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The jet in crossflow, or a transverse jet, eventually undergoes a linear transition from
convectively to absolutely/globally unstable as the crossflow to jet velocity ratio increases.
This flow field, however, has an extremely complex dynamics. Hence, determining this
transition location is not a trivial task. It has long been known that this transition is
associated with the upstream shear layer connected to the near field Kelvin-Helmholtz
vortex ring, but it was only recently that the most unstable global mode and wave maker
were located there as well. These findings led to the realization that an inviscid and planar
linear stability analysis of the local velocity profile extracted from the jet in the cross-
flow upstream shear layer was strongly correlated with its transition to absolute/global
instability. It is shown in this paper that such an analysis can be turned into an accurate
predictive tool with the use of a viscous (instead of inviscid) and round (instead of planar)
mixing layer. In other words, replacing an inviscid analysis of a planar mixing layer with
counterflow by a viscous analysis of a round coaxial jet with outer nozzle suction leads to
an accurate prediction of the jet in crossflow convective to an absolute instability transition.

DOI: 10.1103/PhysRevFluids.6.L041901

I. INTRODUCTION

The jet in crossflow, also known as a transverse jet, is formed when a round jet issues perpendic-
ularly into a crossflow. Several vortical structures are generated by the interaction between jet and
crossflow in the resulting three-dimensional flow field, such as the counter-rotating vortex pair and
the wake vortices in the far field as well as the horseshoe and shear-layer vortices in the near field.
This flow has been extensively studied for many decades due to its usefulness in a wide range of
technological applications [1]. The reader is referred to the recent reviews in Refs. [2] and [3] for
additional information.

Defining appropriate control strategies for this flow field requires knowledge of its linear insta-
bility, where concepts such as local (convective/absolute) and global instabilities become relevant
[4]. In the absence of crossflow, the transverse jet reverts back to a free jet, which is a well-known
convectively unstable flow [5]. Linear stability analysis reveals that this picture does not change
in the presence of a weak crossflow, i.e., as long as the crossflow to jet velocity ratio is small
enough [6,7]. Hence, free and weak transverse jets are noise amplifiers, which can be controlled
with low-amplitude excitation. There is extensive experimental evidence, however, indicating that
the transverse jet becomes absolutely/globally unstable when the crossflow gets stronger, i.e., when
the crossflow to jet velocity ratio becomes large enough [8–11]. Furthermore, this transition has been
confirmed by several different global linear stability analyses [12–14], which associated it with a
Kelvin-Helmholtz-type instability of the (upstream) shear-layer that leads to vortex rings. Hence,
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strong transverse jets behave as self-excited oscillators, and their control requires more advanced
strategies.

It should be noted that the above studies considered both equidensity and variable density
transverse jets as well as transverse jets issuing from either pipes or convergent nozzles that were
either flush mounted or elevated. Nevertheless, despite the ubiquitous nature of this transition from
convective to absolute/global instability, the critical velocity (or momentum flux) ratio separating
both unstable regimes is not the same among these studies. This indicates that even identifying
the correct parameter to use in a transition criterion is not a trivial task. Recently, a path towards
such a criterion was revealed using data from direct numerical simulations under equidensity and
flush-mounted convergent nozzle conditions for R = 2 and 4 [15], where R = Uj/U∞, Uj is the
maximum jet velocity and U∞ is the maximum crossflow velocity. It should be noted that the data
are in good qualitative and quantitative agreement with experiments [8]. The criterion proposed
was based on the amount of counterflow required to induce a transition to absolute instability in
an inviscid and planar mixing layer, quantified though the velocity ratio R1 = (V1 − V2)/(V1 + V2).
Its critical value, i.e., R1,c � 1.32, is well known from classical linear stability analysis [16] and
experiments [17]. When applied to the transverse jet, V1 and V2 represent the limiting velocities on
each side of the profile measured across the upstream shear layer [15, Fig. 21]. This analysis yields
R1 = 1.44 and 1.20 for R = 2 and 4, respectively, which is consistent with the fact that the transverse
jet is absolutely/globally unstable in the former case (R1 > R1,c) and convectively unstable in the
latter case (R1 < R1,c). The correlation between both transitions to absolute instability, namely, that
of the inviscid and planar mixing layer and that of the jet in crossflow, was clarified in subsequent
studies. They showed that the most unstable global mode [14] and the wavemaker [18] are located at
the jet in crossflow upstream shear layer when R = 2. This is the likely reason why the appearance
of counterflow in its local velocity profile due to a stronger crossflow is assumed responsible for
this transition. Recent experimental evidence confirmed the relevance of this inviscid and planar
mixing-layer analogy [19]. However, it also revealed accuracy issues with this analogy, since it
indicates that R1,c � 1.24 instead.

