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Experimental study of integrable turbulence in shallow water
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We analyze a set of bidirectional wave experiments in a linear wave flume of which
some are conducive to integrable turbulence. In all experiments the wavemaker forcing is
sinusoidal and the wave motion is recorded by seven high-resolution side-looking cameras.
The periodic scattering transform is implemented and power spectral densities computed to
discriminate linear wave motion states from integrable turbulence and soliton gas. Values
of the wavemaker forcing Ursell number and relative amplitude are required to be above
some threshold values for the integral turbulence to occur. Despite the unavoidable slow
damping, soliton gases achieve stationary states because of the continuous energy input by
the wavemaker. The statistical properties are given in terms of probability density distribu-
tion, skewness, and kurtosis. The route to integrable turbulence, by the disorganization of
the wavemaker induced sinusoidal wave motion, depends on the nonlinearity of the waves
but equally on the amplitude amplification and reduction due to the wavemaker feedback
on the wave field.

DOI: 10.1103/PhysRevFluids.6.124801

I. INTRODUCTION

Integrable turbulence is a fascinating topic of nonlinear physics. Integrable turbulence is theoret-
ically and numerically described in the framework of integrable equations amongst which the KdV
equation [1,2], the Gardner equation [3], and the one-dimensional nonlinear Schrödinger equation
[4,5]. In these systems an infinite number of degrees of freedom can be excited randomly. As such
there is no energy transfer between these modes and the word turbulence does not refer to the
usual energy cascade between scales. Nevertheless, these systems can exhibit complex random
behaviors that require a statistical description. Integrable turbulence applies to many fields of
physics: hydrodynamics, optics, and plasmas [1,6–15].

The theory of integrable turbulence in water wave problems is found to be analytically tractable
for two “asymptotic” situations. On the one hand, when the waves are of small amplitude the
expansion in powers of nonlinearity yields kinetic equations that model wave resonant interactions.
In 2D situations such as for Kadomtsev-Petviashvili type equations [4] resonant interactions are
three-wave resonances. It is known that in the case of the KdV equation the first nontrivial
resonances are five-wave interactions but with zero amplitudes [16]. This result tends to indicate
that integrable weak wave turbulence in 1D shallow water cases such as for the KdV equations is
precluded.

On the other hand, when the turbulence can be considered as a collection of solitons with random
amplitudes and phases, kinetic theories of rarefied soliton gas [17] or dense ones [18–21] can be
derived. A soliton gas is thus a random state in which solitons behave as quasiparticles due to
the fact that their collisions are elastic, only altering relative phases, and thus changing the mean
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phase speed [17]. Solitons in the shallow water framework are localized waves which propagate
without change of shape due to a balance between linear dispersive effects that tend to flatten out
any surface perturbations and nonlinear effects that steepen the fronts. Solitons are at the core of
integrable dynamics of the KdV equation.

Empirical confirmation that soliton gases can be generated were given in optics [22], for deep
water waves [23] and for shallow water wave motion [24,25]. In the experiments energy dissipation
cannot be avoided and this seems at first glance strongly incompatible with the concept of integra-
bility. However, Ref. [24] observed that due to a large-scale separation between the nonlinear scale
related to the (short) duration of soliton collisions and the (long) dissipative timescale, the dynamics
is overall ruled by integrability. A stationary random soliton gas in a long wave flume in shallow
water conditions can thus be sustained with continuous energy input by the wavemaker. Even though
not labeled as soliton gases some 1D flume experiments of Ref. [26], in which the wavemaker has a
sinusoidal displacement, lead to random wave motions. Therefore, the role of the wavemaker in the
outcome of these random stationary wave states needs to be explored.

Fifty years have elapsed between the first theoretical description of soliton gases in Ref. [17]
and the first hydrodynamic experiments. A possible reason is the requirement of highly resolved
instruments to capture the space-time evolution of a random state. Another more fundamental issue
relates to the difference between an infinite or periodic domain setting, usually used in theoretical
approaches, and finite length experimental setups. This difference also combines with how initial
conditions are easily prescribed in theory and numerics while boundary conditions are most of the
time the only options at least in hydrodynamic experiments. A recent notable exception are the deep
water soliton gas experiments by Suret et al. [23] in which the inverse scattering transform for the
1D Schrödinger equation is used to compute boundary conditions in a very long flume. In these
experiments an ensemble of random spectral values associated to solitons are prescribed which then
evolve toward a soliton gas.

The constraints on the experiments mentioned above require to find other routes to the generation
of integrable turbulence and soliton gases, an aspect investigated in the present work. In this
context the question of the statistical properties of the stationary state of integrable turbulence needs
to be addressed since it remains largely open and was mostly investigated by numerical studies
[1,2,27,28].

In the present study, we first present the experiments on random state wave motions and the data
processing techniques (Sec. II). In Sec. III, we characterize the conditions for which such random
states can be observed by using the Ursell number and the relative amplitude dimensionless number
that define a phase diagram of our data. A statistical description of the random states is provided
in Sec. IV. Section V is dedicated to the description of the transition from wave motion to random
states.

II. EXPERIMENTAL SETUP

The details of the experimental setup and data analysis tools can be found in Ref. [29] and
some aspects are discussed in Refs. [24,25] as well. We only recall here the main features of the
experimental setup.

A. Wave flume and wave motion measurements

Experiments are performed in the 33.73-m-long and 55-cm-wide LEGI wave flume with side
glass panels. A schematic of the flume is given in Figs. 1 and 2. At one end the waves are
generated by a piston-type wavemaker and opposite a vertical wall ends the flume, in a similar
configuration to that of Refs. [26,30] but in a longer flume. Waves propagate back and forth in the
flume reflecting on the wall and the wavemaker. They are damped by viscous dissipation in the
boundary layers at the bottom and the sides of the flume. The side glass panels are 1.92 m long and
they are separated by 8-cm-wide posts that hold them. The water motion is video recorded through
these side glass panels. The cameras have a full HD resolution (1920×1080 pixels) with pixel
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FIG. 1. Schematics of the wave flume. The flume is 33.73 m long, 1.3 m deep, and 55 cm wide. Waves are
generated by a piston-type wavemaker driven by a computer-controlled hydraulic actuator. The mean piston
position is at x = 0. x = 9.54 m is the right edge of the fifth post. The opposite end of the flume is a vertical
wall on which waves reflect. The side walls are made of glass with holding posts every 2 m.

