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Robust propagation of internal coastal Kelvin waves in complex domains
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We experimentally investigate internal coastal Kelvin waves in a two-layer fluid system
on a rotating table. Waves in our system propagate in the prograde direction and are ex-
ponentially localized near the boundary. Our experiments verify the theoretical dispersion
relation of the wave and show that the wave amplitude decays exponentially along the
propagation direction. We further demonstrate that the waves can robustly propagate along
boundaries of complex geometries without being scattered and that adding obstacles to the
wave propagation path does not cause additional attenuation.
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Over recent decades, tools from topology have shed new light on a wide range of physical
phenomena. One of such phenomena is the emergence of robust boundary states under topolog-
ical protection. For example, Hall current in two-dimensional semiconductors can robustly and
unidirectionally propagate along the boundaries which may have defects and complex shapes; its
persistence is guaranteed by topological arguments [1–5]. Topologically protected states have also
been found in classical systems, including two-dimensional chiral materials [6–9], isostatic lattices
in two dimensions [10], and photonic systems [11].

Recently, fluid flow phenomena have been examined with topological methods [12–17]; exam-
ples include oceanic Kelvin waves [12,15] and atmospheric Lamb waves [17]. Robust boundary
states, behaving like the topologically protected states, have also been found in highly nonlinear
systems, such as the wall states in the rotating Rayleigh-Bénard system [18]. Analysis of the
shallow-water model [12] shows that the earth’s rotation breaks the time-reversal symmetry and
leads to a gap between the low and high frequency wave bands. Eastward-propagating Kelvin
waves with frequencies in the gap can be considered as topologically protected boundary states
at the equator, where the earth’s rotation changes signs [12]. Coastal Kelvin waves trapped near
a sharp boundary have also been analyzed from a topological point of view [16], because the
robust propagation of these waves along irregular coasts has been well documented [19,20]. Current
theoretical analysis has not been able to rigorously establish coastal Kelvin waves as topologically
protected boundary states and topological origin of these boundary waves remains to be explored
[16].
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FIG. 1. Schematic diagram and photography of the experimental setup. The various components are
explained in the text.

As an important geophysical phenomenon, coastal Kelvin waves have been extensively studied
by theoreticians to explore the effects of boundary conditions, stratification, and bottom topography
[21–24]. In addition, experimental studies of coastal Kelvin waves, which have some technical
challenges, have also been carried out to investigate modal wave structures, evolution of nonlinear
waves, and reflection of solitary waves [25–27]. In this work, we focus on linear wave propagation
phenomenon and possible interactions between linear waves and obstacles. To that end, we set up
a two-layer fluid system on a rotating table and use a computer-controlled wave maker to excite
coastal Kelvin waves. Wave propagation along the fluid interface is quantified by particle image
velocimetry (PIV). Our measurements show that the wave in our system propagates in the prograde
direction while decaying exponentially along the path and that measured dispersion relation is in
good agreement with inviscid theory prediction for low-frequency waves. We further demonstrate
that internal coastal Kelvin waves robustly propagate along various irregular boundaries without
being scattered into the bulk and that the complex geometry of the boundaries doesn’t lead to
additional wave dissipation.

A schematic drawing and a photograph of the experimental apparatus are shown in Fig. 1. It
consists of a rotary table, a fluid tank, a wave maker, and a particle image velocimetry (PIV) system
for flow-field measurements. The rotary table is fixed securely on the floor. Both its rotating rate
� (clockwise) and rotational acceleration a can be adjusted precisely. We use a rectangular fluid
tank that has inner dimensions of 1000 × 500 × 200 (mm3). Its bottom plate, made of oxidized
aluminum, is mounted on the rotary table. Its sidewalls, as well as the top lid, are made of 10-
mm-thick transparent Plexiglas plates. The tank has four rounded corners in a radius of 150 mm,
designed to eliminate the corner vortices during the spin-up of the fluid and reduce fluid mixing.
The tank is filled with two fluid layers; both are 100 mm in thickness. The upper fluid layer is fresh
water and the lower one is saltwater. Their densities are ρ1 = 0.998 g/cm3 and ρ2 = 1.020 g/cm3,
respectively. In order to prepare the two fluid layers with sharp density interface, we first fill the
lower half of the tank with the salty water. A low-density sponge in size of 150 × 150 × 15 (mm3)
is gently placed on the salty water surface. Fresh water at a very slow flow rate of 3.09 × 10−4 m/s
is injected on top of the sponge. It permeates through the sponge, and then flows steadily onto the

