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Spatial regions that do not mix effectively with their surroundings and, thus, contribute
less to the heat transport in fully turbulent three-dimensional Rayleigh-Bénard flows are
identified by Lagrangian trajectories that stay together for a longer time. These trajectories
probe Lagrangian coherent sets (CSs) which we investigate here in direct numerical
simulations in convection cells with a square cross section of aspect ratio � = 16, Rayleigh
number Ra = 105, and Prandtl numbers Pr = 0.1, 0.7, and 7. The analysis is based on
N = 524 288 Lagrangian tracer particles which are advected in the time-dependent flow.
Clusters of trajectories are identified by a graph Laplacian with a diffusion kernel, which
quantifies the connectivity of trajectory segments, and a subsequent sparse eigenbasis
approximation (SEBA) for cluster detection. The combination of graph Laplacian and
SEBA leads to a significantly improved cluster identification that is compared with the
large-scale patterns in the Eulerian frame of reference. We show that the detected CSs
contribute by a third less to the global turbulent heat transport for all investigated Prandtl
numbers compared to the trajectories in the spatial complement. This is realized by
monitoring Nusselt numbers along the tracer trajectory ensembles, a dimensionless local
measure of heat transfer.

DOI: 10.1103/PhysRevFluids.6.L041501

Introduction. The investigation of transport and mixing properties in complex dynamical systems
in the Lagrangian frame of reference has received an increasing interest in the past two decades,
and many different identification methods have been developed and applied to fluid flows, see
Refs. [1–3] for recent reviews. Central to these approaches is the concept of a Lagrangian coherent
set (CS) [1,4–6], representing a region in the fluid volume that only weakly mixes with its sur-
rounding and which often stays regularly shaped (nonfilamented) under the evolution of the flow.
Coherent sets were originally introduced on the basis of transfer operators [4,5], but in the past
few years several approaches were proposed that use spatiotemporal clustering algorithms applied
to Lagrangian trajectory data [7–13]. These algorithms aim at identifying coherent sets as groups
of tracer trajectories that remain close to each other or behave in a similar manner in the time
interval under investigation. In turbulent convection flows, the heat transport from the bottom to
the top across an extended layer or a closed vessel is one of the essential processes that require
a deeper understanding [14,15] in view of the numerous geophysical [16], astrophysical [17], and
technological [18] applications. One first step is to identify the spatial sets that contribute least to
this transport and to relate them to the large-scale structures which are observed in the Eulerian
frame of reference.
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FIG. 1. Visualization of Lagrangian coherent sets. (a) The 40 369 Lagrangian tracers which correspond to
Lagrangian CSs are shown for Ra = 105, Pr = 7, and � = 16 (run 3). The highlighted particles comprise the
cluster cores during the chosen time interval [t0, t0 + �t] with �t = 17, whereas the shown tracer positions
correspond to the time t0 + �t/2. Contours of the temperature field, which is averaged over the same time
interval, are displayed at three faces. The bottom plane stands for 〈T (z = 0.05)〉�t . (b) A representative subset
of 1600 Lagrangian trajectories is shown. They form the different clusters in (a).

In the present Letter, we identify CSs as spatial regions of reduced turbulent heat transfer in
three-dimensional Rayleigh-Bénard convection (RBC) using a set-based approach. Our Lagrangian
analysis of turbulent RBC starts with a graph Laplacian that originates as in Ref. [8] from the
time-averaged distances between particles and uses a Gaussian kernel in the spectral clustering
approach (the latter of which can also be interpreted as a random walk or diffusion process on
the data [19–21]). Three different Prandtl numbers Pr, a dimensionless parameter that relates the
viscosity of the fluid to its temperature diffusivity, are considered. To extract Lagrangian coherent
sets from spectral properties of the graph Laplacian, we apply the recently developed sparse
eigenbasis approximation (SEBA) [22]. The combination of these methods allows us to disentangle
the contribution of the tracer trajectories that are trapped in CSs to the overall heat transfer in
comparison to the rest, thus, extending our recent Lagrangian studies of RBC [13,23,24]. Figure 1
illustrates these coherent sets and corresponding representative trajectory segments. It turns out that
these regions contribute least to the turbulent heat transfer. We will show this by monitoring the
local Nusselt number along individual Lagrangian trajectory segments.