size corresponding to about 1 mm in physical space. Each camera records the water contact line
motion on the entire length of the side glass panel. Using seven synchronized cameras running at
20 frames/s measurements of the water elevation over a 14-m-long region located at the center of
the flume are obtained. The raw images are rectified by using the image of a calibration grid that was
placed in the flume against the front glass side panel. In order to improve the contrast of the images
for a better accuracy of the measurements, the bottom of the flume is painted white and the back
vertical panels painted black (see Fig. 3). By choosing adequately the angle of the camera, the image
region just below the contact line appears black while the region above the contact line is white. This
is due to the refraction of the light rays at the water surface as explained by the schematic in Fig. 3.
This sharp contrast at the contact line allows us to achieve subpixel accuracy and a corresponding
resolution better than 0.1 mm (see Refs. [25,29] for details of the water contact line measurement).
Examples of snapshots recorded by the cameras are given in Fig. 4 together with the corresponding
water free surface elevation. The setup provides a time and space resolved measurement of the wave
motion along roughly half the length of the wave flume. An example of a time-space reconstruction
of the water elevation is shown in Fig. 5.

B. Wave generation

Our goal is to obtain integrable turbulence steady states such as soliton gases. Thus, one would
like to generate as many solitons as possible with the wavemaker. In order to ultimately sustain a
large number of solitons in the flume we take advantage (i) of the well-known fission phenomenon

FIG. 2. Picture of the flume: The red-brown vertical posts and a USB camera (bottom right corner).
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FIG. 3. Schematics of the imaging of the surface elevation. The image refraction of the white bottom at
the water surface creates a sharp contrast with the image refraction of the black back glass: The water contact
line with the side glass is the boundary between the two images (see sample images in Fig. 4). Dashed lines
correspond to the light rays bounding the image of the black back glass panel as refracted by the vertical front
water boundary with the glass. The plain lines correspond to the light rays bounding the image of the white
bottom as refracted by the water surface.

in shallow water of a sine wave train into solitons as evidenced numerically by Zabusky and Kruskal
[31] and observed experimentally by Zabusky and Galvin [32] and in a more comprehensive way by
Trillo et al. [33] and (ii) of the amplitude amplification of the nonlinear modes by their interactions
with the moving wavemaker. Mention should be made of the experiments in Ref. [30] who, by
slightly detuning the wavemaker motion with respect to the periodic longitudinal seiching mode of
the channel, were able to find a route toward the generation of integrable turbulence.

Concerning point (i), Fig. 5 is an experimental example of the fission of a sine wave train. Indeed,
a sine wave is not a stationary nonlinear solution in shallow water and integrability imposes an
evolution toward a train of solitons and a nonsolitonic background. The space-time representation
in Fig. 5 is the full field recorded by the video cameras. The initial 30 s of the record is presented
corresponding to roughly three wave periods. Leading is the first sine wave crest that evolves quite
differently from the subsequent ones (bottom panel of Fig. 5). The latter wave crests also undergo
steepening due to nonlinear effects. At x = 10 m slight undulations are visible on theses wave crests
corresponding to the regularization (or fission) of the forming shock by dispersive effects related.
After a 23-m propagation (right of the field of view) the soliton train is formed with 6 clearly
identified solitons of decreasing amplitudes. One can also note in top panel of Fig. 5 that the first

FIG. 4. Sample snapshots from the four cameras the closest to the wavemaker (top). CAM1 for 9.54 m �
x � 11.46 m; CAM2 for 11.54 m � x � 13.46 m; CAM3 for 13.54 m � x � 15.46 m; and CAM4 for
15.54 m � x � 17.46 m. The images are in inverted gray-scale levels and thus the water surface appears black.
Bottom: Reconstruction of the water surface elevation corresponding to the snapshots. The horizontal axis gives
the distance to the wavemaker rest position. H is the measure of the fluid depth.
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FIG. 5. Fission of a sine wave into solitons. Water depth: h = 12 cm; wavemaker sine motion period:
T = 10 s; wavemaker sine motion amplitude: a = 1.5 cm. Upper panel: Space-time representation of the wave
field over the 14-m field of view of the cameras and during the first 30 s. The color scale is given in mm with
the zero corresponding to the free surface level at rest. Lower panel: Time evolution at x = 18 m (dashed line
in upper panel).

soliton train which exits the field of view between 10 and 17 s, shows a different number of solitons
compared to the subsequent wave trains. This is due to the fact that the first soliton train propagates
on the rest or initial water level, while the subsequent trains seem to propagate on a lower (negative)
water level since part of initial fluid volume is removed to generate the train of solitons.

Concerning point (ii) the amplification of the nonlinear modes by the energy input provided to
waves incoming at the wavemaker will be discussed in detail in Sec. V.

C. Spectral and periodic scattering data analysis

1. Fourier power spectrum

A standard tool to study wave propagation is the 2D Fourier power spectral density [34] defined
here as:

E (k, ω) = 1

2πL T

〈 ∣∣∣∣
∫∫

η(x, t ) ei(kx+ωt ) dt dx

∣∣∣∣
2
〉
, (1)

where η(x, t ) is the free surface displacement. The space integral for x covers the field of view of
length L of the cameras and the time t integral spans a time window of duration T . It is notable that
the Fourier transforms are actually discrete Fourier transforms due to discrete sampling in space
and time. The statistical average represented by 〈.〉, is an average over successive temporal windows
using the standard Welch method. An example of such a spectrum is shown in Fig. 6(a). Of note
several ridges of energy higher than that of the background with the following interpretations:

(i) ridge a: signature of weak dispersive shallow water waves following the Airy dispersion
relation

ω2 = gk tanh(k h). (2)

These dispersive waves originate from the bound waves of the wavemaker monochromatic sinu-
soidal wave forcing and from the weak non-integrable effects during soliton collisions [24,29];
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FIG. 6. Power density spectrum of a soliton gas. Water depth h = 12 cm; forcing frequency f = 0.6 Hz;
forcing sine amplitude a = 1.5 cm; Ursell number U = 0.53. Top panel: 2D Fourier transform. Bottom panel:
1D frequency Fourier transform; blue plain line: total signal (ηt ); red dashed line: right-running waves (ηr);
yellow bold line: left-running waves (ηl ).

