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Krishan Chand and Arnab Kr. De *

Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India

Pankaj Kumar Mishra
Department of Physics, Indian Institute of Technology Guwahati, Assam 781039, India

(Received 31 August 2021; accepted 8 November 2021; published 17 December 2021)

We numerically investigate the effect of rough boundaries on heat flux enhancement
and flow structures in turbulent Rayleigh-Bénard convection of air (Pr = 0.7) confined
in a two-dimensional cell of aspect ratio 2 for the Rayleigh number Ra in the range
106 � Ra � 4.64 × 109. We consider three levels of roughness having maximum height
as 5%, 10%, and 20% of the cell height. The presence of rough surfaces induces a
significant enhancement in heat flux beyond a critical Rayleigh number Rac, the value
of which strongly depends on the roughness height. The probability density function of the
temperature fluctuations exhibits a bi-Gaussian distribution below Rac, while it displays
exponential nature in the enhanced heat flux regime. The distinct nature of large-scale
flow patterns is observed in this regime. While a stable double-roll state persists for the
smallest roughness setup, the effect of corner rolls emerges in the intermediate level. The
breakdown of the stable double-roll structure into multiple rolls is seen to be linked to
higher heat flux owing to the efficient washing out effect in the roughness grooves. While
a stronger horizontal motion elevates the shear production for the smallest roughness case,
direct injection of plumes into the bulk improves the buoyancy production, leading to larger
heat flux for the tallest roughness. Roughness heights are seen not to have any discernible
effect on the overall flow strength. A vertical distribution of mean temperature indicates
the presence of multilayer characteristics with the roughness-invariant near-wall region
identified by a weakly nonlinear profile. The variation of the mean temperature in the
intermediate layer plays a crucial role in heat transfer enhancement as it reflects the quality
of ventilation of the entrapped fluid.
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I. INTRODUCTION

Rayleigh-Bénard convection (RBC), a buoyancy-driven instability, in which a thin layer of the
fluid is heated from below and cooled from the top, has been the prototypal system to study many
complex flows observed in nature and engineering flow [1,2]. For a convection cell of fixed aspect
ratio, flow inside it is governed by the two control parameters, namely, the Rayleigh number Ra =
gβ�T H3/να and the Prandtl number Pr = ν/α, where g is the acceleration due to gravity, �T is
the temperature difference between the two horizontal plates separated by a distance H , and ν, β,
and α are the kinematic viscosity, thermal expansion coefficient, and thermal diffusivity of the fluid,
respectively.
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Over the past few decades, in RBC an intriguing question that has drawn immense attention from
the scientific community is how the heat transport depends on the control parameters, in particular,
on Ra in several regimes of turbulent flow [3,4]. This dependence is well established as Nu ∼ Ram,
where the nondimensionalized heat flux is represented as the Nusselt number Nu and m is the scaling
exponent. A number of theories of the heat transfer mechanism for a smooth convection cell have
become popular over the years, such as the classical 1/3 scaling by Malkus [5], the ultimate regime
in turbulent convection [6], and the boundary layer–bulk unified theory of Grossmann and Lohse
[7–9]. It has been noticed that the transport mechanism in RBC could be significantly enhanced
by introducing rough surfaces in the convection cell [10]. Practically, all the surfaces underneath
the flows are rough with a variety of roughness topology, height, and distribution. Owing to a
number of factors, such as an increase in wetted area, inherent forcing of boundary layer instability,
and a greater trigger of plumes in the near-wall region, RBC over the rough surface has recently
gained momentum as a leading research problem. In this paper we present a detailed numerical
investigation of the enhanced heat flux mechanism induced by different mean heights of the random
surfaces in the convection cell.

Several experimental and numerical investigations have indicated that rough isothermal surfaces
influence the Nu(Ra) scaling exponent [11–13]. Shen et al. [14] noticed an increment of 20% in the
heat flux compared to those in the case of smooth surfaces when rough (V-shaped groove) top and
bottom walls were used. On the basis of their data, they proposed that the boundary layer penetration
controls the increment in heat flux. In a three-dimensional (3D) experiment, using random spherical
roughness elements, Ciliberto and Laroche [15] obtained that the Nu(Ra) scaling exponent improves
to 0.45 when the thermal boundary layer thickness lies between the tallest (h = 1 cm) and smallest
(h = 0.06 cm) roughness elements. Advancing a similar type of ideas, Du and Tong [11] reported
that Nu is enhanced by 76% and 41% in the taller (h = 9 mm) and shorter (h = 3.2 mm) roughness
heights, respectively, due to the presence of strong secondary vortices inside the cavities. Later,
using the experimental data for the roughness of nature such as triangular grooves, Roche et al. [16]
reported that the scaling exponents approach m = 1/2, which is a feature of the ultimate regime.

Using the sinusoidal roughness of the optimum wavelength (λopt = 0.1), Toppaladoddi et al.
[17] observed the enhanced exponent regime (m = 0.483) in the range 108 � Ra � 3 × 109. The
increased interaction between the boundary layer and the bulk region was attributed to the appear-
ance of this enhanced scaling regime. In contrast, Zhu et al. [18] showed that such a seemingly
high exponent regime stays temporarily only from 108 � Ra � 3 × 109 and for higher Ra reverts to
the classical scaling (m = 1/3). Further, Zhang et al. [19] obtained the critical height of roughness
beyond which secondary vortices induce a better mixing in the valleys, thereby enhancing the heat
flux. Most notably, by introducing the roughness of three different scales, Zhu et al. [20] suggested
that multiscale roughness extends the enhanced exponent regime up to three decades of Ra ranging
from 108 to 1011. This extension of the regime was attributed to the sustained plume-bulk interaction
by the shorter roughness heights at higher Ra (>3 × 109).

Recently, Dong et al. [21] numerically investigated the effect of spatial arrangements for trian-
gular roughness elements on heat flux (Nu) and Reynolds number (Re). Based on the arrangement,
it was observed that the sparsely distributed roughness elements were responsible for lowering the
threshold Rayleigh (Rac) number beyond which the heat flux suddenly starts increasing, whereas
Rac in a compact arrangement shifts to higher values. The compact models yielded higher heat
flux than those obtained for the sparse cases where the reduced heat flux regime seems to be more
prevalent due to the entrapment of more fluid inside the wider cavities formed. In terms of scaling
laws, the sparse model yielded a higher Nu(Ra) scaling exponent with nearly the same Re(Ra)
exponent, which indicated that the flow strength remains insensitive to the roughness arrangement.

