where we
have VR,gas = 1

2 R/τ, Re = ρgasVR,gasd/μgas = ρgasV D/2μgas, is much larger than unity for all D
and τ < 50 ms, so that viscous effects in the air layer may be ignored [25,35]. Additionally, an
alternative definition for reduced Reynolds number suited particularly for lubrication flows, defined
as δ2Re, where δ is the aspect ratio of the air film, would also yield estimations much larger than
unity. For these reasons we emphasize that lubrication effects are absent in the present problem and
the air flow can be safely treated within the framework of inviscid flow. We also remark that Mach
numbers of the escaping air reach values above 0.3 only in the very last instants [τ ≈ 0.39 ms for
the example shown in Fig. 2(a)] using the definition in Eq. (1). Thus any compressibility effects in
air may be neglected for the surface dynamics of interest here. Equation (1) then has an important
consequence in that there is a stagnation point at r = 0. It causes a pressure buildup in the squeeze
layer of air, an effect evidenced both theoretically and experimentally for squeeze flows between
a solid and a fluid phase [15,18,23,27,28,36–40]. Previously estimated thickness of the trapped air
layer after impact from experiments [41] indicates a surface cavity of a size that is consistent with
our measurements.

Another consequence of Eq. (1) is that for a disk of diameter D, the escaping air has its largest
velocity under the disk edge at r = D/2, just before being pushed out into the ambient air. In keeping
with the Bernoulli principle, the increasing flow speed of air under the disk creates a region of low
pressure where its velocity is the highest, i.e., under the disk edge, where it generates a pull on the
water surface, causing it to be drawn into the gap.

The quantitative analysis of our experiments gives more insight into the dynamics of the free
surface deformation. Since Re � 1 in the air layer, the formation of pressure gradients in this region
is an inertially driven process, with the relevant length and timescales being D and D/V . This is
made evident when considering the time evolution of the central cavity, as shown in Fig. 2(c). All
the free surface profiles taken at the same nondimensionalized time before impact τV/D overlap
in a reasonable way when h and r are rescaled by D. Further insight into the mechanism that
drives the growth of the depth hmin of the central cavity is obtained by looking at its time evolution,
shown in Fig. 3. Experimental data for varying disk sizes D are collected, nondimensionalized by
D and D/V , respectively, and compared to results from two-fluid boundary-integral simulations
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FIG. 3. Nondimensionalized cavity depth hmin/D (measured at r = 0) as a function of the nondimension-
alized time before impact τV/D, with D varying between 30 and 120 mm. The solid and dotted lines are the
two-fluid boundary-integral simulation and analytical calculations results, respectively, from Peters et al. [25].

from Peters et al. [25] (green line, Fig. 3). We also show (as a blue dotted line) the result of an
analytical calculation by the same authors, which simplifies the problem by neglecting the radial
variation of h with r (while ignoring the cavity’s closure at r = R). We find good agreement between
our experimental measurements and the previous results [25], especially for the smaller disk sizes
(D < 80 mm), and τV/D � 2 × 10−2. In particular, the boundary-integral simulations [25], which
provide a more complete picture, show an excellent match with our experimental data, without a
single free parameter. The good agreement between experiments, model, and simulations regarding
hmin persists into the later regime when its growth rate saturates. The final value of hmin/D just
before impact is, however, 20%–30% smaller in experiments.

To better understand this, we now focus on the liquid suction phenomenon, which has been
reported in boundary-integral simulations [24,25] but never measured experimentally. As visible
in Fig. 2(a), the growth of the bulge (of height hmax) starts at τ ≈ 5 ms, i.e., much later than the
cavity, which was already visible at τ = 50 ms. It is an order of magnitude smaller than the latter.
To characterize its growth, we choose to focus on the instantaneous velocity ∂h(r, t )/∂t with which
the free surface deflects. In Figs. 4(a) and 4(b) the velocities of the upwards-moving free surface are
shown at two different dimensionless times τV/D = 0.005 and 0.003 before impact. For varying
disk size D the profiles are plotted with shifted radial coordinate r − D/2 so that they all overlap at
the disk edge. Figure 4 reveals not only that the suction clearly acts the strongest just under the disk
edge, but also that it acts over a consistent length scale λ � 2 cm, which appears to be independent
of the disk diameter D. Thus, contrary to the cavity formation, the segment of the free surface which
is drawn upwards is not affected by the inertial length scale set by the disk size D. Note that such
a consistent length scale over which the suction is seen to act in Fig. 4 is remarkably robust despite
the control parameter D being varied over a factor of 4. This is made more evident from the results
obtained with smaller disks with radii of up to 1.5 cm, where the unstable wavelength itself is larger
than the radius of the disk whose approach causes the interface to be destabilized. In comparison
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FIG. 4. The instantaneous, dimensionless vertical deflection velocity 	h/D = (∂h/∂t )(	τ/D) of the sur-
face profile at dimensionless times (a) τV/D = 0.005 and (b) τV/D = 0.003 before impact. 	τ = 1/30 000 s
is the time between two successive images in an experiment. The profiles are plotted with radial coordinates r
shifted by D/2 such that they are all centered under the disk edge.

with a disk of radius 6 cm, the length scale being sucked towards it with highest velocity is less than
1/3 of the disk radius.

Regarding the localization of the bulge at the rim, a similar observation was made by Oh
et al. [22] with a large rectangular impactor (of width 30 cm) for which they interestingly do not
observe a single bump but spatially periodic ripples along the free surface, localized under the
impactor’s edge.