L022801-2



ROBUST PROPAGATION OF INTERNAL COASTAL KELVIN …

fluid tank. During this filling process [28], we observe no noticeable mixing between the top and
bottom fluid layer, and two fluid layers with an interfacial thickness δ ≈ 2 mm is prepared. After
the tank is filled, the rotary table spins up to a rotation rate � with a steady acceleration a. For
all experiments we choose � = 1.88 rad/s and a = 2.62 × 10−4 rad/s2. The acceleration a is low
enough to prevent mixing between the two fluid layers. The fluid system then reaches a state of
solid-body rotation after the time scale of spin-up, τ = L/(ν�)1/2, which is approximately 20 min
in the present experiment. Here L is the long dimension of the tank and ν is the fluid viscosity.

The internal waves are excited by a wave maker made of a rigid sphere. The sphere has a radius
R = 15 mm, connected through an electric guide rail to a step motor. During the experiment, the
sphere is driven to oscillate vertically in the form of a cosine function h(t ) = h0 + Hcos(ωt ). The
equilibrium position h0 of the sphere is selected so that the sphere center locates right at the interface
of the two layers. For all measurements, the center of the sphere is 18 mm away from the long
lateral wall of tank. We use an Arduino microcontroller to control the oscillation frequency ω and
amplitude H of the wave maker.

We take velocity measurements using a PIV system installed on the rotary table [29]. A thin
vertical light sheet (1 mm in thickness) powered by a continuous solid-state laser illuminates the
seeding particles over various locations in the fluid tank (insets in Figs. 2–5). Hollow glass beads,
with a diameter of 50 μm and an effective density of 1.030 g/cm3, are used as the seeding particles.
Since these particles sediment three times faster in fresh water than in salty water, they accumulate
at the interface during the spin-up process and form a bright region in raw particle images. From the
bright region, we can track the fluid interface η(x) [see red line in Fig. 2(a)]. Images of the particles
are captured at a frame rate of 10 fps by a high-resolution Basler acA2040-90um camera (2048 ×
2048 pixels) mounted in the co-rotating frame. Two-dimensional velocity maps are obtained by
cross-correlating two consecutive images taken at a time interval according to the flow speeds. Each
velocity vector is calculated from an interrogation window (32 × 32 pixels), with 50% overlap of
neighboring sub-windows [30]. We choose the measurement area as a rectangular region of 433 ×
85 (mm2) crossing the interface of the two fluid layer, reaching a spatial resolution of 1.33 mm in
the velocity fields.

We first examine the property of unidirectional propagation of the Kelvin wave [31]. For this
purpose, we install the wave maker at the middle of the long side of the tank [position M in inset
of Fig. 2(c)]. The fluid velocity over a vertical plane f1 is measured. Figure 2(a) shows an example
of the particle density field captured through our PIV system with the oscillation amplitude H =
20 mm and frequency ω = 1.90 rad/s. The interface of the two fluid layers η(x) is marked by the red
curve, that is determined by the average height of the bright area for each horizontal position x. It
shows oscillations on the left side of the wave maker, but a parabolic profile η(x) = η0(x) = bx2 on
the right, caused by the centrifugal force (see Supplemental Material [32]). We choose the vertical
interfacial position at x = 0 as the zero of the fluid height, i.e., η0(x = 0) = 0. These are direct
observations that the internal wave indeed propagates leftward unidirectionally. (See Supplementary
Movie for the propagation of the Kelvin wave).