Tummers and Steunebrink [10] proposed a different mechanism for the enhanced heat flux
regime for the square roughness. They argued that as the large-scale circulation is responsible
for carrying the thermal plumes from the boundary layer to bulk in a smooth cell, diffusion of
thermal plumes is inevitable while traveling along the periphery. The square roughness used in
the convection cell was found to break the large-scale circulation, which yielded a faster and
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FIG. 1. Schematic diagram of three random roughness setups R1, R2, and R3, which are characterized by
their maximum heights. The inset shows a close-up view of the peak, valley, and throat regions associated with
an element measured by its height h and base λ

direct interaction of hot (cold) plumes with the top (bottom) boundary layer. Thus, splashing of
thermal plumes (both hot and cold) triggers instability in the boundary layer, resulting in emission
of numerous thermal plumes to augment heat transfer. In addition, the fluid entrapped in the cavities
creates more intense plumes with a longer lifetime. Such a phenomenon exists not only in a
roughness-facilitated convection cell, but also in smooth cells, as reported by Chand et al. [22]
at higher Ra in a 2D rectangular cell. The emission of such intense plumes was termed a thermal
jet, but their insufficient intensity and the localized phenomenon resulted in a 2/7 power law. While
varying the height of the ring-shaped obstacles and gap between them, Emran and Shishkina [23]
observed that a taller height and wider gap are favorable for obtaining a higher heat flux, where
cavities are fully washed out. However, the scaling exponent increases when cavities are partly
washed out. Moreover, for very tall obstacles, large-scale circulation breaks down into smaller rolls
that result in an increment of overall heat transfer [23].

Wang et al. [24] also reported a similar mechanism for enhanced heat flux. In a slender and
rectangular tilted convective cell, they observed that a stable double-roll state reduces the heat flux,
while an unstable triple-roll or single-roll state increases the heat flux owing to the enhanced mixing.
These different roll structures were consequences of the inclination given to the cell. In their recent
study [25], both the heat flux (Nu) and flow strength (Re) were found to depend upon the mean
aspect ratio of the convection rolls, which was defined as the ratio of the aspect ratio and the number
of large-scale rolls. Both global transport properties were observed to rise as the mean aspect ratio
drops. In other words, for a fixed-aspect-ratio convection cell, a larger number of rolls results in
higher Nu and Re. Thus, it shows that breaking of flow symmetry can lead to higher heat flux, which
can be incited either using the roughness elements or by providing inclination to the convective cell.

So far, a single roughness scale (uniform height) has been used in almost all the studies on
roughness-aided turbulent convection, where the flow interacts with the roughness elements nearly
in the same manner. However, varying heights and wavelengths of the roughness elements may
result in a different Nu(Ra) dependence and transport mechanism, as observed in [26]. Chand
et al. investigated the role of near-wall dynamics in heat flux enhancement using different random
roughness configurations [26]. It was observed that wider cavities strengthen the secondary vortices,
which emit thermal plumes more frequently to enhance the heat flux. In RBC, note that, although
small-scale structures play a crucial role in heat transport, the flow is primarily governed by
large-scale rolls for relatively low Pr [27]. Using three different roughness heights marked as R1,
R2, and R3 (see Fig. 1), the present work is mainly focused on the role of large-scale rolls in the
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heat transport mechanism associated with enhanced heat flux regimes. Moreover, by analyzing the
global flow structures and production of turbulent kinetic energy near the rough surfaces, we find
out how the so-called bulk-plume interaction improves in the roughness-aided configuration that is
attributed to the augmented heat flux [17].

The regions near the rough elements and their geometric measure are shown schematically in
Fig. 1, where boundary conditions are briefly mentioned. In the present work, we consider surfaces
with triangular roughness elements that have random heights and appear without any order. Random
numbers with normal distribution are generated which are assigned as the height h and base λ of the
elements. In order to include a range of scales, the minimum height is taken as 10% of the maximum,
which is nearly 0.05, 0.1, and 0.2 for R1, R2, and R3, respectively. Since the measured total wetted
area for the three cases is nearly the same, its effect is naturally eliminated. Totals of 152, 71, and
36 roughness elements are present in the R1, R2, and R3 configurations, respectively. Note that
the number of roughness elements becomes approximately doubled as the roughness configuration
changes progressively from the smallest (R1) to the tallest (R3) heights. It is found that, despite
nearly the same wetted area, the tallest roughness case yields maximum heat flux due to the presence
of a multiple-roll state. On the other hand, a double-roll state (DRS) is observed to influence the heat
flux the least.

The organization of the paper is as follows. Section II contains details of the mathematical formu-
lations and numerical methods followed by the grid independence and verification of the numerical
results with the earlier numerical studies performed using the rough boundaries. Section III presents
the results on the enhanced heat flux scalings obtained for the three different random roughness
heights followed by the analysis of flow structure and flow strength. Further, an extensive analysis
of the characteristics of flow structure and its role in the enhanced heat transport in the vicinity of
and far away from rough surfaces is given. The present work is concluded in Sec. IV.

II. NUMERICAL DETAILS

Using the Oberbeck-Boussinesq approximation, mass, momentum, and energy conservation
equations for incompressible buoyancy-driven flows can be written in the nondimensional form
as

∂ui

∂xi
= 0, (1)

∂ui

∂t
+ ∂ (uiu j )

∂x j
= − ∂ p

∂xi
+

√
Pr

Ra

∂2ui

∂x j∂x j
+ θδiy, (2)

∂θ

∂t
+ ∂ (u jθ )

∂x j
= 1√

Pr Ra

∂2θ

∂x j∂x j
, (3)

where xi = (x, y) represents the Cartesian coordinates, p the pressure, ui = (u, v) the velocity field,
θ = (T − TC )/(TH − TC ) the temperature, and δi j (=1 for i = j) the Kronecker delta. Note that
the above equations are nondimensionalized using the temperature difference across the two plates
(TH − TC ) as the temperature scale, the free-fall velocity (

√
gβ�T H ) as the velocity scale, and

the vertical spacing between the plates (H ) as the spatial scale. The flow is simulated inside a
two-dimensional rectangular box of aspect ratio 
 = 2 using air (Pr = 0.7) as the working fluid.
Both rough surfaces are kept at a fixed temperature, while the adiabatic boundary condition is used
along the lateral walls. A no-slip boundary condition is invoked for both the uneven surfaces and the
lateral walls. We employ a standard random number generator with normal distribution to generate
the amplitude h and wavelength λ of the individual roughness elements, as shown in Fig. 1. As h and
λ are allowed to vary independently, a variety of triangular-shaped elements fill the horizontal plates.
We have limited the base and height of the elements within 1–10 % of the maximum height and base.
In order to create three different levels of roughness, the maximum height and base are chosen as
5%, 10%, and 20% of the cell height, which are referred to as the R1, R2, and R3 configurations,
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FIG. 2. (a) Three elements with extreme dimensions are shown with embedded mesh for the highest Ra (=
4.64 × 109) and the smallest roughness case (R1). (b) The linearized integral object (c) is identically reproduced
by the zero-level set function

respectively (see Fig. 1). It should be noted that the range of a truly random distribution is likely to
contain all possible heights and bases. However, since a finite axial length of the cell is used, only a
finite number of such elements can be placed on the horizontal surfaces. Thus, in spite of choosing
an element arbitrarily, a finite number of them limits the possibility of the (λ, h) combinations. The
present setup is clearly an improved multiscale roughness which contains a number of scales for the
height and base of the triangular roughness elements. Also note, by the virtue of such a choice, that
the aspect ratio h/λ of the elements is also random, which does not have any predefined order.