Two major assumptions implicit to the inviscid and planar mixing-layer analogy allow the critical
velocity ratios obtained from its linear stability analysis [16] and free round jet experiments [17],
respectively, R1,c � 1.315 and 1.32, to agree so well. The first one is that θ , which is the ratio
between mixing-layer thickness and jet diameter, is small enough [20]. This is what allows one to
use a planar mixing layer instead of a round jet as the base flow for a linear stability analysis [16]
and obtain a result that agrees well with round jet experiments where θ � 0.01 [17]. The second
assumption is that Re, which is the Reynolds number based on the jet diameter and maximum
velocity, is large enough [21]. This is what allows one to use the Rayleigh equation instead of the
Orr-Sommerfeld equation in the linear stability analysis [16] and obtain a result that agrees well with
round jet experiments where Re = 34 000 [17]. However, the transverse jet simulations [15] and
experiments [19] used in the development of this analogy were performed with 2000 � Re � 3000
and 0.031 � θ � 0.044. Hence, the inviscid and planar hypotheses are likely inaccurate. This is
the reason why a viscous and round mixing-layer analogy should be more appropriate than the
originally employed inviscid and planar mixing-layer analogy under these parametric conditions.

In the present paper, the inviscid and planar mixing-layer analogy is extended to a viscous and
round mixing-layer analogy through the inclusion of viscosity and the use of cylindrical coordinates
in the local, linear, and modal disturbance governing equations. We show that this improvement
leads to the development of an accurate predictive criterion based on the critical velocity ratio for
the onset of absolute instability of equidensity jets in crossflow. In order to do so, the momentum
thickness and Reynolds number effects on the critical velocity ratio required for the transition to
absolute instability in coaxial jets must be evaluated.
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II. PROBLEM FORMULATION

Both effects can be modeled by the dimensionless continuity and incompressible Navier-Stokes
equations written in cylindrical coordinates, where �u = {u, v,w} is the velocity vector, t is time, p
is pressure, ν is the dynamic viscosity, and Re = Uj Dj/ν is the Reynolds number. This equation
was written in dimensionless form using Dj and Dj/Uj as the length and time scales, where Dj is
the jet exit diameter and Uj is the maximum jet velocity.

Since the planar mixing-layer analogy uses the classical hyperbolic tangent profile as base flow
[16], its well-known extension to a round jet [22]

u∗
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which satisfies the shear layer momentum thickness definition
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is employed here, where the superscript ∗ means dimensional and the subscript b means base flow.
Although this base flow is assumed local, i.e., its streamwise variation is neglected, the parameters
θ , V1, and V2 can assume different values depending on the streamwise location where the profile is
measured. The latter two respectively represent the average maximum and minimum velocities on
opposite sides of the center plane upstream shear layer [15].

Considering now linear and modal disturbances, one can employ the asymptotic expansion
around the above base flow q(x, t ) = qb(r) + ε qn(r) ei (α x + m θ −ω t ) + O(ε2) + c.c., where x =
{x, r, θ} is the coordinate vector, q = {u, v,w, p} is the variable vector, ε is a small dimensionless
parameter associated with the disturbance amplitude, c.c. means complex conjugate, qn(r) is the
eigenfunction vector, and the eigenvalues are given by the complex stream wise wave number α, the
integer azimuthal wave number m, and complex frequency ω. Substituting this decomposition into
the continuity and Navier-Stokes equations and collecting the linear terms, i.e., terms of O(ε), leads
to the governing equations for the local, linear, and modal disturbances [21] and their respective
boundary conditions [23].

Two different methods were used to solve this differential eigenvalue problem, namely, the
shooting method and matrix forming. The former was employed to solve the Rayleigh equation
for an inviscid round jet [7], obtained in the Re → ∞ limit, and an inviscid and planar mixing layer
[24], solved here for comparison purposes. It was implemented using the Mathematica [25] built-in
functions NDSOLVE and FINDROOT for the initial value problem and search procedure, respectively.
Further details can be found elsewhere [7,24]. The latter method was applied to the system of
equations, which is a nonlinear differential eigenvalue problem when solving for the stream wise
wave number. Hence, it was first rewritten as a linear differential eigenvalue problem using the
companion matrix method [26]. A sixth-order central differences scheme was then applied to all
spatial derivatives in these equations, transforming them into an algebraic generalized eigenvalue
problem. The shift-and-invert Arnoldi method [27] was then employed to generate the Hessenberg
matrix, whose Ritz values were calculated with the ZGEEV subroutine from LAPACK [28].

