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Cycling speeds in crosswinds
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Using a large-scale wind tunnel equipped with an aerodynamic balance mounted on
a rotating turntable, we first study the aerodynamic force exerted on a cyclist in time
trial position from head to tailwind limits. A theoretical model for the aerodynamic force
is developed to show the origin of the different experimental features. The theoretical
analysis is then extended to the power dissipated in crosswinds and it is shown that the
expression commonly used in the literature only holds in the pure head and tailwind limits
but must be corrected in the general case of a crosswind. A new analytical expression for
the total aerodynamic power is derived and used to determine the cycling speed in arbitrary
crosswind conditions.
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I. INTRODUCTION

Cycling started with the pedal-less running machine invented by Drais [1] who established on
June 12, 1817, at the age of 33, the first unofficial hour record of the order of 14 km [2,3].

The first official hour record was established by Henri Desgrange in 1893 (35.325 km) at the
Buffalo velodrome in Paris [4], and pushed by Victor Campenaerts up to 55.089 km in April 2019
at the Aguascalientes cycling track [3]. As shown in books [5] and reviews [3,6], this increase in
velocity is mainly due to the reduction of the aerodynamic resistance.

This resistance changes in road races due to wind, which has long been recognized as a major
factor in cycling performances [7,8]. Crosswinds in particular are considered as a crucial factor for
cyclist safety [9–11] and produce echelon-type patterns in pelotons [12,13]. Due to atmospheric
boundary layers and nonuniform topography, real wind conditions are difficult to analyze [14] and
wind-tunnel experiments are needed. As for sailing, the discussion of the effect of wind on a cyclist
implies the definition of the true wind and of the apparent wind [15].

This definition is presented in Fig. 1: in the reference frame of the road [Fig. 1(a)], the direction
of the true wind of velocity U w and that of the cyclist of velocity U c differ by the angle α (wind
angle). In the reference frame of the bike [Fig. 1(b)] the apparent wind of velocity U = U w − U c
makes the angle β (yaw angle) with the direction of motion. The main difference with sailing is that
the cyclist moves even with zero true wind. In that limit, the apparent wind reduces to U = −U c
which is a pure headwind. A consequence of this remark is that even if all true wind directions have
the same probability, the motion of the cyclist induces a statistical bias that tends to favor apparent
headwinds [16,17].
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FIG. 1. Sketch of the cyclist in a crosswind: (a) The cyclist velocity U c and the wind velocity U w make an
angle α (wind angle): α = 0◦ is headwind and α = 180◦ is tailwind. (b) In the reference frame of the bike, the
apparent wind U = U w − U c makes an angle β (yaw angle) with the direction of motion. This apparent wind
has the intensity Ua = Uc + Uw cos α in the cycling direction. The cyclist is taken from Malizia and Blocken
[3] (courtesy of Bert Blocken, Eindhoven University of Technology and KU Leuven).

By using a full-scale bicycle with a mannequin, Fintelman et al. [10] have studied experimentally
the effect of crosswind for yaw angles in the range β = 0◦ to β = 90◦. These authors show that the
drag is maximum at β = 0◦ and decreases down to almost zero at β = 90◦, whereas the side force
exhibits opposite trends, being null at β = 0◦ and maximum at β = 90◦. Similar behaviors are
reported by Kraemer et al. using model rigid cyclists at the scale 1/32 [13].

The associate question of the total aerodynamic power dissipated by a cyclist moving at velocity
U c in a wind of velocity U w [Fig. 1(a)], was first considered in 1894 by Bourlet [18] and more
recently by Martin et al. [8]. In the reference frame of the cyclist [Fig. 1(b)], the apparent wind
U has a component Ua = Uc + Uw cos α in the direction of motion and the expression for the total
aerodynamic power was proposed to be

PAC = 1
2ρSCD0U 2

a Uc, (1)

where ρ is the air density, and SCD0 is the frontal drag area based on the frontal area at zero yaw
angle S and the corresponding drag coefficient CD0 [3].