In order to resolve the widely varying roughness elements, a sufficient number of cells are used
inside them. Figure 2(a) shows three elements of extreme dimensions which are well resolved in
the vertical direction. The numbers of cells inside the shortest and tallest elements are 13 and 71 for
Ra = 106 and 17 and 118 for Ra = 4.64 × 109, respectively. The excellent resolution is reflected
in the volume rendering of the zero-level set function [28,29] in Fig. 2(c), which agrees identically
with the exact linearized integral object sitting on the bottom plate [Fig. 2(b)]. The errors in volume
thus reproduced are found to be 0.13% and 0.04% for the two extreme meshes.

A nonstaggered finite-volume technique integrated with a diffuse interface immersed boundary
method [29] is used to solve the above set of equations (1)–(3). Before carrying out the simulations,
we conduct a validation test by reproducing the results obtained by Zhu et al. [18] and a grid-
independence test for four different mesh sizes. Using sufficiently refined mesh stretched in the
wall-normal direction and a time increment of 10−4, we validate the present setup for sinusoidal
roughness geometry of equal height (h = 0.1) and wavelength (λ = 0.1) at two Rayleigh numbers
Ra = 2.2 × 108 and 2.2 × 109. In terms of global heat transport, a maximum of 7% (average 3%)
variation in Nu confirms the correctness of the present setup. Figure 3(a) shows a direct comparison
of Nu as obtained in the present work and that reported by Zhu et al. [18], which shows that the
results computed using the present setup are in good agreement with the previous study. Moreover,
we show a comparison of the mean vertical temperature profile averaged over the horizontal plane
in Figs. 3(b) and 3(c). For the grid independence test, as shown in Fig. 4, we quantify the change in
Nu and temperature variance σθ for four progressively refined meshes at Ra = 4.64 × 109. These
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FIG. 3. (a) Nu comparison of the present work and Zhu et al. [18] for sinusoidal roughness geometry. Mean
temperature profiles for (b) Ra = 2.2 × 108 and (c) Ra = 2.2 × 109 are compared with the previous data [18].
Note that geometric attributes of the roughness configuration (sinusoidal) remain the same for the comparison.
The shaded region indicates the roughness area

changes are represented by �Nu and �σθ , computed as

�Nu = |Nui − Nui−1

Nui−1
| × 100, (4)

�σθ = |σθ,i − σθ,i−1

σθ,i−1
| × 100, (5)

where σθ = 〈θ ′2〉V,t . Note that 〈· · · 〉V,t and the prime represent the volume-time average and fluctu-
ation, respectively, and i (=1, 2, 3, 4) represents the mesh size in increasing order. Figures 4(a) and
4(b) clearly show that changes in both �Nu and �σθ become insignificant as we refine the mesh
beyond M3. Considering the diminishing return and significant increase in computational cost, mesh
M3, given by 2560 × 1620, is used for subsequent calculations.

Numerical details of all the simulated cases are listed in Table I. The nonuniform mesh in the
wall-normal direction is refined close to the rough surfaces, whereas a uniform meshing is used in
the horizontal direction. For adequate spatial resolution, the maximum grid spacing is kept smaller
than the analytically estimated Kolmogorov length scale [η = H Pr1/2(Nu − 1)−1/4Ra−1/4]. It also
satisfies the criterion of the minimum number of grid points inside the thermal boundary layer
[30]. In particular, �ymax/η = 0.82 and 2560 × 1620 grid points are used in the horizontal and
vertical directions, respectively, for the most demanding case Ra = 4.64 × 109. Statistical sampling

FIG. 4. Variation of change in volume-averaged (a) Nu and (b) temperature variance σθ for four progres-
sively refined meshes (M1, M2, M3, and M4) represented as

√
Nx × Ny at Ra = 4.64 × 109. Here Nx and Ny

are the number of grid points in the x and y directions, respectively. Temperature variance is computed as
σθ = 〈θ ′2 〉V,t , where 〈· · · 〉V,t and the prime represents the volume-time average and fluctuation, respectively
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TABLE I. Details of the simulation parameters for the three roughness configurations R1, R2, and R3.
From left to right, Ra is the Rayleigh number; Nx and Ny are the number of grid points in the x and y directions,
respectively; NBL is the number of grid points inside the thermal boundary layer calculated from the smooth
case; Nuref is the reference Nusselt number taken from Zhu et al. [20] for multiscale roughness; and Nucomp is
the computed Nusselt number in the present work. Here an underline, parentheses, and an overline mark the
onset of the enhanced heat flux regime in the R1, R2, and R3 cases, respectively

Nx × Ny Nuref Nucomp

Ra for Ri (i = 1, 2, 3) NBL Zhu et al. [20] R1 R2 R3 Smooth

106 1000 × 600 87 6.84 6.06 5.08 07.35
2 × 106 1000 × 600 85 6.53 6.17
3 × 106 1000 × 600 75 8.49 7.07 6.89 09.01
6 × 106 1000 × 600 74 8.48 10.11
107 1000 × 600 59 10.61 9.73 12.00 12.44
3 × 107 1000 × 600 48 14.19 16.44 19.25 17.45
(5.50 × 107) 1000 × 600 42 16.70 (20.97) 24.87 20.98
108 1200 × 600 24 20.8 20.28 26.19 32.45 25.08
2.15 × 108 1200 × 700 19 30.1 28.98 37.59 44.38 32.18
4.64 × 108 1400 × 800 16 43.6 44.34 53.69 61.81 40.93
109 2000 × 1000 13 63.1 64.05 76.02 86.67 51.50
2.15 × 109 2000 × 1400 13 92.2 88.88 105.60 117.48 60.49
4.64 × 109 2560 × 1620 11 130.3 132.72 145.73 158.29 74.92

is carried out for at least 200 free-fall time units once the flow attains a statistically steady state
and 〈φ〉V , 〈φ〉V,t , and 〈φ〉A,t denote the volume, volume-time, and area-time ensemble of a variable
φ(x, t ), respectively. Note that, to determine Ra in roughness cases, the effective height of the
convection cell is computed by considering the same volume of fluid as in the smooth case [20].

III. RESULTS AND DISCUSSION

In the following, we present our observation related to the enhancement of Nusselt number for
different roughness heights, which have been denoted by R1, R2, and R3.