Figure 2(b) presents the instantaneous velocity field v(x, z) extracted from the PIV system. A
prominent feature shown in the velocity field is the apparent periodic oscillations of both the velocity
components vx and vz on the left for x > R. The magnitude of fluid velocity on the right for x < −R,
however, is nearly zero. In the region of |x| � R, the fluid flow is complex due to the large-amplitude
disturbances of the oscillation source. Along the interface z = η(x) for x > R, we find that the
maxima and nodes of vz appear alternatively, while vx remains close to zero. In Fig. 2(c) we plot
the vertical fluid velocities vz against the horizontal position x for various fluid heights. Velocity
data for the oscillation-source region (|x| � R) are excluded. For x > R the velocity profiles vz(x)
can be best described by an oscillation function with its amplitude decaying exponentially vz(x) =
v0

z (z)exp(−αvx)cos(kx−ωt ). Here v0
z is the oscillation amplitude that depends on z and is maximum

at z = 0. k is the wave number and λvd = α−1
v is the decay length of vz. For each fluid height z

the crest and trough of vz appears periodically. For x < −R, no significant velocity component is

L022801-3



CHENYANG REN et al.

FIG. 2. (a) A snapshot of seeding particles in a vertical plane f1 (see inset). (b) The corresponding
instantaneous velocity field extracted from our PIV system. The background coloration corresponds to the
vertical velocity component vz(x, z). The central dark region denotes the position of the wave maker. We define
the positive horizontal direction of x to be leftward, i.e., the propagation direction of the waves. (c) The vertical
velocity component vz(x) measured at various fluid heights. (Inset) A schematic drawing of top view of tank.
The circle M denotes the position of the wave maker. The dashed line f1 is the position of the laser light sheet
in PIV measurements. The view angle of the camera is indicated by the black arrow. The red arrows present
the propagation path of waves.

observed (vz ≈ 0). We stress that such a dynamical feature of unidirectional propagation has been
observed in a wide range of the experimental parameters (ω, H).

To further illustrate the propagation dynamics of internal coastal Kelvin wave, we move the wave
maker to the right side of the tank [position M in inset of Fig. 3(b)], leaving a large distance for the
leftward propagation of the Kelvin waves. We perform a set of measurements of the interfacial
position ζ (x), choosing the range of the wave frequency as 1.30 rad/s � ω � 2.40 rad/s. As shown
below, wave in this frequency range can be conveniently measured in our tank because of their
wavelength and decaying length.

Figure 3(a) shows the relative interfacial positions ζ (x) = η(x)−η0(x) for various frequencies.
Here η0(x) = bx2 is the parabolic interface measured when the wave maker is turned off. Our
experimental data of ζ (x), which are shown in the black dots, agree well with the following function:

ζ (x, t ) = A0 exp(−αx)cos(kx − ωt + φ), (1)
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FIG. 3. (a) The interfacial profiles ζ (x) of Kelvin waves propagating along a straight fluid boundary.
Results for H = 15 mm, ω = 1.40 rad/s, and 1.90 rad/s. (Black dots) The raw data of ζ (x). (Black solid
lines) Fitted curves of ζ (x) according to formula (1). (Red dashed lines) The amplitude A as a function of x,
A = A0exp(−αx). (b) The measured damping coefficient α (black dots for H = 15 mm and red triangles for H
= 20 mm) and wave number k (purple) as functions of the oscillation frequency ω. (Red solid line) Dispersion
relation expressed by formula (2). (Inset) A schematic drawing of the top view of the tank.

as shown by the fitted black curves. α is the damping coefficient and k is the wave number. The
wave amplitude decays exponentially along the prorogation direction x as implied by the red lines;
for progressive linear interfacial waves, dissipation mainly occurs at the sidewalls and interfacial
boundary layer [33]. Figure 3(b) shows the experimental data of k, α as functions of ω. With
increasing ω, both α and k increase. In the range of ω � 1.90 rad/s, we find that the wave number k
is about one order in magnitude larger than the damping coefficient α [33–36], meaning that viscous
effects are weak for these waves. The dispersion relation for the coastal Kelvin wave can be solved
in a inviscid two-layer model [37] (also see Supplementary Material [32]):

ω2 = gk(ρ2 − ρ1)