(ii) ridge b: signature of shallow water nonlinear waves which Fourier modes all travel at a
velocity close to c0 = √

gh.
(iii) ridges c: signature of transverse waves. The uninodal transverse wave would be at a

frequency of 0.9 Hz. The energy of the uninodal transverse waves is three orders of magnitude
smaller than that of longitudinal waves.

Waves corresponding to the upper-right quadrant of the Fourier space (k < 0 and ω > 0)
propagate to the right and those corresponding to the lower-right quadrant (k > 0 and ω > 0)
propagate to the left. Thus, by selecting a specific quadrant (k, ω) of the Fourier transform and
inverse transforming back to the physical space, it is possible to separate waves going into opposite
directions (see an example in Fig. 7). An alternative for this separation is the Radon transform as
discussed in Ref. [25]. We also use the time 1D frequency Fourier power spectrum density for the
analysis of the signals. An example of such a spectrum is shown in Fig. 6(b) either for the full
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FIG. 7. Splitting of the bidirectional wave field into unidirectional fields, case of a soliton gas. Top panel:
the total wave motion field ηt ; middle panel: the right-running waves ηr ; bottom panel: the left-running waves
ηl . Water depth h = 12 cm; wavemaker sine motion period: T = 10 s; wavemaker sine motion amplitude:
a = 1.5 cm. Color scale in centimeters.

signal, for the split into right- and left-propagating waves. The case described in Figs. 6 and 7
and analyzed in Ref. [24] is typically an example of integrable turbulence containing a significant
number of solitons. Solitons are responsible for “ridge b” of Fig. 6 and they also clearly leave
straight line signatures in the (x, t ) plane of Fig. 7. This was discussed in detail in Ref. [25].

2. Periodic scattering transform

While the Fourier transform (FT) is the adequate processing tool to study the propagation of
linear waves, it is unfit to discriminate an ensemble of nonlinear coherent waves such as solitons.
Because of the nonlinear interactions, the FT spectral components of evolving nonlinear waves are
not invariants as for linear waves.

Gardner et al. [35] made a significant leap forward with the direct scattering transform (DST) of
the KdV equation that extracts the spectrum of the associated Schrödinger equation which potential
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is the nonlinear wave signal to be analyzed. This method decomposes a time series into nonlinear
solitonic modes that evolve independently in time and space without change of shape along with
radiating shallow water weakly nonlinear waves. Once the time-independent spectrum of nonlinear
modes is determined, the signal can be reconstructed at any time by the inverse scattering transform
(IST). DST theory for the case of a localized initial condition [35] differs from the much more
complex case of the spatially periodic initial condition known as the finite band theory [36–39].
In our experimental case we are more concerned with the periodic case due to our configuration
in which the waves propagate back and forth in the flume. Although the waves in the present
experiments are not in most cases periodic, the wave motion is however confined in space and
does not decay at infinity. This approach has been used in Ref. [40] to analyze oceanic field data.

We implemented the periodic scattering transform algorithm (PST) for the KdV equation devel-
oped by Osborne [41–43] in a program to compute the nonlinear spectrum of the experimental free
surface records. In the periodic case, the nonlinear modes are described by hyperelliptic functions.
These waves similar to cnoidal waves are characterized by the so-called spectral modulus m which
quantifies the level of nonlinearity and which is an output of the PST [42]. For a vanishing small
modulus the modes are close to sine waves. For m very close to 1, the modes appear as localized
pulses in the periodic box that resemble solitons. The delineation between solitonic modes and
radiation modes thus breaks down to the choice of the threshold modulus. This threshold modulus
also defines the reference depth href [41–43] on which these solitonic modes propagate. Osborne
[41] suggests that modes with m > 0.99 can be considered as solitons a definition also used in
Ref. [33]. We will not discuss here the details of our implementation of the PST which is described
in Ref. [29] with different validation cases and an analysis of various limitations since this method
has been validated various times [33,39]. The main output of the PST is the spectrum that lists the
nonlinear modes and their moduli.

It must be noted that the present implementation of the PST is related to the KdV equation
framework which describes unidirectional wave propagation only. Thus, for a consistent application
of the PST to our measurements, we first separate left and right-propagating waves using the (k, ω)
Fourier spectrum as described above and then apply the PST either to left- or right-propagating
waves.

Among the issues related to PST and discussed in Ref. [29] one can mention the case of a signal
containing solitonic modes of equal or very close amplitudes for which the detection of the modes
is challenging since the eigenvalues of the spectrum are very close. Another issue raised in Ref. [29]
is the impact of the duration of the signal sample on the number of solitons and the reference depth
especially for a soliton gas. Indeed, the longer the signal the more solitonic modes will be detected
and therefore the lower the reference level. A last issue is related to the arbitrary threshold and the
impact of solitons which moduli are very close to the threshold modulus. This issue is illustrated in
Fig. 8 related to the fission of the sine into solitons as already discussed above. The PST has been
applied to the three measured wave elevation profiles shown in Fig. 8(a). The corresponding moduli
and wave amplitudes (triangles with same colors) as computed with the PST are plotted in Fig. 8(b).
A threshold modulus of 0.99 yields 9 solitonic modes at x = 0 and x = 10 m but only 8 solitons for
the signal at x = 23 m. Indeed, the modulus of the 9th mode at x = 23 m drops slightly below the
threshold modulus 0.99. Would the threshold be lowered down to 0.985, the 9th mode at x = 23 m
would be considered as a soliton. The soliton amplitudes are seen to be quite close in the three cases
with a small decay with distance due to dissipation. Moreover this reduction of amplitude with x
is enhanced by the fact that since the 9th mode is no longer a soliton at x = 23 m the reference
level automatically rises reducing the soliton amplitudes. The amplitudes with threshold at 0.985, at
x = 23 m, are shown in Fig. 8(b) as empty triangles and are seen to be larger than the ones for the
0.99 threshold (filled triangles) and significantly closer to the ones obtained at 0 m and 10 m except
for a slight decay due to dissipation. Although both sets of amplitude are globally consistent with
the measurement, the empty symbols are closer to the measurements, at least for the large solitons.
This illustrates the effect of the choice of a threshold modulus in the case of a large number of
nonlinear modes which amplitudes and moduli have a wide distribution.
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FIG. 8. PST analysis of the fission of a sine wave (U = 19.4) into solitons. Water depth h = 12 cm. Sine
motion forcing period T = 10 s and amplitude a = 1.5 cm. Top panel (a): free surface elevation η at different
positions along the flume, black: at the wavemaker x = 0; blue: x = 10 m; red: x = 23 m; The dashed lines
are the reference levels at each x locations as computed by the PST with the choice of m = 0.99 threshold
modulus. Bottom panel (b): PST modal amplitudes an (∇) and module m (+) of the different modes of number
n at different position along the flume (same color coding as top panel). Full symbols: threshold modulus at
m = 0.99; empty symbols: threshold modulus at m = 0.985.