A. Enhanced heat flux regime

Rough surfaces in thermal convection cells have a role to play in efficient heat transfer. The
nondimensional heat flux (Nu) is computed using Nu = √

Ra Pr〈vθ〉V − 〈∂zθ〉V . Since Nu is per-
ceived as the measure of heat transfer rate from the underlying surface and Ra contains the applied
thermal forcing, the exponent in the Nu ∼ Ram scaling law acts as the key to heat transfer enhance-
ment. Among a few others, roughened surfaces have been observed to push the classical Malkus [5]
exponent of 1/3 towards what Kraichnan [6] foresaw as the ultimate regime in thermal convection
characterized by the half scaling (m = 1/2). In what follows, we begin with the comparison of
Nu for different roughness heights. Figure 5(a) shows Nu obtained for the multiscale roughness
by Zhu et al. [20], the pyramid-shaped roughness by Xie and Xia [31], the three present random
roughness configurations, and a smooth cell. Clearly, the R3 random roughness shows higher Nu as
compared to the other configurations. Note that the wetted area for the present cases differs from
the references; however, based on the criterion of the same effective Ra, the above comparison is
made. Interestingly, the triple-scale and the smallest roughness (R1) used in the present work yield
the same Nu beyond Ra = 108. Note that the triple-scale roughness in [20] was termed multiscale
roughness. However, the presence of a range of roughness scales which have no preconceived order
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[31]
[20]

FIG. 5. (a) Comparison of Nu among the three roughness configurations and the previously reported data
[20,31]. Vertical dashed lines represent the onset of enhanced heat flux regimes and m shows the Nu(Ra)
scaling exponent. (b) Normalized heat flux ζNu as a function of Ra, where vertical dashed lines again mark the
onset of enhanced heat flux regimes. (c) Power-law fitting ζNu ∼ Ran in the enhanced heat flux regime suggests
that smaller roughness promotes a greater rate of enhancement

in the present work makes it close to reality and also yields higher heat flux as compared to the
previous roughness configurations.

A comparison of Nu ∼ Ram scaling with the smooth surface is in order. Figure 5(a) shows a
least-squares fit of the data, resulting in three different exponents as m = 0.487, 0.439, and 0.421 for
the R1, R2, and R3 cases, respectively. Moreover, it also shows a different onset of the enhanced heat
flux regime given by the critical Rayleigh number Rac = 2.15 × 108, 5.50 × 107, and 1 × 107 for
R1, R2, and R3, respectively. Since taller heights have a higher tendency to penetrate the boundary
layers, lower values of Rac in R2 and R3 are expected [18]. The exponent in R1 is close to that
obtained by Toppaladoddi et al. [17] and Zhu et al. [20], which signifies the improved bulk-plume
interaction by increasing the intense plume-emitting spots. On the other hand, breaking of large-
scale rolls into smaller ones is responsible for the enhanced exponent in the R2 and R3 cases. Such
a phenomenon was previously reported in the inclined convection cell. The random roughness used
in the present work shows the same without any inclination.

Next, heat flux in the three roughness cases is compared. To exclude the effect of the wetted area
in Nu, we keep it nearly the same in the three roughness cases. Figure 5(b) shows the variation of
normalized heat flux, ζNu = (Nu − Nu0)/Nu0, as a function of Ra for the three roughness cases,
where Nu0 indicates the heat flux for the smooth case. In order to highlight the differences in
Nu, the enhanced heat flux regime is further represented by ζNu > 0. In this regime, the tallest
roughness (R3) produces the maximum ζNu and it drops with the configurations characterized by
their maximum roughness height. In the enhanced heat flux regime (ζNu > 0), it is observed that the
normalized heat flux obeys a power-law behavior as ζNu ∼ Ran, where n is the scaling exponent. As
shown in Fig. 5(c), a least-squares fit of the data yields n = 0.95, 0.75, and 0.44 for the R1, R2, and
R3 cases, respectively. Evidently, the exponent drops as the maximum roughness height increases.
Surprisingly, the effect of roughness height is not limited to only increase in heat flux. The larger
the maximum height of roughness, the greater the heat flux enhancement. However, the smaller the
maximum height, the higher the rate of increase of ζNu with Ra. This indicates a complex behavior
of the surface roughness in heat transfer enhancement. The one with the highest gain does not extend
for the entire spectrum of Ra, as smaller roughness yields a high rate of increase of Nu over Nu0 at
large Ra.

In the studied Ra range, we further investigate the probability density function (PDF) of tem-
perature fluctuations θ ′ in the bulk region (center of the convection cell) to observe the effect of
roughness there. The PDF is computed for at least 200 free-fall time units of sampling length.
Figures 6(a)–(c) show the PDF of temperature fluctuations in the R1, R2, and R3 cases, respectively.
It should be noted that the transition in the distribution of temperature fluctuations has been used to
demarcate different turbulent states [32]. In a recent study, Chand et al. [22] described the transition
to a single-peak distribution as the sign of attainment of a highly turbulent state which modifies
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FIG. 6. PDF of temperature fluctuations (θ ′) in the bulk (center of the domain), showing the transition
from two peaks (bi-Gaussian) to a single-peak (exponential) distribution in the (a) R1, (b) R2, and (c) R3

configurations. The PDF at the critical Rayleigh number Rac in the three configurations is shown by the red
color.

the temperature statistics. With increasing Ra, Castaing et al. [3] found that the PDF of θ ′ changes
from a Gaussian to an exponential distribution, showing the transition to the hard-turbulent regime.
Salort et al. [33] showed the change in histogram from Gaussian to a single-peak shape, when the
probe was moved from the boundary layer region to the bulk. In the present study, a clear transition
from two-peak behavior (bi-Gaussian distribution) to a single peak (exponential distribution) is
evident in all three configurations at the critical Rayleigh numbers (Rac) = 2.15 × 108, 5.50 × 107,
and 107, respectively, for R1, R2, and R3. We note here that the distribution function is closer to a
Gaussian only for the R3 case beyond Rac. This transition confirms the attainment of the enhanced
heat flux regime and also the modified Nu(Ra) scaling exponent. However, since such an onset
occurs early (smaller Ra) for taller roughness, the distribution function having a single peak has
a connection with a uniform flatter profile with significant scatter and longer tails. On the other
hand, at small roughness, the onset occurs at a larger Ra when the distribution has become polarized
with a sharp peak and virtually nonexistent tails. Thus, the onset of the enhanced heat flux regime
occurs at relatively different flow states, which clearly indicates the role of the average height of the
roughness elements, though they do not appear in any specific pattern.

It is generally assumed that in the ultimate regime the role of the boundary layer vanishes and
the dissipation rate in the bulk dominates. In contrast to the smooth case, Zhu et al. [18] observed
that the thermal dissipation rate increases with Ra inside the cavity region for monoscale roughness
where the scaling regime reverts to the classical one. However, the dissipation rate was not evaluated
for the multiscale roughness [20] where the 1/2 scaling was seen to be sustained. We show that the
onset of the enhanced exponent regime can be linked to the thermal dissipation rate εθ calculated
for the near-wall (NW ) and bulk (BK ) regions characterized by the maximum roughness heights
(hmax,b and hmax,t ). In order to quantify them, we consider the definitions

〈εθ,NW 〉V,t = 1

2

[
1

hmax,b

∫ hmax,b

0
〈εθ 〉A,t (y)dy + 1

hmax,t

∫ H

H−hmax,t

〈εθ 〉A,t (y)dy

]
, (6)

〈εθ,BK 〉V,t = 1

H − (hmax,b + hmax,t )

∫ H−hmax,t

hmax,b

〈εθ 〉A,t (y)dy. (7)

As shown in Fig. 7, it is evident that a drop in εθ,NW for rough cases is terminated at the point
of onset of the enhanced heat flux regime and subsequently εθ,NW becomes invariant to Ra. The
saturation in dissipation rates in the near-wall region indicates the increased active spots that actively
participate in thermal plume emission. These entrapped emitted thermal plumes form secondary
flow structures in the near-wall regions. Hence, the dissipation rate associated with the locally
entrapped structures balances the assumed drop in the dissipation rates, which otherwise contributes
to the bulk region in the absence of entrapped flow structures in a smooth case. On the other hand,
εθ continues to drop in the bulk region, though at a lesser rate. Here the dominance of the boundary
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FIG. 7. Thermal energy dissipation rate εθ for the near-wall (squares) and bulk region (triangles) for the
(a) R1, (b) R2, and (c) R3 configurations. In the near-wall region, the dissipation rates indicate a visible
discontinuity at the critical Ra, shown here by dashed lines, beyond which it becomes Ra invariant.

layer at high Ra arrests the otherwise monotonic drop in εθ,NW while the bulk contribution continues
to fall. The dominance of εθ in the near-wall region seems to indicate the importance of the boundary
layer even in the enhanced heat flux regime in the present range of Ra, though Zhu et al. [18]
observed otherwise at a higher thermal forcing in their monoscale roughness calculations.