The three-dimensional Boussinesq equations are solved by the spectral element method nek5000
[13,25,26]. Details of all simulations are summarized in Table I. The equations are made dimen-
sionless by the layer height H , wall-to-wall temperature difference �T , and free-fall velocity
Uf = √

gα �T H with acceleration due to gravity g and isobaric expansion coefficient α,

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇)u = −∇p +
√

Pr

Ra
∇2u + T ez, (2)

∂T

∂t
+ (u · ∇)T = 1√

Ra Pr
∇2T . (3)

We consider a closed cell with square horizontal cross section Lhor × Lhor and an aspect ratio of
� = Lhor/H = 16. No-slip boundary conditions for the velocity field are applied at all walls. The
sidewalls are thermally insulated and Tbottom = 1 and Ttop = 0 are chosen. The volume is covered by
more than 440 000 spectral elements. The Rayleigh number is given by Ra = gα �T H3/(νκ ) and
the Prandtl number Pr = ν/κ . Here, ν is the kinematic viscosity, and κ is the thermal diffusivity.
We advect N = 524 288 massless Lagrangian tracer particles by Ẋ i = u(X i, t ) for i = 1, . . . , N
together with the time-dependent flow. The cluster analysis starts when the Lagrangian tracer
particles are uniformly distributed across the cell after the initial seeding.
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TABLE I. Parameters and global statistical measures of the simulations. The Rayleigh number Ra, the
Prandtl number Pr, the global Nusselt number NuE , the characteristic turnover time τ̄E , and the characteristic
length λ̄E in the Eulerian (superscript E ) frame of reference, the total time of Lagrangian (superscript L)
analysis �t L , the mean Lagrangian turnover time τ̄ L , and the characteristic length λ̄L are listed. Error bars
follow from standard deviations. Furthermore, we provide the diffusion kernel scale ε, the width �t of each
time window used to compute the time-averaged distance ri j , the approximate number of detected Lagrangian

coherent sets NCS, the average Nusselt numbers related to the transport across the coherent sets Nu
L
CS and the

complement Nu
L
RP (with RP = remaining particles), the mean fraction of Lagrangian particles in coherent sets

ξp, and their mean contribution to heat transport ξq. The threshold value is always ζ = 0.94.

Run Ra Pr NuE τ̄E λ̄E �t L τ̄ L λ̄L ε �t NCS Nu
L
CS Nu

L
RP ξp (%) ξq (%)

1 105 0.1 3.50 10.6 3.4 133 13.7 ± 8.7 3.7 ± 2.1 49/800 3.25 75 2.89 3.54 7.9 6.6
2 105 0.7 4.13 18.3 3.6 234 21.7 ± 14.5 3.6 ± 2.1 9/200 5.50 80 2.71 4.41 8.7 5.5
3 105 7.0 4.18 63.4 5.1 700 68.6 ± 51.1 5.0 ± 2.4 9/200 17.00 40 2.87 4.30 7.6 5.2

It is well known that turbulent convection flows in extended domains get organized into
prominent large-scale patterns which are termed turbulent superstructures of convection, see, e.g.,
Refs. [27–31]. Table I compares the characteristic lengths and times for the Eulerian (E ) and
Lagrangian (L) frames (for comparison see also Refs. [13,28]). The Eulerian characteristic length
λ̄E is the wavelength that corresponds to the wave-number k∗ at which the time-averaged Fourier
spectrum of the vertical velocity component in the midplane becomes maximal, whereas the
Eulerian characteristic time is a mean turnover time calculated by τ̄E ≈ π (λ

E + 2)/(4urms). The
corresponding Lagrangian values are obtained as means of the probability density functions (PDFs)
which are taken over the whole tracer ensemble. Therefore, we determine λL as four times the
horizontal travel distance of each tracer between two successive intersections of the midplane. Thus,
it probes on average the typical counterrotating double roll structure. In comparison, τ L is the time
each particle needs to complete a full turnover, which is probed by passing the heights z = 0.2 and
0.8. Despite the extended tails of all distributions, the mean values λ̄L and τ̄ L are found to be close
to the corresponding characteristic scales of the Eulerian frame, confirming the consistency of our
analyses.