III. PARAMETRIC STUDY OF THE STATIONARY REGIME

In the previous sections we discussed the transient evolution of a sine wave and recalled that
some conditions produce an integrable turbulence. However, is it the fate of all wave conditions
to evolve into a random wave motion state? Two examples of wave motion recordings are plotted
in Fig. 9 corresponding to two different regimes. These recordings are taken well after the start of
the experiment, at roughly 16 mn. As time goes, one remains periodic while the second becomes
disorganized or random. What makes these 2 cases different?

The sine wave forcing at the wavemaker depends on three physical parameters: the amplitude a
of the sinusoidal wave, the period T (or the wave number k = 2π/(c0 T ), and the water depth h. The
space of parameters was explored by changing the values of these three parameters. The amplitude
was typically varied in a range a ∈ [0.125, 1.5] cm and the period in a range T ∈ [1.6, 5.5] s (or the
frequency f ∈ [0.18, 0.6] Hz) and the water depth was set to the values 10, 12, 16, and 20 cm.
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FIG. 9. Time series of the free surface displacement forced by a sine wave prescribed at the wavemaker.
Water depth is h = 12 cm; top panel: wavemaker frequency f = 0.25 Hz, amplitude a = 0.25 cm, Ursell
number U = 0.52; bottom panel: wavemaker frequency f = 0.6 Hz, amplitude a = 1.5 cm, Ursell number
U = 0.53 (these cases are also in Fig. 10).

One of the relevant nondimensional number in the shallow water context is the Ursell number
[44]. It is even the only dimensionless number for KdV unidirectional wave motion dynamics. The
Ursell number is the ratio in order of magnitude of the nonlinear to dispersive terms of the KdV
equation. The dimensional version of the KdV equation is

∂tη + c0 ∂xη + 3 c0

2 h
η ∂xη + h2 c0

6
∂xxxη = 0. (3)

Consider the following scaled dependent and independent variables [27]:

η ← 3

2

h2

l2a
η x ←

√
6

h
(x − c0 t ) t ←

√
6

h
c0 t, (4)

where h is the water depth at rest, a a characteristic vertical length scale (the amplitude of the
forcing wave for instance) and l a horizontal length scale (the forcing wave wave length). Then
Eq. (3) scales to

∂tη + R η ∂xη + ∂xxxη = 0, (5)

R = a l2

h3
, (6)

where R is a Ursell number. Different prefactors can be appended to R. Hereafter we use the
following definition of the Ursell number used by [45]

U = 3

4

a

k2 h3
, (7)

where k = 2 π/l is the wave number. This writing is exactly the ratio of the amplitudes of the
second order to the first-order term in the Stokes expansion of the water wave problem. For a time
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FIG. 10. Power density spectra of the surface elevation for experiments with the same Ursell number, U �
0.53, and differing values of the forcing amplitude a and frequency f . Left-running waves at x = 40 m. Depth,
h = 12 cm. Vertical dashed line indicates the wavemaker forcing frequency. From top to bottom and left to
right: Im = 2.54, Im = 3.93, Im = 3.38, Im = 1.12, Im = 0.40, Im = 0.19, Im = 0.16, Im = 0.20, and Im = 0.25
[see (9) in text for the definition of Im].

series the Ursell number would be

U = 3

16π2

a c2
0 T 2

h3
. (8)

Equation (5) shows that for very small U the equation becomes linear and dispersive, the so-
called Airy equation. Under this condition the forcing wave remains linear but disperses (different
frequency components propagate at different speeds) as it propagates and no soliton emerges.
For large values of U equation (5) becomes nonlinear of the Burgers type. A sinusoidal forcing
wave that fulfills such condition will undergo nonlinear steepening up to the gradient catastrophe
producing a steep front face (shock wave). At that point the wave front face characteristic length
is small and dispersion comes into play. Dispersion forces the shock wave to fission into a train of
solitons [31,33,46]. The Ursell number of the forcing wave therefore indicates how many solitons
are expected [33]. Since our setup does not allow for initial condition recurrence to take place
because of the end wall reflection, the Ursell number also measures how disorganized the regime
is. Indeed, solitons will reflect back on the end wall and the wavemaker, interacting with others,
generating phase shifts and therefore possibly disorganizing the initial periodicity.

However, we observed that the sole value of the forcing wave Ursell number U is insufficient
to discriminate between the periodic and random states. Figure 10 shows the frequency spectra
of 9 experiments for the left-running component of the wave motion at x = 40 m which is the
best compromise between soliton separation after fission and dissipation. All these experiments
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FIG. 11. Solitonic mode amplitude as distribution versus mode number n computed by PST; same data as
in Fig. 10: U � 0.53, left-running waves at x = 40 m, h = 12 cm.

have very close Ursell number values of U = 0.53, but distinct values of the frequency f and
amplitude a. Signatures of different stationary states are observed from very periodic ones at low
forcing frequency and low forcing amplitude to random ones at high forcing frequency and high
forcing amplitude and going through continuously varying power spectra shape in between. This
observation shows that another dimensionless parameter must be taken into account to sort the
different states out. Figure 11 shows the corresponding distribution of nonlinear mode amplitudes
given by the PST. The periodic cases (three top subplots of Fig. 11 and correspondingly in Fig. 10)
exhibit sets of nonlinear modes of nearly constant amplitudes indicating that these cases remain
strongly organized. For instance the case f = 0.18 Hz for a 60-s wave motion recording corresponds
to roughly 10 periods of the forcing wave for which the PST gives 10 soliton modes of 0.15-cm
amplitudes and hardly any other modes. A small soliton of 0.15 cm amplitude is locked to each
wave period. By contrast the soliton modes in the random cases are much more numerous and their
amplitudes distributed over a large range indicating indeed that these cases are random. These states
(three bottom subplots of Fig. 11 and correspondingly in Figure 10) are considered to be what is
called integrable turbulence [24]. Discussion of the amplitude distribution is postponed to Sec. IV.