Further, we study the dependence of global dissipation rates on Ra to ascertain the attainment of
a higher Nu(Ra) scaling exponent in the enhanced heat flux regimes, as shown in Fig. 8. The global
dissipation rates are estimated by considering the entire volume. Both εu and εθ can be written in
terms of the global heat transport properties as

〈εu〉V,t =
√

Pr

Ra
(Nuεu − 1), 〈εθ 〉V,t = 1√

PrRa
Nuεθ

, (8)

where the respective Nu are calculated based on the dissipation of kinetic (〈|∇u|〉V,t ) and thermal
energy (〈|∇θ |〉V,t ). Beyond the Rac, global dissipation rates become nearly invariant to Ra in all
three roughness cases. With Nu ∼ Ra1/2 scaling, as suggested by Eq. (8), ε becomes Ra invariant,
which is clearly seen for Ra > Rac. On the other hand, an interesting feature emerges before the
transition (below Rac) to the enhanced heat flux regime. Here the dissipation rate drops with an
exponent of −3/14, which can be theoretically obtained by assuming Nu ∼ Ra2/7 in Eq. (8). Clearly,
the best fit of the data reveals that R1 nearly follows the 2/7 power law, while it deviates as the
average roughness height increases. The prevailing 2/7 law in the R1 case indicates the strong
dominance of a double-roll state and an ineffective roughness-flow interaction. In other words, the
rough surface, in this case, is inactive due to a weak thermal forcing and the fluid close to the
asperities behave similarly to the smooth case.

FIG. 8. Variation of the volume-averaged thermal (closed symbols) and kinetic (open symbols) energy
dissipation rates with Ra in (a) R1, (b) R2, and (c) R3 configurations. While the vertical dashed lines show the
critical Rac beyond which the enhanced heat flux regime is obtained, the dash-dotted lines indicate ε ∼ Ra−3/14,
which follows from the power law Nu ∼ Ra2/7.
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B. Flow structures in enhanced heat flux regime

In natural convection, thermal plumes play a crucial role in the heat transfer phenomenon [27].
These plumes are detached boundary layer structures responsible for the Nu(Ra) scaling law [3].
However, the heat transport mechanism in the rough configuration is different from those in the
smooth case. In the latter, hot fluid gains sufficient energy to become unstable and rises from
the boundary layers. In contrast, roughness elements help detach the hot fluid attached to them
and thereby augment the heat transport properties. Note that the emission of thermal plumes and
detachment are two different phenomena. Therefore, one way to influence the heat flux is by
varying the plume-emission process and its morphology. On the other hand, altering the large-scale
rolls, which drive these plumes, is another way to enhance the heat flux [24]. While the former is
responsible for enhanced heat flux in the roughness case, the latter has been observed for the tilted
cells [24]. Interestingly, in the present work, both have been observed to modify the scaling laws.

In an experimental study, Shen et al. [14] observed large-sized thermal plumes in the bulk region,
which enhanced the heat flux. Later, Stringano et al. [34] found the edges of the roughness elements
to be the most active plume-emission spots. By varying the geometric properties of roughness
elements, Wagner and Shishkina [35] found that wider grooves interrupt the large-scale flow
structures and strengthen the induced secondary vortices. These vortices wash out the cavities and
weaken the boundary layer perturbation to make the transport process similar to that in the smooth
case. In contrast, a lack of ventilation in the cavities results in intermittent interaction between
large-scale rolls and the fluid resting in the cavities. This interaction sustains the perturbation of the
boundary layers. Later, Toppaladoddi et al. [17] and Zhu et al. [20] attributed the enhanced heat
flux and scaling exponent to the increased bulk-plume interaction. Since all of these investigations
dealt with the uniform roughness, it is interesting to see how the process of plume emission and its
interaction with the bulk respond to random roughness configurations.

Figure 9 shows the instantaneous temperature field for the three highest Ra cases, where Ra
increases from top to bottom. In all three roughness cases, numerous small and bright structures
appear with an increase in Ra due to rising plume-emitting spots (active peaks). It is observed that
thermal plumes become finer with Ra and also change with roughness configuration. The size of
the emitted thermal plumes changes from R1 [Figs. 9(a), 9(d), and 9(g)] to R3 [Figs. 9(c), 9(f), and
9(i)] due to geometrical changes in their nucleation site. In R3, larger thermal structures are present,
whereas they are thin and tiny in the R1 case. In the smallest roughness case, a persistent two-roll
structure appears for all three Ra cases. However, in the other two configurations, the highly random
movement of thermal plumes appears due to multiple rolls, which is ascertained in the subsequent
discussion.

To understand what triggers the enhanced global heat transport properties, we look into the
time-averaged temperature field. Figure 10 shows the large-scale thermal structures overlaid by
streamlines for the three roughness configurations. For R3, the flow structures are shown for the
entire simulated Ra, while for the other configurations (R2 and R1), only the smallest [Figs. 10(a),
10(g), and 10(j)], critical [Figs. 10(b), 10(h), and 10(k)], and highest [Figs. 10(c)–10(f), 10(i), and
10(l)] Ra cases are presented. Beginning with the tallest roughness [R3 in Figs. 10(a)–10(f)], the
double-roll state at a smaller Ra (<107) transforms into a triple-roll state at the critical Rac = 107.
These rolls further break down into multiple rolls as Ra increases, as shown in Figs. 10(c)–10(f).
Apparently, smaller rolls have a higher tendency to wash out the cavities than the bigger ones due to
their ability to enter the narrow spaces between the roughness elements. The boundary layer under
the influence of these strong rolls tends to leave the surface early, resulting in a frequent emission of
arbitrarily shaped thermal plumes. Therefore, breaking of large-scale rolls into smaller ones explains
how the so-called bulk-plume interaction increases in this configuration, which induces an early
onset of enhanced heat flux regime and improves the Nu(Ra) exponent.