ρ1 coth (kD1) + ρ2 coth (kD2)
, (2)

where D1, D2 is the depth of two-layer fluids, respectively. The red line in Fig. 3(b) shows the
theoretical results, without free parameters, from Eq. (2), which are in close agreement with
the experimental data in the low-frequency range when ω � 1.90 rad/s. Therefore, the inviscid
dispersion relation is confirmed in low-frequency waves. We also explore the influence of forcing
amplitude H on α; as shown in Fig. 3(b), the α parameters measured with two amplitudes are nearly
identical. The observed amplitude independence of the damping coefficient suggests that the Kelvin
waves in our experiments propagate in the linear regime, which is consistent with the dispersion
relation for linear waves measured in Fig. 3(b). We note that nonlinear phenomena, such as solitary
wave and triad interactions, do not occur in our experiments in the linear regime.

For high frequencies ω > 1.90 rad/s, the damping coefficient α increases sharply with increasing
ω. In this case, the theoretically predicted dispersion relation is not accurate because of the strong
frictional damping, and the wavelength λL = 2π/k and decay length λd = α−1 become comparable.
This is shown in Supplemental Material (Movie S2) [32]: High-frequency wave decays rapidly along
the propagation path. Hence, in our following experiments, we mainly use the wave with frequency
ω � 1.90 rad/s to further investigate the robustness of the coastal Kelvin wave propagation in
complex fluid domains [16].

In our experimental settings, we have installed obstacles (approximately 5 times larger than the
Rossby radius of deformation in size) of different geometric shapes in the fluid tank along the
propagation path of the Kelvin wave. These obstacles change the geometry of the fluid boundary
as well as the propagation path, but do not alter the level of topological complexity of the system
[1–5].
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FIG. 4. The interfacial profiles ζ (s) of Kelvin waves in plane f1 when it propagates surrounding a
semicylindrical obstacle. The experiment is performed with H = 15 mm, ω = 1.57 rad/s (a), 1.90 rad/s (b),
and 2.26 rad/s (c), respectively. (Dots) The raw data of ζ (s). (Solid lines) Fitted curves of ζ (s) using formula
(1). The s coordinate presents the travel distance of the wave. (Black circle) Position of the wave maker. (Gray
rectangular) Position of the semicylindrical obstacle. (Inset) A schematic drawing of the top view of the tank.
The diameter of the semicylindrical obstacle O is 100 mm.

In a series of measurements, we first install a semicylindrical obstacle O near the wall, as shown
in the inset of Fig. 4(a). The relative interfacial position ζ for the waves of three frequencies ω is
measured in the vertical plane f1 at two times separated by half an oscillation period. We see that
with low frequencies ω = 1.57 rad/s and ω = 1.90 rad/s, the Kelvin wave can travel leftward around
the obstacle and reach the wall to the left of the obstacle, rather than being reflected by the obstacle.
The Kelvin wave with a high frequency, ω = 2.26 rad/s, however, decays to almost zero, when it
arrives to the left of the obstacle, because of the strong energy dissipation under large frequency, as
discussed in Fig. 3.

For further demonstration of the robustness of near-shore propagation of the Kelvin wave, we
install a barrier board O that is a right angle to the long lateral wall of the tank [see inset of Fig. 5(d)].
The fluid interface is measured along all sections of the wave propagation paths, i.e., in the vertical
planes of f1, f2, and f3. In Figs. 5(a)–5(c) we present the interfacial positions ζ (s) captured at two
oscillation phases that are half-period apart in planes f1, f2, and f3, respectively. The experiment
is performed with ω = 1.73 rad/s, H = 15 mm. Figure 5(a) shows within a short travel distance
s < 200 mm that the energetic Kelvin wave is propagating leftward. As the wave comes across
the barrier board O at s = 200 mm, Figs. 5(a) and 5(b) indicate that rather than being reflected
backward, the wave makes a sharp right turn of 90◦ and then travels in the direction perpendicular
to the long lateral wall of the tank along board O. Another striking behavior is observed when the
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FIG. 5. (a)–(c) The interfacial profiles ζ (s) of Kelvin waves propagating surrounding a thin rectangular
obstacle (see inset). A 30-mm-thick obstacle board O with a length Lc = 210 mm is installed, perpendicular to
the lateral wall of the tank (inset). (Dots) The raw data of ζ (s). (Solid lines) Fitted curves of ζ (s) using formula
(1). The red arrows and circles indicate the direction of wave propagation. (Black circle) Position of the wave
maker. (Gray rectangle) Position of the obstacle board. (d) The wave oscillation amplitudes A(s) as a function
of the travel distance s. (Symbols) Data measured with an obstacle board in length Lc = 110 mm. The solid
lines present exponential function A(s) = A0 exp(−αs) fitted to the straight-boundary data (open symbols).
(Inset) A schematic drawing of the top view of the tank. The dashed lines f1, f2, f3 are the positions of the laser
light sheet in PIV measurements, captured by the camera with the corresponding number at different angles
(black arrows).