Spectral analysis of graph Laplacian and SEBA clustering. Material transport is subject to
turbulent dispersion which will destroy Lagrangian coherence if the observation time is sufficiently
long. We aim to identify subsets of our N Lagrangian trajectories that stay close together for a
longer transient period �t . To this end, we apply a spectral clustering approach to the discrete
data and explore their connectivities. Specifically, we use the time-averaged distance proposed in
Ref. [8],

ri j = 〈|X i(t ) − X j (t )|〉�t , (4)

between mutual Lagrangian trajectories X i(t ) and X j (t ) with the time average 〈·〉�t taken from t0
to t0 + �t and obtain the graph Laplacian N × N matrix,

L = 1

ε
(P − I), (5)

where ε is the kernel scale, P is the diffusion matrix, and I is the identity matrix. In a nutshell, the
entry Pi j encodes the probability of switching in a Markov chain from state (Lagrangian trajectory)
i to j. Thus, the matrix L generates a random walk on our trajectory data points. In more detail, the
entries of P are

Pi j = K̂i j∑N
j=1 K̂i j

with K̂i j = Ki j

kε,ikε, j
and Ki j =

{
exp

( − r2
i j/ε

)
, ri j � δ,

0, ri j > δ.
(6)
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FIG. 2. A typical eigenspectrum (from top downwards) resulting for the graph Laplacian matrix L in run
2. In order to highlight eigengaps between two subsequent eigenvalues λ(n), indicator χn is used, see Eq. (8).

Here, δ = √
2ε is the cutoff, kε,i = ∑N

k=1 Kik represents the prenormalization, and K is a diffusion
kernel matrix. Even though we work with a large number of tracers, which implies that K has N2 =
(2 × 5122)2 ∼ 1011 entries, the cutoff in (6) leads to sparsities above 99% with no loss of accuracy.
This allows to exploit very efficient k-d tree data structures [32] by computing first the instantaneous
Euclidean distances using an intermediate threshold δint > δ, then averaging these pairwise dis-
tances over several time steps and applying eventually the final cutoff δ to eliminate all connections
that exceed the time-averaged distance threshold (ri j > δ). The connectivity of the graph depends
on the kernel scale ε, the time-window �t , and the number of Lagrangian trajectories N . Although
N is left unchanged, we found in prior parameter studies that �t ≈ 0.25τ̄ L with a kernel scale ε as
small as possible (such that the network still remains connected) gives the best results. A decrease
in Pr generates turbulence with a larger Reynolds number. Thus, ε depends also on Pr. We consider
the following eigenvalue problem for the graph Laplacian,

Lvn = λ(n)vn, (7)

with the eigenvalues λ(n) and corresponding eigenvectors vn. We compute the leading Nl = 250 	
N eigenvalues and -vectors for ten disjoint time intervals in each of the three runs where about 50
equally spaced snapshots are used to evaluate the time-averaged distances ri j in each time window
as given in (4). Stronger gaps in the eigenvalue spectrum of L indicate potential numbers of clusters
as discussed in Refs. [9,13,22,23]. We apply the following finite difference ratio to detect if the
difference (or gap) from λ(n) to λ(n+1) is larger than the average difference between the last k = 4
predecessive eigenvalues of λ(n) and the next k = 4 successive eigenvalues of λ(n+1), respectively,

χn = 8[λ(n+1) − λ(n)]

[λ(n) − λ(n−4)] + [λ(n+5) − λ(n+1)]
− 1 with 5 � n � Nl − 5. (8)

This is one possible way to amplify the stronger gaps in the magnitude-ordered eigenvalue spectrum.
A large positive value of (8) suggests then, as shown in Fig. 2, a number of coherent sets of NCS =
n = 82 in run 2, which is close to the estimate (2�/λ̄L )2 ≈ 80 (see Table I).