In contrast to R3, where a transition from a double-roll state to a multiple-roll state is observed,
two primary rolls persist for the entire simulated Ra regime for R2. Nevertheless, the striking feature
in this configuration is the contribution of corner rolls. At lower Ra (<Rac), weak corner rolls are
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FIG. 9. Instantaneous temperature field showing variation of flow structures in (a), (d), and (g) R1, (b),
(e), and (h) R2, and (c), (f), and (i) R3 cases at (a)–(c) Ra = 109, (d)–(f) Ra = 2.15 × 109, and (g)–(i) Ra =
4.64 × 109

FIG. 10. Time-averaged temperature field superimposed with streamlines for (a)–(f) R3, (g)–(i) R2, and
(j)–(l) R1 configurations. (b), (h), and (k) Critical Rac cases (107 for R3, 5.50 × 107 for R2, and 2.15 × 108

for R1). Note that the (a), (g), and (j) represent Ra = 106, while (c)–(f), (i), and (l) indicate Ra = 4.64 × 109.
In addition, (a)–(f) indicate the transformation of large-scale rolls with Ra. The blue and pink lines show the
thermal boundary layer at the bottom and top surfaces to reveal their influence on large-scale rolls

124605-12



ENHANCED HEAT FLUX AND FLOW STRUCTURES IN …

FIG. 11. Instantaneous temperature field near the bottom rough surface at (a) Ra = 107, (b) Ra = 2.15 ×
108, and (c) Ra = 4.64 × 109 for R1 roughness. Before the critical Rac = 2.15 × 108, very few plume-emitting
peaks appear, whereas a significantly large number of such peaks are evident beyond Rac

observed, as shown in Fig. 10(g). However, with increasing Ra, the strength and size of the corner
rolls increase and become significant to wash out the cavities near the lateral walls. This feature
becomes more pronounced at the highest Ra as shown in Fig. 10(i), which indicates that the corner
rolls near the left-lateral wall coalesce to form a slender structure and compress the primary rolls.
These diminished structures efficiently wash out the cavities owing to their higher tendency to enter
the cavity regions.

For the smallest roughness (R1) configuration, similar to the R2 case, a double-roll state persists
for the entire regime as shown in Figs. 10(j)–10(l), although the corner rolls do not grow with
Ra anymore. A closer look near the bottom surface, shown in Fig. 11, reveals that insufficient
plume-emitting active peaks at lower Ra allow the induced horizontal shear flow to create a
smooth boundary layer over the rough surfaces. However, as Ra increases, the thermal boundary
layer becomes thinner and hence exposes more peaks to the bulk fluid. Beyond the critical Rac,
a sufficient number of peaks become active and the boundary layer is perturbed throughout the
surface. Thermal plumes emitted from these peaks enter the bulk directly to enhance the so-called
bulk-plume interaction, which further increases the heat flux and Nu(Ra) scaling exponent. A note
on the variation of this exponent with the roughness configurations is relevant here. The secondary
vortices are either weak or absent in the R1 configuration due to too many roughness elements
creating smaller throat regions. On the other hand, in the other two configurations (R2 and R3),
the wider throat region causes strong secondary vortices, which is consistent with the previous
study [26]. This feature is also reflected by the thermal boundary layer (TBL) thickness shown
in some of the selected frames (�Rac) of Fig. 10. Note that the TBL is calculated using the
well-known rms technique and defined as the vertical distance from the surface to the location
of maximum temperature variance [1]. It is evident that the TBL does not follow the roughness
texture and remains above it at Rac. However, it nearly covers the entire rough surface in R2 and
R3 at Ra = 4.64 × 109, indicating the washing out of the cavities. Since the increased turbulence in
the cavities reduces the perturbation of the boundary layer, a drop in the scaling exponent becomes
obvious as it behaves similarly to the smooth case in the cavities. These arguments agree well with
the previous studies [35], where the wider throat region was found to strengthen the secondary
vortices and reduce the Nu(Ra) scaling exponent. Therefore, the present study suggests that, in
reality, both the height and width of randomly oriented roughness texture are responsible for the
Nu(Ra) scaling.

In support of the above arguments, we detect the perturbation of thermal boundary layers with
the help of a time-averaged temperature field in the vicinity of bottom rough surfaces. As shown
in Fig. 12, the large temperature gradient is confined to a thin layer near the roughness elements
and covers the entire surface in R3, except for the places where the elements are closely packed.
Qualitatively, this smooth covering of the surface shows the absence of the perturbed boundary
layers. Also, the presence of the bulk-mean temperature is apparent at most of the surface in this
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FIG. 12. Time-averaged temperature field close to the bottom plate for (a) R1, (b) R2, and (c) R3 configu-
rations for the highest Ra = 4.64 × 109. The approach of the bulk-mean temperature increases with the overall
heights of the roughness elements. A thin covering of the isothermal layer on the roughness elements at R1

disappears, making it more prone to greater boundary layer perturbations

configuration. On the other hand, the boundary layer is highly disturbed in the R1 configuration.
In the latter, the bulk-mean temperature of the flow hardly approaches the cavity fluid. Clearly, a
narrow spacing between the roughness elements in the R1 case resists the bulk-mean temperature
to reach the cavities and thus supports the boundary layer perturbation. On the other hand, a wider
spacing helps in a thorough mixing of the cavity fluid that allows the bulk-mean temperature to
approach the cavities, as seen in the R3 case. These results support the above arguments related
to the high turbulent intensity, which modifies the scaling exponent in the three configurations.
Using a schematic diagram, Zhu et al. [20] showed the boundary layer perturbation near the
rough surface, which is found to be qualitatively consistent with the present data. However, the
disordered boundary layer nearly vanishes for the R3 case [see Fig. 12(c)]. The present study shows
that spacing between the roughness elements controls the boundary layer perturbation. Also, the
geometric characteristics of random roughness reveal a complex interaction between the bulk-mean
and near-wall temperatures, which was absent in the previous studies.

The above proposition qualitatively indicates that the heat flux enhancement mainly takes place
due to the intense plume emission in the vicinity of the crest of the rough surfaces. To advance it we
attempt to present a mechanism that induces the plume emission using the turbulent kinetic energy
(TKE) budget close to the rough bottom surface. The TKE budget is written as
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(9)

where the prime, overbar, si j , and Si j represent the fluctuation, time-averaging, fluctuating, and
mean strain rates, respectively. Note that the term on the left-hand side is advection A, while the
terms on the right-hand side, in order of appearance, are shear production Ps, buoyancy production
Pb, dissipation ε, and transport T , respectively [22,36]. In particular, we focus on the horizontal
variation of the two production terms at four different Ra. In order to identify the contribution of
the production terms, we show axial variation of Pb and Ps for RaL = 3 × 106, which is below the
critical threshold (Rac), and RaI = 4.64 × 108 and RaH = 4.64 × 109 above it, in addition to Rac.
While buoyancy production signifies production of turbulent fluctuations by thermal plumes, shear
production indicates the energy interaction between mean flow and turbulent fluctuations. As shown
in Figs. 13 and 14, we present the variation of Pb and Ps in the horizontal direction just above the
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FIG. 13. Buoyancy production in (a) R1, (b) R2, and (c) R3 before, at, and above the critical Rayleigh
number Rac. Here RaL (Ra = 3 × 106) indicates the Ra case lesser than Rac, while RaI and RaH show the
intermediate- (4.64 × 108) and highest-Rayleigh-number cases (4.64 × 109), respectively.