wave arrives at the end of board O at 410 mm � s � 440 mm. Figures 5(b) and 5(c) illustrate that
at this location the wave changes again sharply its propagation direction and turns around the edge
of board O clockwise, with its propagation path nested inside the vicinal region next to the obstacle
surface. This robust near-shore flow continuously returns to the tank wall at s = 650 mm and then
propagates leftward, although its amplitude has significantly decayed shown in Fig. 5(a). This robust
and unidirectional propagation of the coastal Kelvin wave shows that its dynamics is insensitive to
the details of the boundary geometry [14,16]. In addition, we measure the profile of internal Kelvin
waves in the direction perpendicular to the boundary (see Supplemental Material for Fig. S1 [32]).
Our measurements show that the internal Kelvin wave is trapped exponentially near the boundary
[31]. For a wave of frequency ω = 1.57 rad/s, Fig. S1 shows a decaying length (in the y direction)
of 19.56 ± 2.02 mm. This is consistent with a direct estimation of the Rossby radius of deformation
� = ω/2k� with the wave frequency and vector data from Fig. 3(b) [38].

The general topological property of the Kelvin waves is further investigated by measuring the
wave amplitudes along various traveling paths surrounding different obstacles. As pointed out in
Fig. 3, the amplitude of the Kelvin wave decays exponentially with increasing travel distance due
to the viscous damping. Here, we examine whether the decay length λd is independent of the path
of wave propagation. In Fig. 5(d) we show the wave amplitude A as a function of the propagation
distance s measured under various settings of boundary conditions and different oscillation fre-
quencies ω. The open symbols represent the results for Kelvin waves propagating along a straight
lateral wall, while the filled symbols are the results obtained when the Kelvin waves bypass along
obstacles. We find that the decay length λd decreases with increasing ω. For a fixed ω, the two sets
of data collapse approximately into a single curve A(s) = A0exp(−αs). These results imply that the
decrease of the wave amplitude A along a propagation path is determined by the traveling distance s,
but independent on the geometry of the path. Previous theoretical studies predicted that the Kelvin
waves with frequencies of ω < 2� have no additional attenuation of amplitude in the process of
diffraction at different barriers, by means of hydrodynamic theories [19,39,40].
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We have experimentally investigated internal coastal Kelvin waves in a two-layer fluid system on
a rotating table and focused on slow waves with frequencies lower than the table rotating frequency.
Our experiments have shown that these waves, localized near the tank boundary, propagate in the
same direction as the table rotation and decay exponentially along the propagation path. Wave
dispersion relation from the inviscid theory has been experimentally verified with low-frequency
waves when their propagations are nearly unaffected by dissipation. Protruding objects, including a
half-cylinder and a perpendicular plate, are used as obstacles to modulate the wave propagation. Our
experiments show that low-frequency waves can robustly propagate along the complex boundary
(containing protruding objects) without being scattered and that the protruding objects do not cause
additional wave dissipation; similar observations have been made in other topologically protected
boundary states [7,8,12,14,15]. However, as stressed in [16], the topological origin of the coastal
Kelvin wave remains to be theoretically established with the corresponding topological invariant.
Our experimental results and previous theoretical analysis suggest that fluid dynamical systems may
provide a fertile platform to further extend the applications of topological methods and ideas.
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