The key idea of SEBA [22] is to transform the eigenvectors {vn}n=1···NCS to a new set of vectors
{zk}k=1···NCS which span the same subspace but have significantly less nonvanishing components and,
thus, disentangle the clusters of the graph better of each other. The ith component of zk implies that
network node X i belongs to cluster k with a likelihood zk,i when zk,i > 0 [22]. We combine this
information in a vector m ∈ RN with mi = maxk=1,...,NCS zk,i which results in an indicator of cluster
affiliation (un)certainty. As shown below, the resulting soft classification allows for an improved
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FIG. 3. Results of the SEBA. (a) Scatter plot of maximum likelihood mi of tracer X i(t0 + �t/2) with
i = 1, . . . , N to belong to one of the NCS = 82 clusters taken from the large value of χ82 in Fig. 2. Different
clusters result for subsequent thresholding with ζ ≈ 0.7 in (b) and ζ = 0.94 in (c). Black lines indicate the
isotherms 〈T (z = 0.5)〉�t = 0.5.

cluster identification in comparison to the k-means method which was applied in our previous
work [13].

Figure 3 displays the result of SEBA for the same data as in Fig. 2. Panel (a) shows a scatter plot
of the maximum likelihood mi of tracer X i with i = 1, . . . , N to belong to one of the NCS clusters.
To separate the 82 features from each other, a threshold ζ has to be chosen to decompose the flow
volume into features and an incoherent background. The idea of an incoherent background cluster
was introduced in Ref. [8]. Separating the CSs properly requires ζ ≈ 0.7 and leads to panel (b) of
Fig. 3. The CSs intersect in most cases the isotherm (black solid line) of mean temperature 〈T (z =
0.5)〉�t = 0.5, thus, indicating that they represent the core regions of the large-scale circulation
rolls which make up the turbulent superstructures in convection. When this threshold is raised to a
higher value, such as ζ = 0.94 in panel (c), the clusters will be better separated. The threshold ζ is
a free parameter, which allows us to control the separation of CSs from the incoherent background,
in contrast to the unsupervised k-means clustering for feature extraction from eigenvectors used in
Refs. [8,9,13,23]. On the one hand, ζ should not be too small to separate the features properly. On
the other hand, it should not be too close to 1 such that sufficiently many trajectory points can be
assigned with a particular cluster.

FIG. 4. Prandtl number dependence of the PDFs of tracer particles captured in the Lagrangian CSs and
the RPs. (a) PDF of the z coordinate of the tracers in CSs and RPs. (b) PDF of the temperature T along the
trajectory in CSs and (c) in RPs. The PDFs are computed for ten disjoint time intervals of the evolution and
arithmetically averaged subsequently. The threshold value is ζ = 0.94.
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FIG. 5. Quantitative analysis and visualization of the contribution of Lagrangian CSs to heat transfer.
(a) PDF of 〈NuL

CS〉�t , (b) PDF of 〈NuL
RP〉�t . The inset in (a) is a one-to-one comparison of the central region

of the PDFs for Pr = 0.7. All colors equal that of Fig. 4. (c)–(e) Data in vertical cuts with a slice thickness of
0.2 through the convection layers are shown for (c) Pr =0.1, (d) 0.7, and (e) 7. The corresponding temperature
field, that is averaged over �t , is shown as background. Tracers that belong to Lagrangian CSs in this slice
are indicated by black dots at time t0 + �t/2. The gray vectors indicate velocity projections on the plane for
tracers that belong to RPs. The threshold value is again ζ = 0.94.

Analysis of Lagrangian heat transport. Figure 4 confirms that the detected features (for ζ = 0.94)
indeed represent the cores of convection rolls by providing the spatial distribution of the Lagrangian
particles that belong to CSs and comparing them with the remaining particles outside the identified
sets. We display, therefore, the PDF of the vertical coordinate in panel (a) of the figure. The PDFs
of the local temperature T [X i(t )] that can be assigned with each Lagrangian tracer are shown in
addition in panels (b) and (c). All three Prandtl numbers display clearly a narrower distribution
around T = 0.5 for the CS tracers, indicating that they are much less efficient in taking up and
releasing heat as those outside the CSs. The PDFs of T are broadest for the smallest Prandtl number
as the diffusion time is shortest [28].