tallest roughness element (H/100 unit). It is evident that below the critical Ra, the magnitude of
the two components of TKE production is insignificant. However, as Ra increases, their magnitude
and variation in the horizontal direction differ. Since Pb quantifies the strength of plumes, a sudden

FIG. 14. Shear production in (a) R1, (b) R2, and (c) R3 before, at, and after the critical Rayleigh number
Rac. The labels are the same as in Fig. 13.
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rise in peaks confirms the idea of activation of numerous peaks beyond the critical Ra. A similar
observation is quite apparent in the R2 and R3 cases. We observe that the magnitude of buoyancy
production is higher in the two taller configurations, which is quantified by peak values of Pb and
their horizontal average. While the peak values at RaI are 0.0062, 0.0070, and 0.012 in the R1, R2,
and R3 configurations, respectively, their mean values (in the same order) for the highest simulated
Ra (4.64 × 109) case are 0.001 98, 0.002 41, and 0.002 42. This happens due to frequent washing
out of the cavities by the smaller rolls present in two taller roughness cases and direct emission
of thermal plumes into the bulk. The transformation of large-scale rolls into smaller ones provides
them with greater access to the cavities, which further supports why R3 results in higher heat flux
than the other configurations.

In terms of magnitude, shear production shows the opposite trend to Pb. In the R1 case, Ps is
significantly higher than R2 and R3. Note that higher Ps indicates transfer of energy from the mean
flow to turbulent fluctuations. It is observed that a double-roll state remains stable in the R1 case,
which favors a strong lateral movement of fluid. The interaction between the mean flow and surface
roughness increases with Ra, resulting in stronger velocity fluctuations. However, it seems obvious
that multiple large-scale rolls hinder their motion, resulting in a flow that supports the vertical
movement of thermal plumes more than the horizontal one. Thus, the two components of TKE
production ascertain the significance of active peaks and reveals the strongly induced horizontal
movement of fluid in the R1 case.

C. Effect of roughness on flow strength

In the preceding section, we observed transformation of a double-roll state to a multiple-roll state
in the R2 and R3 configurations, whereas the former remained unaltered throughout the simulated
Ra range for the R1 case. Here we study how stability of the DRS and its transformation impact the
flow strength, which plays a crucial role in heat transport. In a previous investigation, Zhang et al.
[37] quantified the strength of convection in terms of Reynolds number Re as

Re = UH

ν
, (10)

where U = √〈u · u〉V,t . They observed Re ∼ Ra0.59±0.02, which shows that the flow strength in a 2D
geometry is stronger than its 3D (Re ∼ Ra0.5) counterpart due to the absence of a lateral dimension
which restricts the movement of plumes to escape in the third direction [38–40]. Consequently, the
emitted thermal plumes drive the large-scale rolls and the corner rolls. Wang et al. [25] also used
the same expression to quantify the strength of convection.

Figure 15(a) shows the variation of Re, normalized by the smooth case data (Re0), with thermal
forcing. Evidently, the flow strength in the smooth convection cell is significantly greater than that
in the roughness cases in the lower-Ra range. Also, Re/Re0 is the highest in R1 and the least in
R3, showing a consistent decreasing trend with increasing roughness height in the simulated Ra
range. The lower flow strength in taller roughness cases indicates that multiple rolls hinder the flow
strength. In the lower-Ra range, a slight improvement in Re signifies the mobility of entrapped
fluid. As Ra increases, roughness elements interrupt the flow, which results in a drop in Re/Re0

in the Ra range (3 × 106)–(3 × 107). Subsequently, a further increase in thermal forcing yields a
monotonically increasing trend in Re(Ra)/Re0. Interestingly, Re in the R1 case becomes comparable
to the smooth case, Re/Re0 ≈ 1, in the enhanced heat flux regime. Eventually, it becomes greater
than its smooth counterpart at the highest Ra. On the other hand, Re/Re0 < 1 in the other two taller
configurations indicates the reduced flow strength.

By recalling the enhanced heat flux due to roughness elements, we observe the contrasting role
of roughness in impacting the flow strength. This contrasting behavior can be explained from the
viewpoint of large-scale rolls. While multiple-roll states (MRSs) in R2 and R3 wash out the cavities
efficiently, they impede the movement of flow. In other words, the taller roughness elements which
directly emit thermal plumes in the bulk region also act as an obstacle for the large-scale rolls.
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FIG. 15. (a) Variation of normalized Reynolds number Re/Re0 with Ra for the three roughness cases. Note
that Re0 represents the Reynolds number for the smooth case. (b) The Re ∼ Raγ scaling law shows marginal
improvement in γ for roughness cases

In contrast, the smallest roughness case exhibits appreciable improvement in Re. In the enhanced
heat flux regime in the R1 case, the tiny roughness elements become active and directly emit the
thermal plumes in the bulk region, while below Rac, the contribution of these peaks in thermal plume
emission is insignificant. Note that these active peaks impart a shearing effect on the large-scale
rolls, which enhances the flow strength. This effect is seen in Fig. 14, where shear production in R1

is significantly higher as compared to its taller roughness counterparts.
We further show the Re ∼ Raγ dependence for the three roughness configurations and smooth

case in Fig. 15(b). For the smooth case, it is observed that Re ∼ Ra0.59, which is the same as reported
by Zhang et al. [37]. However, the exponent is slightly higher in the roughness cases, although it
is nearly equal for all of them, given by 0.64, 0.65, and 0.67 for R1, R2, and R3, respectively. Note
that only a slight improvement in γ indicates the insignificant impact of roughness elements on
the Re(Ra) scaling law. This analysis clearly shows that altering the flow structures can enhance
the heat flux without improving the flow strength. Larger roughness has greater tendency to alter the
stable DRS of the low-Ra range as compared to the smaller elements.

D. Multilayer flow characteristics

The mean temperature profile in the vertical direction usually identifies two regions in the flow.
Nearly half of the total temperature drop occurs near the plate, which results in Nu as the inverse of
the thermal boundary layer thickness λθ , Nu ≈ 1/2λθ . Once the major temperature drop takes place
near the plates, flow assumes a near homogeneous state in the central region, termed the bulk. It is
expected that the mean temperature profile also reflects the characteristics of local flow structures.
It is calculated by area-time averaging of the temperature field represented by 〈θ〉A,t , where A and t
stand for area and time, respectively. In general, these profiles identify the well-mixed homogeneous
bulk region. However, in a roughness-facilitated thermal convection, Zhu et al. [18] observed the
effect of Ra on these profiles and proposed that the profiles become similar to that in the smooth case
at higher Ra, which they argued as one indication of saturation of the enhanced exponent regime to
the classical one.