To delineate integrable turbulence from other stationary states, the forcing wave nonlinearity ratio
a/h is necessary where a is the wavemaker amplitude. Figure 12 shows that states with identical U
and a/h values but with differing h have power spectra of similar shape either continuous, peaked
or mixed. It therefore appears that the forcing wave dimensionless numbers U and a/h are the main
dimensionless numbers to discriminate between various stationary wave motion states.
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FIG. 12. Examples of power spectral density of experiments with the same Ursell number U and same
values of a/h and different water depth h. Left panel: U = 0.31 and a/h = 0.105; middle panel: U = 0.52 and
a/h = 0.0625; right panel: U = 0.28 and a/h = 0.021.

We conclude from these observations that another way to synthetically discriminate the various
regimes, within our experimental framework, is to compute the frequency spectrum as given in
Fig. 10. In the periodic case, the spectrum is mostly made of narrow peaks with the fundamental
peak at the forcing frequency and the other peaks corresponding to higher harmonics. In the random
case the spectrum is quite distinct and it is seen to be continuous with a flat plateau [1,24] that
extends from the forcing frequency down to the smallest resolved frequency. At frequencies higher
than the forcing frequency the spectrum decays exponentially. At this point, a question arises on
how to quantify the state of the wave field. At this end, we define a dimensionless randomness index
Im based on the shape of the power spectrum:

Im = log10

(
Eforcing

Eav

)
, (9)

where Eforcing is the spectrum value at the forcing frequency (for a given value of the duration of the
signal, chosen at 60 s here) and Eav is the average value of the spectrum on the range of frequencies
lower than that of the forcing. For a periodic signal this index is large since the spectrum is strongly
peaked at the forcing frequency. In the random case, no peak is present at the forcing frequency and
the spectrum at lower frequencies is flat containing most of the energy making the index very small.

The phase diagram in Fig. 13 compiles the various experiments we conducted. The size of the
circles indicates what the water depth h is and the color filling the value of the index Im. Blue
colors below 1 can be considered as random states (integrable turbulence) and red and brownish
colors are organized states with a certain degree of periodicity. We need to emphasize that we
restricted ourselves to relatively low levels of nonlinearity to prevent wave breaking both at the
wave generation but also by wave interaction within the flume. At the highest values of a/h, micro-
overturning may still have happened occasionally for very large magnitude of the water elevation
due to superimposition of many solitons but without impacting significantly the global state. In this
phase diagram a wedge emerges separating organized states from integrable turbulence. The wedge
containing random states is for a/h greater than roughly 0.07 and U larger than roughly 0.2. The
boundaries of the wedge come with uncertainties. A more accurate identification would require other
lengthy measurements since each point in the phase plane corresponds to an experiment duration
of at least 1 h long. Furthermore, note that close to the wedge boundaries, experiments with very
close a/h and U values but with distinct Im (distinct colors) are nearly superimposed suggesting
subdominant dependencies to other physical parameters. One obvious extra parameter is the length
of the flume (see the discussion in Sec. V). The points at the far right with U � 19.3 that lie in
the wedge should lead to fission in soliton trains contradicting an index Im value above 1. In these
experiments the wavelength of the forcing wave is roughly 10 m. Each wave length is too long to
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FIG. 13. Phase plane of the flume experiments. Forcing wave nondimensionless parameters: U and a/h.
The size of the circles relate to the water depth h and the color scale to the value of the randomness index Im

defined by (9). Values of Im < 0.9 correspond to soliton gas regimes.

completely fission into solitons before the end wall reflection: solitons never really separate before
they are dissipated by friction. At the other end of the phase diagram experiments with a/h = 0.08
and h = 20 cm are situations of intermediate water depth with k h > 0.314 not prone to soliton
generation and therefore to the generation of integrable turbulence.

IV. STATISTICS OF THE STATIONARY REGIME

In this section statistical distributions and moments of the experimental integrable turbulence are
presented. Statistical information complements PST analysis. PST in our present study is a key tool
to assess the existence of a soliton gas and characterize the modal content of the gas. Nonetheless
integrable turbulence encompasses also shallow water situations where solitonic modes coexist with
radiation modes. As discussed in the introduction the literature on the statistical description of
integrable turbulence is sparse while such situation can be present in field measurements [40]. A
noticeable exception is the numerical study by [1] on KdV random wave fields, a reference study
on these aspects.

In Fig. 14 we plot the free surface displacement empirical probability density distribution for
U = 0.53 (case of Figs. 6 and 7 and bottom-right subplots in Figs. 10 and 11). On the same plot the
Gaussian distribution is the narrow-band linear sea state theoretical distribution [47]. Our U = 0.53
is very close to the Ursell number Ur = 0.95 of Ref. [1] (different definition) and will serve for
comparison. In Fig. 14, the three different probability distributions correspond to the total time
series and the right-running and left-running waves. Clearly each of these distributions is positively
skewed (higher area under the distribution to the right of the mode). The positive skewness is a
well-known feature of nonlinear waves with peaky crests and wide shallow troughs. The left-running
wave elevation distribution tends to be more symmetric as expected due to dissipation. Indeed, the
left-running wave are those reflected at the end wall traveling a longer distance from the wavemaker
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FIG. 14. Free surface elevation η probability density function computed over 175 points (every 8 cm from
x = 9.53 m up to x = 23.45 m) and for 25 mn in the stationary regime. The thin blue line is the Gaussian
distribution. The thick red dashed line is the Gaussian distribution corrected with the skewness of the total wave
record. Case U = 0.53, f = 0.6 Hz, a = 1.5 cm, standard deviation σt = 1.2 cm, σr = 0.98 cm, σl = 0.69 cm
for respectively the total time series (◦), the right-running part of the time series (�), and the left-running part
of the time series (�).

compared to right-running waves. By the Gram-Charlier expansion [47] including the skewness, the
Gaussian distribution is corrected and fits the experimental data fairly well.