The above observations suggest the role of a regular shear instability at the sharp water-air
interface behind, initiating the elevation of the liquid surface well before impact. Indeed, such a
mechanism dictates that the destabilized wavelengths at the liquid surface lie within a close range,
within limits determined by the competition between gravity and surface tension. The balance
between these two restoring forces yields the most unstable wavelength λmarg at the onset of
instability. We expect λmarg to be independent of D, as the inertial length scale does not affect
the properties of the water-air interface [42,43].

To verify this hypothesis, a linearized Kelvin-Helmholtz analysis was performed assuming
normal-mode perturbations along the water-air interface, subjected to a shear air flow in the
inviscid approximation. Here the configuration is slightly more involved than the classical one:
the upper fluid layer (the escaping air layer) has a finite thickness d (≡V τ ), which affects the
condition of marginal stability of the interface perturbation (see Supplemental Materials [29]). In
particular, a decreasing d can modify the marginally unstable solution if dmarg � 7 mm. However,
our experiments are wholly performed for disk sizes D and velocities V such that dmarg � 6 mm,
so that the solutions for an interface separating two infinitely deep fluid half spaces are expected to
work within reasonable variance. With this assumption, the marginally unstable wavelength λmarg

is [42]

λmarg = 2π
[ g

σ
(ρw − ρa)

]−1/2
≈ 1.7 cm, (2)

where g is the gravitational acceleration, σ the surface tension, and ρw, ρa the fluid densities of
water and air, respectively. The marginally unstable wavelength found by the calculation above is
close to that shown in Fig. 4, and independent of D and V.

Another key finding from the spatial analysis of the dispersion relation is that the minimum air
velocity V min

air for the water-air interface to become unstable also deviates from an infinitely deep
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FIG. 5. (a) Time evolution before impact of the maxima of dimensionless free surface deflection velocities
	h/D = (∂h/∂t )	τ/D for a disk of width 16 cm. The free surface starts to accelerate towards the disk close
to τcritV/D ≈ 0.11 (gray dashed-dotted line), which is estimated by tracing the growth rate (using dotted lines).
(b) τcritV/D measured over several D are shown. The dashed line shows the mean of the measurements, while
the gray box shows the range of standard deviations of the measurements.

fluids configuration when dmarg � 7 mm. Without any finite-depth effects in either fluid, the usual
calculation yields [42]

V min
air =

√
2(ρw + ρa)

ρwρa
{σg(ρw − ρa)}1/2 ≈ 6.58 m/s, (3)

with the connotation that linear Kelvin-Helmholtz analysis at the water-air interface is known for
overpredicting critical velocity [44,45]. This makes it difficult to directly compare Eq. (3) with
our experiments. However, Kelvin-Helmholtz instability is supercritical in nature, occurring once
a driving parameter has crossed a critical threshold. A suitable measure of the driving parameter
threshold, V min

air in our experiment may be deduced from the nondimensionalized time τV/D at
which the interface’s suction starts to accelerate. One instance of estimating the critical time before
impact τcritV/D is shown in Fig. 5(a). The fact that τcritV/D measured in experiments over several D
is constant, as shown in Fig. 5(b), clarifies that the instability threshold V min

R,gas = R/2τcrit ≈ 2.27 m/s
in our experiment is indeed independent of the disk size. Note that it may not be immediately
obvious that such a frozen-time stability analysis should be applicable in the present scenario.
Indeed, a rapidly accelerating base flow in general may demand the temporal aspects in the
dispersion relation to be analyzed [46]. However, since the onset of instability in our experiment
occurs in conditions when the base flow (of air) is always of the order of few meters per second,
such considerations have limited bearing on the instability criterion in the present experiment.

To conclude, we report experimental measurements of the water-interface deflections caused
by the air-cushioning effect prior to a solid-liquid slamming event. This is achieved using a novel
TIR-based measurement technique that is able to resolve micron-scale vertical movements of the
reflecting water-air interface. In the air cushion under a slamming disk, a peculiarly strong air flow is
set up under the edge, which locally results in an upwards suction of the liquid surface. The suction
is shown to act over a unique length scale that remarkably is independent of the inertial parameters,
indicating the action of a regular interfacial instability. The experimental data show that the suction
is initiated when the air velocity under the disk edge grows beyond a critical value, as typical for a
Kelvin-Helmholtz instability.
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The interplay of the inertial deflection of the water surface away from the disk, and the localized
suction towards it, invariably creates conditions for an air film to be trapped immediately after
impact. This has significant implications on how the slamming pressures are distributed across the
impacting disk’s surface both in space and in time [31]. But more importantly, both the inertial
and instability mechanisms will also operate on the liquid surface at larger scales, such as in hull
slamming [4,47], sloshing of liquid in cargo transport [48], or even in water landing of space
vehicles [5], where much more violent water-slamming events are encountered accompanied by
stronger gas flows, thereby leading to even more significant modification of the pressure loads.
At these large scales, the Kelvin-Helmholtz instability of the liquid interface may be utilized by
modifying the base flow of air: the most unstable modes can either be selectively amplified, or
indeed, be suppressed by invoking neighboring parasitic modes. In this manner, by exploiting the
instability one may sculpt the shape of the liquid interface and thus optimize the distribution of the
impact loads on the solid target.
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to I. R. Peters and A. Prosperetti for helpful discussions. We acknowledge funding from SLING
(Project No. P14-10.1), which is partly financed by the Netherlands Organisation for Scientific
Research (NWO).
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