This suggests a closer look at the turbulent heat transport. Although the global heat transfer
is given by NuE = 1 + √

Ra Pr〈uzT 〉V,t and listed in Table I, we can refine this dimensionless
transport measure to disentangle the contributions of the Lagrangian CS and RP tracers. We,
therefore, define a local Nusselt number which is proportional to the vertical component of the
heat current vector along the Lagrangian trajectory X i(t ) [33–35] and given by

NuL[X i(t )] =
√

Ra Pr uzT

∣∣∣∣
X i (t )

− ∂T

∂z

∣∣∣∣
X i (t )

. (9)

Averaging over the time windows �t yields not only a Lagrangian perspective on Nu, but as the
individual particles represent specific spatial regions of the flow it also provides information on the
Lagrangian CSs and their spatial complement. This allows us to disentangle the heat transport into
〈NuL

CS〉�t and 〈NuL
RP〉�t . The resulting PDFs for all three Prandtl numbers are displayed in Fig. 5.

First it is observed in panels (a) and (b) that the support of the PDFs is smallest for the lowest Prandtl
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number confirming the reduced and less efficient heat transfer, which is in line with the coarsest
thermal plumes shown in panel (c). The PDFs for the largest Prandtl number develop in both cases a
pronounced bimodal shape, in particular, the PDF of 〈NuL

RP〉�t . The peak at the positive local Nusselt
number axis represents the strong plume detachment events from both boundary layers, whereas
the peak for the negative amplitude corresponds to impinging plumes. This effect is strongest for
the largest Pr as thermal diffusion is smallest. Although the differences between the distributions
of 〈NuL

CS〉�t and 〈NuL
RP〉�t are highlighted for one Pr by the inset in panel (a), they become also

prominent by the mean values of Nu
L
CS and Nu

L
RP in Table I for all Prandtl numbers. The latter is

very close to the standard definition in the Eulerian frame NuE = 1 + 〈uzT 〉V,t [15], but the former is
smaller by about 1/3. Thus, our locally refined analysis of the turbulent heat transport demonstrates
clearly that the cores of convection rolls in which Lagrangian trajectories are trapped for longer
times contribute least to heat transport. One can unambiguously identify Lagrangian CSs as spatial
regions of reduced heat transport in the flow. This is, furthermore, underlined by comparing the mean
fraction of tracers in CSs ξp with their contribution to the global heat transport ξq (see Table I).

Panels (c)–(e) of Fig. 5 visualize Lagrangian CSs in instantaneous vertical cuts of the flows at
all investigated Pr. The Lagrangian CSs are located between the rising and falling thermal plumes
which develop thinner stems with increasing Prandtl number. These plume networks would be the
structures that are identified as turbulent superstructures in the Eulerian frame of reference. The
tracer cloud that forms the CSs in these cases appears to be nearly elliptic and is, thus, characterized
by a small surface-to-volume ratio.

Summary and outlook. We have identified Lagrangian coherent sets in three-dimensional turbu-
lent Rayleigh-Bénard convection flows by means of clusters of tracer trajectories. A combination
of the graph Laplacian framework, which originates from the time-averaged distances [8] and uses
a diffusion kernel with the subsequent sparse eigenbasis approximation [22] led to an improved
identification of the coherent sets in comparison to our previous analysis in Ref. [13]. It is shown
that the majority of the clusters accumulates in the center of the layer between the spatial regions
of strong up- or downwelling motions—the latter of which would be identified as the significant
feature in an Eulerian analysis of the flow. We also showed that the Nusselt number Nu

L
CS, which

can be assigned to CSs in a Lagrangian way, is reduced to approximately 2/3 of the standard Nusselt
number NuE in all three cases. This quantifies that CSs contribute significantly less to the global
turbulent heat transfer compared to their spatial complement.

It is clear that these trajectories are not trapped for arbitrary long time intervals inside the
Lagrangian coherent sets. Individual tracer particles will join the sets, which we illustrated in panels
(c)–(e) in Fig. 5, others will leave them. Also an increase of the time-interval �t will cause a
shrinking of the sets in space. A similar trend can be observed in Ref. [36] for three-dimensional
stably stratified flows or in Ref. [37] for turbulent channel flows where Lagrangian coherent
structures—the two-dimensional manifolds that surround the Lagrangian coherent sets—have been
identified. For the present approach, this suggests to apply evolutionary cluster algorithms which
would introduce a memory in time into the CS identification [38]. These studies are currently
underway and will be reported elsewhere. Network analyses have been recently applied in other
turbulent flows to connect coherent structures and statistical flow properties in reduced models
which provide a further direction to extend our present Letter [39].
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