For a narrow-band Gaussian linear sea state, the Rayleigh distribution rules the distribution of
crest levels [47]. Crest level distributions are also used in Ref. [1] to characterize their random
nonlinear shallow water wave field obtained numerically in the KdV framework. The Rayleigh
one parameter probability density function (pdf) p(A) and exceedance probability distribution P(A)
write,

P(A) = e−2A2
, (10)

p(A) = 4 A e−2A2
, (11)

A = Ac

As
, (12)

As = 2 σ, (13)

where Ac are the crests levels determined by a zero-crossing procedure [48], σ the standard
deviation of the free surface displacement [1]. Both the experimental and linear wave theoretical
exceedance probability are plotted in Fig. 15 for the U = 0.53 case of soliton gas. As already
noticed in Ref. [1] the experimental crest exceedance probability lies above the theoretical Rayleigh
probability function. The larger crests tend to be more frequent in an integrable turbulence than in
a random field of waves complying to the Rayleigh distribution. Among the larger crests are those
of course of the solitons that populate this integrable turbulence. The present U = 0.53 close to the
Ur = 0.95 of Ref. [1] shows that the experimental exceedance probability tallies quite nicely with
the numerical one (see Fig. 10 of Ref. [1]). The correction to the Rayleigh distribution suggested in
Ref. [49] [their equations (5.19) and (5.20)], which takes into account the free surface displacement
skewness, is also plotted. While this correction matches the experimental values for small A, it
overestimates the Rayleigh distribution for large amplitudes corresponding to the large solitons. It
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FIG. 15. Crest elevation A exceedance probability distribution. Thin blue line: Rayleigh distribution. Thick
red dashed line: skewness corrected Rayleigh distribution (10). Case U = 0.53, f = 0.6 Hz, a = 1.5 cm,
standard deviation σt = 1.2 cm, σr = 0.98 cm, σl = 0.69 cm for respectively the total time series (◦), the
right-running part of the time series (�) and the left-running part of the time series (�).

would suggest that higher-order moments are important. The moments that characterize best the
empirical distribution in Fig. 14 are the skewness S and the kurtosis K , defined for N values equally
spaced in time by

S = μ3

σ 3
, (14)

K = μ4

σ 4
, (15)

σ 2 = 1

N

∑
i

(ηi − η)2, (16)

μ3 = 1

N

∑
i

(ηi − η)3; μ4 = 1

N

∑
i

(ηi − η)4, (17)

where (.) stands for the time average. For a Gaussian random wave field S = 0 and K = 3. The
kurtosis measures the heaviness of the probability distribution tails while the skewness indicates
the asymmetry of the distribution around the average. The experimental values for the skewness
and the kurtosis for the left-running waves in the U = 0.53 case are S = 0.70 and K = 3.40.
The corresponding values of Ref. [1] are S = 0.73 and K = 3.45. Our experiments and their
numerical simulations yield very close values. We compared their numerics with the experimental
left-running wave field because the latter is deemed to have achieved statistical stationarity. While
our experimental procedure starting from a sine wave differs from the initial conditions of Ref. [1],
both generate a very similar long-term integrable turbulence stationary state which is mainly
characterized by the Ursell number.

In their numerical study, Ref. [1] shows that for U > 0.16, both the skewness and the kurtosis
increase quasi linearly with the Ursell number (see their Fig. 7) suggesting that the skewness and
the kurtosis are linearly related. We show in Fig. 16 that this also stands in our experiments. In this
figure all the experimental runs labeled as integrable turbulence, that is with a mixing index Im < 1,
are plotted and clearly align.

The pdf of the crests levels is plotted in Fig. 17. At small amplitude this pdf shows that the
empirical distribution exhibits a gap instead of a maximum around the crest value of 0.5. The
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FIG. 16. Skewness S of the free surface elevation versus the kurtosis K . Colors refer to the level of the
mixing index Im. The dashed line is the lower bound of the kurtosis: K � 1 + S2 (Ref. [50], p. 432). Data
corresponding to points in Fig. 13 with Im < 0.9.

data departs from the Rayleigh pdf and this discrepancy is badly explained with the skewness
modified Rayleigh pdf. It appears that crests levels follow a kind of bimodal distribution. Some
of the crests detected are probably those of solitons but not all of them. Consequently, the latter
statistical characterizations do not inform on how close a given state of integrable turbulence is to
a soliton gas. In contrast the PST provides quantitative information on the solitonic content of the
times series. Of interest are the statistics of the amplitudes of the solitonic modes that relate to the
finite-band spectrum of the Schrödinger equation in the PST. In Fig. 18 the empirical amplitude
probability histograms are plotted at 4 different locations along the flume for the Ursell number
U = 0.53 case. The PST is run on 55 overlapping time segments of 60 s for right-running waves

FIG. 17. Crest elevation A probability density function. Thin blue line: Rayleigh pdf (11). Thick red dashed
line: skewness corrected Rayleigh pdf [49]. Case U = 0.53, f = 0.6 Hz, a = 1.5 cm, standard deviation σt =
1.2 cm, σr = 0.98 cm, σl = 0.69 cm for respectively the total time series (◦), the right-running part of the time
series (�), and the left-running part of the time series (�).
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FIG. 18. PST soliton amplitudes histograms at different locations in the flume. Top panels correspond to
right-running waves. Bottom panels correspond to left-running waves. Histograms with bars: PST processed
experimental data; dashed lines predicted histograms by applying the Keulegan damping law (18); green
dashed: propagated histogram from x = 57.16 m to x = 10.3 m as if the wavemaker was a fixed vertical
boundary. Case U = 0.53, f = 0.6 Hz, a = 1.5 cm, and ν = 1.2 10−6 m2/s.

at x = 10.3 m and x = 22.78 m and for left-running ones at x = 44.68 m and x = 57.16 m. The
time window of 60 s is slightly smaller than the time necessary for a wave to travel twice a total
flume length (62.2 s for a depth of 12 cm) which includes a reflection on the end wall and one on
the wavemaker. This ensures we process a time series excluding waves measured twice.