Numerically determining the onset of absolute instability is not trivial when the differential
eigenvalue problem cannot be easily reduced to a simple and analytical dispersion relation [29].
Doing so requires locating the relevant saddle/cusp points and proving causality. The original
method requires proving the existence of a steepest descent integration path passing through these
points. A much simpler alternative is to graphically identify points formed by the collision of
downstream and upstream propagating spatial branches, also known as the collision criterion. Both
methods simultaneously identify these points and prove causality, but they are computationally time
consuming. It is much cheaper to first identify saddle/cusp points and prove causality afterwards.
One way to search for these points is to solve the eigenvalue problem coupled with a numerical
dispersion relation formed by the discretization of the zero group velocity condition. However,
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FIG. 1. Collision check for the inviscid (Re → ∞) axisymmetric (m = 0) mode of the round jet with 1/θ =
20 at the onset of absolute instability (R1,c = 1.312374). Symbols are placed on the steepest ascent (blue) and
descent (red) paths passing through the saddle point (black).

convergence can be an issue. Furthermore, the extensions of all three approaches to three-
dimensional problems are, essentially, unfeasible. In order to circumvent these issues, an alternative
was recently proposed which allows the derivation of auxiliary differential eigenvalue problems.
They allow the fast identification of these points when coupled with the original differential
eigenvalue problem, even for three-dimensional problems [24]. This approach was employed here.

III. RESULTS

A. Verification

Before proceeding any further, it is important to verify that these codes yield accurate numerical
solutions. In order to do so, the streamwise velocity component defined in Eq. (1) is written in
dimensionless form using ub = (u∗

b − V2)/(V1 − V2), and the momentum thickness is assumed to be
θ = 0.16. The linear stability results based on the data are then compared with the literature [21,
Fig. 8], yielding an excellent agreement.

Finally, the analysis shown next refers to the onset of absolute instability. As mentioned in the
previous section, inviscid results for the planar mixing layer and round jet were calculated using
a saddle point search procedure based on the shooting method, whereas their viscous counterparts
were obtained using the collision criterion based on a matrix-forming procedure. Hence, causality
must still be proved for the former and has already been intrinsically demonstrated for the latter.
This was done for all the inviscid data points but shown here in Fig. 1 only for the onset of absolute
instability of the round jet inviscid axisymmetric mode with θ = 0.05. Symbols are placed on
the steepest ascent (blue) and descent (red) paths passing through the saddle point. The former
is associated with the wave packet group velocity, whereas the latter demonstrates causality [24].

B. Validation

The importance of viscous effects on the onset of absolute instability in coaxial jets is evaluated
first. This is done here by comparing the values of R1,c for the viscous and inviscid round jets,
respectively named R1,vis and R1,inv . The ratio between these values is shown in Fig. 2 for the ax-
isymmetric, first and second helical modes as a function of the Reynolds number with D/θ∗ = 12.5
(left) and 20 (right). Two sets of vertical dashed lines are also shown in this figure, indicating the
Reynolds number where R1,vis is 90% and 99% away from its asymptotic value R1,inv for each mode.
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FIG. 2. Ratio between viscous and inviscid round jet velocity ratios at the onset of absolute instability
for the axisymmetric, first and second helical modes versus Reynolds number with D/θ∗ = 12.5 (left) and
20 (right). Vertical dashed lines indicate the Reynolds numbers where the 90% and 99% difference between
viscous and inviscid thresholds occurs for each mode.

These results indicate that viscous effects become negligible, i.e., the 99% threshold is reached,
when 2000 � Re � 4000. Hence, they should have a small impact on the ability of the viscous
and round mixing-layer analogy to predict the transition to absolute instability observed in recent
transverse jet simulations [15] and experiments [19], where 2000 � Re � 3000. Nevertheless, two
additional remarks are relevant. First, decreasing the Reynolds number has a stabilizing effect on
transition. This means viscous effects will become more relevant if these simulations/experiments
are performed at lower Reynolds numbers. Second, increasing the momentum thickness has a
stabilizing effect on the axisymmetric mode but a destabilizing effect on both helical modes. This
is the reason why transition first occurs for the axisymmetric mode when D/θ∗ = 20 but for the
first helical mode when D/θ∗ = 12.5. Although not shown here, results for D/θ∗ = 30 and 20 are
qualitatively similar.