Figure 16 shows the vertical profiles of mean temperature in the smooth, R1, R2, and R3 cases
to compare the impact of roughness on the bulk and near-wall region. At lower Ra, the mean
temperature profiles in all the roughness cases show a smaller vertical extent of the homogeneous
region. This indicates that bulk flow is more sensitive to roughness for weak thermal forcing.
However, the vertical extent of the homogeneous region increases with Ra. A thicker thermal
boundary layer at lower Ra extends the impact of roughness (see Fig. 16). The inset shows the
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FIG. 16. Vertical area time-averaged temperature profiles in the (a) smooth, (b) R1, (c) R2, and (d) R3 cases.
The effect of Ra, ranging from 107 to 4.64 × 109, on flow characteristics is shown. The inset shows the vertical
profiles inside the cavity region

vertical profiles close to the rough surface, where the temperature profiles vary with roughness
configurations to show the distinct flow characteristics. The temperature falls slowly in the R1 case
as compared to the other configurations. Based on the temperature drop from the rough surface to
the bulk, the flow is perceived to be composed of three layers. In the first layer (closest to the wall),
the flow remains nearly stagnant and a sharp decrease in temperature due to thermal resistance
in the valleys is observed. The second or intermediate layer shows a nonlinear drop in temperature
with a smaller temperature gradient. It is expected that this layer is controlled by secondary vortices
present inside the cavities. The third layer represents the bulk flow, where large-scale rolls control
the flow. Since strong secondary vortices and a transition from the DRS to the MRS occur in the R3

configuration, the second layer seems more prominent in this roughness setup [see Fig. 16(d)].
As shown in Fig. 17, the temperature drop in three layers is ascertained by calculating the

absolute magnitude of the temperature gradient φθ as

φθ =
∣∣∣∣d〈θ〉A,t

dy

∣∣∣∣. (11)

In the smooth case, the slope is maximum at the surface while it increases with y in the roughened
configuration to attain a maximum before dropping asymptotically to the bulk-mean value. This dual
characteristic of the temperature gradient confirms the multilayer flow behavior. At a smaller Ra a
peak in φθ is seen to occur at a distance (y ≈ H/20) for the R1 case owing to the lack of ventilation in
the narrowly packed throats. However, with the increase in thermal forcing the temperature gradient
shifts mainly to the vicinity of the rough surface. A nearly trivial profile of φθ for y > H/40 in
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FIG. 17. Vertical profile of the absolute temperature gradient calculated as |d〈θ〉A,t/dy| in the (a) smooth,
(b) R1, (c) R2, and (d) R3 cases

R2 and R3 clearly indicates mixing of the fluid and the lesser extent of an entrapped plume at all
Ra. Interestingly, the first layer is evident in all three configurations and appears to be independent
of the nature of rough surfaces. The profiles of mean temperature are further normalized by the
vertical distance at which φθ attains an absolute maximum in the highest-Ra case. Figure 18 clearly
identifies the above-mentioned three layers. The inset shows the enlarged view where the three
profiles nearly collapse onto each other in the first layer, which is weakly nonlinear in nature. This
signifies a marginal drop in temperature with a sudden increase in vertical height, which indicates
a region of stagnant fluid where heat is transported mainly through conduction. Note that, despite
a huge difference in the roughness scales present in the three configurations, a characteristic of the
first layer is independent of roughness geometry. Flow behavior in the second or intermediate layer
is controlled by secondary vortices, which mimic the bulk flow and suddenly change its behavior
beyond the maximum roughness height, i.e., in the third layer. In the R3 case, the mean temperature
profile in the intermediate layer continues to drop roughly in the same manner as it does in the third
layer. The strong influence of secondary vortices improves the bulk-cavity flow interaction, which
results in effective thermal convection inside the cavities. Such an effect of secondary vortices that
enhance the heat flux by improving the mixing inside the cavities was also reported by Zhang et al.
[19] for monoscale triangular roughness in a 2D convection cell. In the bulk-flow-controlled layer
(third layer), the fluid temperature remains the same irrespective of the nature of the rough surface.

FIG. 18. Vertical variation of the mean temperature profile with y/y(|φθ |max), where |φθ |max is the location
where φθ becomes maximum, for the highest Ra (4.64 × 109). The inset shows a close-up view of the first
layer where all three profiles exhibit a weakly nonlinear behavior
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Based on the vertical profiles of the mean temperature in three levels of random roughness,
we propose that the second layer plays a crucial role in enhancing the heat flux. The greater its
resemblance to the bulk, higher the heat flux, as it is in R3. It also supports the prospect of washing
out the cavities. Strong secondary vortices sweep the cavities appropriately to detach the thermal
boundary layer, which was attached to the rough surfaces.

IV. SUMMARY AND CONCLUSIONS

The present work has explored the effect of rough boundaries on both heat transport and
flow dynamics in two-dimensional turbulent RBC. Though roughness elements of varying height
and base are present, the onset of the enhanced heat flux regime, with different Nu(Ra) scaling
exponents, is triggered at different critical thermal forcing depending on the maximum roughness
height. Such an onset is marked by a transformation from a double to a single peak in the PDF of
temperature fluctuations in the bulk and discontinuities in the near-wall contribution of the thermal
dissipation rate. Unlike the smooth case, near-wall and global estimates of εθ become invariant to
Ra in the enhanced heat flux regime. However, below the critical Ra, the ε − Ra dependence shows
evidence of the classical scaling. Thus, an increase in the Nu(Ra) scaling with a near-constant
near-wall contribution to thermal dissipation suggests a mixed view of the effect of the boundary
layer at high Ra.

The bulk-plume interaction, which is seen to facilitate an enhanced scaling for all roughness
heights, is achieved through different routes. For the tallest roughness heights, large-scale rolls
break down into smaller ones which can enter the cavities more efficiently and sweep the boundary
layer. These smaller rolls enhance the mixing of fluid in the cavity regions to emit intense thermal
plumes more frequently. However, the growing strength and size of the corner rolls, at intermediate
roughness heights, evacuate the cavities near the lateral walls and reduce the size of the primary
rolls. On the other hand, owing to their ability to penetrate the boundary layer faster, a smaller
roughness setup creates more plume-emitting active spots. Thus, not only the tilt of the cell but
also rough surfaces induce complex roll states or distorted structures which result in increased heat
flux. Variation in buoyancy production just above the roughness peaks in the smallest roughness case
confirms the idea of activation of plume-emitting peaks. Moreover, the highest buoyancy production
of turbulent kinetic energy in the tallest roughness case confirms the enhanced heat flux. However,
the opposite trend in shear production indicates greater lateral movement for the smallest roughness
setup.

It was further found that random roughness plays an intricate role in influencing the two global
transport properties Re and Nu. In contrast to its effect on heat flux, the flow strength (Re) drops
in the two taller roughness configurations and improves for the smallest roughness case at Ra =
4.64 × 109. A decrease in Re is attributed to the presence of a multiple-roll state which hinders
the motion of large-scale rolls. Also, an insignificant change is observed in the Re(Ra) scaling
exponents showing a weak effect of roughness on flow strength. The vertical mean temperature
profile near the rough surface shows evidence of multilayer flow characteristics. A weakly nonlinear
profile closest to the wall exhibits collapse of data for all the roughness setups. We proposed that the
intermediate layer plays a crucial role in heat transfer enhancement. The greater its resemblance to
the bulk, the higher the heat flux. Beyond the maximum roughness height the flow asymptotically
approaches the bulk through the outer layer.
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