The empirical histograms all exhibit 2 wide peaks of solitonic modes as if the distributions
were the combination of two distributions that characterize the experimental integrable turbulence,
an aspect pointed out in Fig. 17. As the wave trains travel back and forth, both the width of
the histograms and the largest amplitude peak of the distribution decrease. In the ideal KdV
integrable turbulence these distributions should be invariant with x. In the experiments as the solitons
propagate, dissipation progressively reduces their amplitude according to the Keulegan dissipation
“law” [51]. The Keulegan dissipation law reads(

a

h

)−1/4

=
(

a0

h

)−1/4

+ D
x

h
, (18)

D = 1

12

(
1 + 2 h

w

) √
ν

g1/2 h3/2
, (19)

where w is the width of the flume, ν the water viscosity, and a0 the initial soliton amplitude. This
Keulegan law has been thoroughly validated experimentally [25,51,52]. In the dissipation process
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the large solitons become intermediate amplitude solitons that tend to populate the initial gap
around 1.5 cm. Moreover as the largest decrease more rapidly than the smallest, as given by the
Keulegan dissipation “law” (18), the distribution is severely eroded from the right end of large
amplitudes. In Fig. 18 the initial distribution of right-running waves at x = 10.3 m is transformed
into the distribution at the next location (x = 22.78 m) by applying Keulegan amplitude reduction
law (18). The initial distribution is likewise “transformed” to the distributions at other locations up
to and back to x = 10.3 m. It is assumed that only reflections take place at the end wall and at the
wavemaker. The successive transformed distributions compare well with the measured ones except
at x = 10.3 m. At this location the measured wave distribution is much wider with peak values at
higher amplitudes than that of the Keulegan-transformed distribution. This indicates that the wave
train gains energy as it bounces back on the wavemaker. On one hand, it is due to interactions of
the various waves incoming on the moving wavemaker and, on the other hand, to the generation
of new waves by the wavemaker. By positive or negative feedback some waves have an amplitude
that increases and the contrary for others. The net result is an increase in the wave energy flux at
x = 10.3 m. This is confirmed by PST analyzing this U = 0.53 sinusoidal wavemaker forcing wave.
The PST yields one set of n modes of modulus larger than 0.99, thus in practice a set of n amplitudes
very close to 2.84 cm. Nonlinear modes of lower modulus are also detected in this PST processing.
Thus, the modal content of the forcing sinusoid is one solitonic mode and at least one cnoidal type
mode per period. The solitonic mode amplitude is smaller than that of the highest amplitude peak
at x = 10.3 m which is around 3.5 cm. The likely explanation is that in the stationary regime the
nonlinear modes of the forcing wave interact positively with the moving wavemaker to a point where
the solitonic mode amplitude increases and the most nonlinear cnoidal mode becomes a solitonic
mode of modulus m > 0.99. The feedback of the wavemaker on the traveling waves produces two
sets of solitonic modes.

The mechanism by which soliton content and amplitudes change are now discussed in more
detail by analyzing the transient route to integrable turbulence.

V. TRANSITION TO INTEGRABLE TURBULENCE: RANDOMIZATION
OF THE PERIODIC FORCING

In a periodic box and with an initial condition made of a sine wave, Zabuski and Kruskal [31]
numerically predict a recurrence, i.e., the fact that the wave system retrieves in a finite time a state
very close to the initial condition [31]. In our experimental setup, it is not possible to start from an
arbitrary initial condition which is not rest. What can only be achieved in a controlled way is to start
wave forcing at one end with a wavemaker and a body of water at rest in the entire flume.

The reflection on the moving wavemaker is a key point to the transition toward integrable
turbulence. Indeed, a wave that travels from and back to the wavemaker, after reflection on the end
fixed wall, will interfere with the wavemaker motion. Depending on the relative phase of the wave
with respect to that of the wavemaker, the wave amplitude may increase or decrease. A well-known
situation is that of a standing wave. In Fig. 19 two experimental examples of such positive or
negative interference are given. The wave trains plotted in Fig. 19 are right-running filtered waves.
To assess if an amplification or attenuation takes place the one way filtering is necessary to suppress
any partial standing wave pattern, with partial nodes and antinodes, which blur the right running
wave amplitudes. The bottom panel is that of an amplification for h = 12 cm (c0 = 1.08 m/s). The
wave crest marked with a dashed vertical line at t = 128.25 s travels away and a complete round
trip to be recorded as a right running wave at x = 10.5 m at t = 190.7 s. This crest is almost in
phase with a newly generated wave producing a positive interference.

By contrast in the top panel, the right-running waves undergo an attenuation for h = 16 cm
(c0 = 1.25 m/s). The wave crest marked with a dashed vertical line at t = 225.25 s travels away
and a complete round trip to be recorded as a right running wave at x = 10.5 m at t = 279.1 s. The
wave crest after a complete round trip is out of phase with a newly created wave (in phase with
the trough) producing a negative interference and therefore an attenuation. In Sec. III the length
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FIG. 19. Attenuation and amplification of right-running wave trains. Initial free surface elevation η at x =
10.5 m. Top panel: a = 1.5 cm, f = 0.6 Hz (T = 1.67 s), water depth h = 16 cm, a/h = 0.094, and U = 0.30.
Bottom panel: a = 0.75 cm, f = 0.43 Hz (T = 2.33 s), water depth h = 12 cm, a/h = 0.062, and U = 0.53.
Vertical dashed lines separated by the time necessary for a wave to acheive a round trip of 2×33.73 m at c0.

of the flume was characterized as a subdominant parameter. Indeed, a slight change of length or
equivalently of wavemaker frequency can possibly shift the feedback of the wavemaker with the
traveling waves from positive to negative and conversely.

Figure 20 shows water elevation records at 10.5 m from the wavemaker with three conditions
of forcing with same frequency and water depth but distinct amplitudes and thus distinct values of
nonlinearity level a/h and Ursell number U .

In the first case (a), for the lowest value of a/h, wave crest elevations evolve by discrete set
of steps (either increasing or decreasing) every round trip (every 62.2 s), but on the long run the
signal becomes periodic and the crest levels are smaller than initially. The soliton content processed
by PST gives 1 soliton of amplitude as = 0.76 cm per period in the initial first round trip (either
with threshold m = 0.99 or m = 0.999) and no solitons at all in the periodic tail of the signal. The
negative feedback produced by the wavemaker inhibits the survival of solitons.