The importance of using cylindrical coordinates on the onset of absolute instability in round
mixing layers is evaluated next. In order to simplify this analysis, viscous effects are neglected
by considering the infinite Reynolds number limit. The impact caused by this cylindrical/Cartesian
coordinate choice is then evaluated by comparing the values of R1,c for round jets and planar mixing
layers. The ratio between these values, respectively named R1,RJ and R1,PML, is shown in Fig. 3 (left)
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FIG. 3. Ratio between round jet and planar mixing-layer (left) velocity ratio and (right) spatial growth rate
at the onset of absolute instability for the axisymmetric, first and second helical modes versus the inverse of the
momentum thickness with Re = ∞. Vertical dashed lines indicate the momentum thicknesses where the 90%
difference between round and planar thresholds occurs for each mode.
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FIG. 4. Experimental data showing R1 as a function of R. Filled and empty symbols represent data in the
convectively and absolutely unstable regions, respectively. Thick horizontal gray band represents R1,c within
experimental error [19]. R1,c predictions from the inviscid and planar (red dashed line), inviscid and round
(black dot dashed line), as well as viscous and round (blue solid line) mixing-layer analogies for D/θ∗ = 26
(at R ∼ 10) are also shown.

for the axisymmetric, first and second helical modes as a function of the inverse of the momentum
thickness. Vertical dashed lines in this figure indicate the momentum thicknesses where R1,RJ is 90%
away from its asymptotic value R1,PML for each mode. These results show that the planar hypothesis
is inaccurate for the onset of absolute instability prediction within the momentum thickness range
observed in recent transverse jet simulations [15] and experiments [19], where 23 � 1/θ � 32.
Furthermore, two important remarks must be made. First, decreasing the momentum thickness has
a destabilizing effect on the first and second helical modes. The same is true for the axisymmetric
mode, but only up to a certain point. Doing so beyond it has a stabilizing effect instead. Second, this
ratio decreases below 1 and approaches its asymptotic limit from below for the axisymmetric mode.
Both phenomena are likely linked to the fact that the planar mixinglayer has a single asymmetric
mode. Hence, all round jet helical modes must collapse to it, whereas the axisymmetric mode must
vanish as θ → 0. This is illustrated in Fig. 3 (right), which shows the ratio between round jet and
planar mixing-layer spatial growth rates at the onset of absolute instability for the same three modes
as a function of the inverse of the momentum thickness. It shows that the spatial growth rate of
the axisymmetric mode goes to zero as the momentum thickness is decreased. Although not shown
here, the same is true for the wave number and frequency at the onset of absolute instability.

Having clarified the relative importance of viscous effects and cylindrical coordinates within the
parametric range previously investigated both numerically and experimentally, the accuracy of the
viscous and round mixing-layer analogy can now be quantified. Figure 4 shows experimental data
available in the literature [19, Fig. 6] for R1 as a function of R, indicating the regions of convective
(filled symbols) and absolute (empty symbols) instability. The thick horizontal gray band shows
the transition between both regions within experimental error, where R1,c = 1.24 ± 0.013. This
figure also includes predictions from the analogies discussed here. The values of V1, V2, and θ were
taken from the literature [19, Figs. 5 and 7]. As already discussed in the introduction, the inviscid
and planar mixing-layer analogy (red dashed line) yields R1,c � 1.32, which has a relative error of
6.42%. The use of cylindrical coordinates, i.e., an inviscid and round mixing-layer analogy (black
dot dashed line), improves this result to R1,c � 1.218. This means the relative error is reduced to
1.79%. Adding viscous effects, i.e., a viscous and round mixing-layer analogy (blue solid line),
further improves this result to R1,c � 1.237. In other words, the relative error is further reduced to
0.236% and is now within the experimental error.
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IV. CONCLUSIONS

Recently the transverse jet velocity profile measured at its upstream shear layer, where the
dominant global mode [14] and wavemaker [18] are located, was employed in an inviscid and
planar stability analysis [15]. The authors were able to show that this analysis, i.e., an inviscid
and planar mixing-layer analogy, was correlated with the convective/absolute instability nature of
the transverse jet.

In the present paper, however, it was noted that the Reynolds numbers and the (inverse of the)
momentum thicknesses used in these simulations [15], as well as the experiments they attempted
to reproduce [8], were not high enough for the respective inviscid and planar assumptions to be
sufficiently accurate. This issue was then overcome by including viscous effects and using cylin-
drical coordinates in our analysis, effectively creating a viscous and round mixing-layer analogy.
Comparisons with experimental data [19] showed that doing so led to the creation of an accurate
criterion for the transition to absolute/global stability in transverse jets. Furthermore, the use of
cylindrical coordinates was more important than the inclusion of viscous effects for the parametric
conditions explored. Nevertheless, the present study also showed how the relative importance of
each effect can be estimated a priori.

Future work on this topic includes the application of the viscous and round mixing-layer analogy
to transverse jets operating under different conditions, such as issuing from elevated convergence
nozzles, flushed and elevated pipes, and so on. Furthermore, this analogy is also being extended
to predict the onset of absolute instability in variable density transverse jets. This extension is not
trivial due to the extreme sensitivity of the stability results to the density profile [30]. Additional
experiments are currently being performed by the same UCLA group [19] to evaluate the robustness
of this analogy to all these conditions.
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