In the intermediate case (b) even though at each round trip the waves overall are slightly
attenuating for t < 200 s there are small time intervals of the signal that show irregular crest level
increase. These time intervals occur roughly every round trip of 62.2 s, indicated by the vertical
dashed red lines and widen at each round trip. These amplification sequences eventually overlap
after t = 700 s to produce a random state. The PST analysis, at the threshold m = 0.99, of 6 periods
in the first round trip gives 12 solitons that is 2 per period with average amplitudes of respectively
as1 = 2.25 cm and as2 = 1.76 cm. The equivalent analysis on sequences of 6×T duration beyond
t = 700 s yields an average of 16 solitons with the largest amplitude at as = 3.9 cm.

In case (c), the disorganization is even faster than in case (b). The PST analysis, at the threshold
m = 0.99, of 6 periods in the first round trip gives 3 solitons per period with amplitudes of
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FIG. 20. Transition to integrable turbulence. Free surface elevations η at x = 10.5 m for three different
wave amplitude forcing. Wavemaker frequency f = 0.3 Hz and water depth at rest h = 12 cm. Top panel (a):
a = 0.5 cm, a/h = 0.04, and U = 0.72; middle panel (b): a = 1.0 cm, a/h = 0.08, and U = 1.44, vertical
dashed lines separated by the time necessary for a wave to complete a round trip in the flume; bottom panel
(c): a = 1.5 cm, a/h = 0.12, and U = 2.16.

respectively as1 = 3.95 cm as2 = 2.43 cm, and as3 = 0.92 cm. The equivalent analysis on se-
quences of 6×T duration beyond t = 2750 s yields an average of 21 solitons with the largest
amplitude at as = 6.1 cm.

The former last two cases clearly indicate on the one hand that even though the initial wave
trains contain solitons the stationnary wave state contains more, with larger amplitudes, a signature
of the wavemaker importance in the generation by sinusoidal forcing of integrable turbulence.
Indeed, would the wavemaker make no difference, integrability would impose the same number
and amplitudes of solitons at the beginning and in the stationary wave state. On the other hand, they
emphasize the possible role of the first soliton train. Indeed, the soliton amplitudes of this first train
are smaller than the subsequent ones, but they travel on the rest level (same as the mean level h in
our experiments). As it appears on Fig. 5 the other soliton trains propagate on a lower reference
water level and with adverse velocity [29,43]. The difference �h between mean water level and
the reference water level roughly corresponds to the mass of the solitons contained in one forcing
wave wave length divided by the wave length l . As Ref. [43] showed the velocity c of a soliton
propagating on a reference level different from the rest level is

c =
√

gh

(
1 + 1

2

a

h
− 3

2

�h

h

)
. (20)

Consequently, the very first train travels faster, it is not synchronized with the others, and it can be
amplified by the wavemaker. In this case when large enough, the first soliton induces large phase
shifts that in turn can disynchronize other solitons that can be either amplified or attenuated by the
wavemaker. This chain of interactions triggers the randomization of the wave motion by shuffling

124801-21



IVAN REDOR et al.

solitons that initially were ordered by decreasing amplitudes. Since phase shifts between soliton
increase with amplitude and thus with the nonlinear a/h parameter it conceivably explains why case
(c) disorganizes more rapidly than (b). The first soliton train acts as a catalyst for the integrable
turbulence.

VI. CONCLUSION

Our experimental setup differs from the integrable framework of Zabusky and Kruskal [31] on
various points. The most obvious is dissipation that imposes some continuous energy flux input for
the wave motion to possibly reach a statistically stationary wave regime. However, the timescales
of dissipation, well represented by the Keulegan law, are much larger than those involving soliton
interactions which suggest that integrability still holds locally. Indeed, we show that once a soliton
gas is formed dissipation slowly alters the amplitude distribution but not to the point where it would
be obliterated in a flume length propagation time.

The second difference lies of course in the finite flume length and the reflecting behavior of both
ends of the flume. We show that it does not only allow for bidirectionnal integrable turbulence as
described by the Kaup-Boussinesq equations [53,54] but also produces desynchronization of the
waves with the wavemaker motion.

Finally, the third difference and probably the most important for the generation of integrable
turbulence is the wavemaker feedback on wave amplification and attenuation. We emphasize that the
route to a random integrable turbulence wave motion strongly depends on the degree of nonlinearity
a/h of the wavemaker motion since the energy flux input by the wavemaker is proportional to
(a/h)2.

To characterize if a given wave motion state is close to integrable turbulence or not, we suggest
different metrics. The nondimensional wavemaker Ursell number and nonlinear parameter a/h are
relevant numbers to delineate integrable turbulence from other regimes. An experimental coverage
of the (U , a/h) plane indicates that integrable turbulence in our settings will be sustained if
a/h > 0.07 and U > 0.2. These bounds are approximate and should be confirmed with more
experiments. The mixing index Im that characterizes the shape of the power density spectrum
is used to assess if wave periodicity has disappeared in the final wave motion state, one of the
signatures of integrable turbulence. We sustain that, as with numerical simulation based on the KdV
equation, kurtosis increases quasilinearly with skewness. This needs to be further investigated in
other conditions, but such property may be useful in the analysis of oceanic wave data. Finally
the periodic scattering transform (PST) is used to precisely characterize the spectral content of
the empirical integrable turbulence. This transform is unavoidable to determine the solitonic and
radiative content of a given regime and thus is the only tool to supply soliton amplitude distributions
and fully characterize wave motion random states.

The difference between unidirectional and bidirectionnal integrable turbulence has not been ad-
dressed in the present study. The Kaup-Boussinesq equations [53] offer an integrable framework to
describe bidirectionnal integrable turbulence in which the interactions between counterpropagating
solitons generate pulses larger than the sum of the amplitude of the two solitons before interaction
[55,56] and also phase shifts. Nonetheless, the approach used in the present study takes advantage
in the fact that, for weakly nonlinear solitons in an integrable turbulence, the inverse scattering
problem for the Kaup-Boussinesq equations can asymptotically be decomposed in left-going and
right-going KdV inverse scattering problems [53]. There are some indications in the literature of IST
techniques for Kaup-Boussinesq [57]. However, a practical periodic IST is yet to be developed and
would require extensive numerical developments. In future work different experimental boundary
conditions could be considered such as absorbing conditions at the end wall with reinjection of the
outgoing waves at the wavemaker simultaneously with the generation of new wave trains conducive
to a one way integrable turbulence. While easy to implement numerically we foresee some technical
difficulties to do it on a real-time basis.
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