In the present paper we carry out a full-scale experiment with a cyclist in time trial position
exploring the entire wind spectrum from pure head to pure tail limits. The experimental setup used to
quantify the effect of the intensity and direction of the wind is presented in Sec. II. We thus obtain a
complete set of measurements which are presented in Sec. III and then used to establish a theoretical
model for the aerodynamic force discussed in Sec. IV. The theoretical study is then used in Sec. V
to establish the expression of the total aerodynamic power for any crosswind. This expression is
finally used in Sec. VI to calculate the cycling speed for any wind intensity and direction.

II. EXPERIMENTAL SETUP

The general setup is presented in Fig. 2: a cyclist in time trial position is fixed on a rotating
turntable in the S4 wind tunnel of the Institut Aerotechnique (IAT) whose characteristics are
described in Sec. II C. The wind direction in the vein defines the ex axis which is the apparent
wind direction (U = Uex). The yaw angle β is controlled by the turntable. For β = 0 the cyclist
experiences a pure headwind force while for β = 180◦ he feels a back force. This setup thus allows
to tune precisely the apparent wind intensity and direction independently.

Concerning the forces, the cyclist experiences the total aerodynamic force F A = F D + F L + F S
which is composed of the drag force F D, of the lift force F L and of the side force F S . Since the lift
force on a cyclist is small [19], the total aerodynamic force reduces to F A = F D + F S .

The orientation of the cyclist with respect to the flow is varied between β = 0◦ [Fig. 3(a)] and
β = 180◦ [Fig. 3(c)] with angle increments of �β = 20◦. The perpendicular direction β = 90◦
[Fig. 3(b)] is added to this set (0,20,40,60,80,90,100,120,140,160,180). For each angle, the drag
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FIG. 2. Setup and conventions used to study the wind force on a cyclist.

force F D and the side force F S are measured by the balance, from which the forces F x and F y,
respectively in the x and y directions are deduced [Fig. 3(d)]:

F x = (FD cos β + FS sin β )ex and F y = (−FD sin β + FS cos β )ey, (2)

where ex and ey are the unit vectors in the x and y directions. The resultant aerodynamic force acting
on the cyclist is shown in Fig. 3(d): F A = F D + F S = F x + F y.

In the following, the different intensities of forces will be expressed as

Fλ = 1
2ρSCλU 2, (3)

where SCλ is the area coefficient associated to the component λ (D = drag, S = side, x = x direction,
y = y direction).

A. The cyclist and his equipment

The experiments have been conducted with a time trial specialist from the AG2R Citroën U23
Team (21 years old, 1.85 m, 77 kg). To reproduce the real conditions during the experiments, the
cyclist has used his own equipment: bike (Scott Plasma 5, Switzerland), skin suit (Rosti, France),
helmet with visor (Ekoi TTRB, France), and cotton socks. Bike tubulars are 2-(Vittoria Corsa, Italia)
inflated at a pressure of 8 bars.

B. Three different wheel sets

To evaluate the influence of the wheels, we have used the three wheel sets presented in Fig. 4: Set
1 = spokes wheels (Mavic CXR 80, France) with 24 spokes in the back and 16 spokes in the front;
Set 2 = back disk wheel (Corima Paracular, France) and front 3 spokes wheel (Corima 3 spokes,
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FIG. 3. Experimental setup used to measure the wind force F A on a cyclist: (a) pure headwind position
(β = 0◦), (b) perpendicular wind (β = 90◦), (c) pure tailwind position (β = 180◦), (d) conventions used to
describe the forces acting on the cyclist. In panels (a–c), the white arrow indicates the direction of the flow.

France); Set 3 = back disk wheel (Corima Paracular, France) and front 16 spokes wheel (Mavic
CXR 80, France).

C. Wind tunnel

Tests are carried out in the S4 wind tunnel of the Institut Aérotechnique at Saint-Cyr-l’Ecole.
The facility is a subsonic wind tunnel (maximum speed 40 m/s, turbulence intensity 1%), with
dimensions 5 m wide, 3 m high, and 10 m long. The wind tunnel is equipped with a 4 m diameter
rotating turntable that incorporates a six-components aerodynamic balance and a dynamometer
roller that allows to turn the wheels of the bicycle. A schematic of the wind tunnel and the main
characteristics of the aerodynamic balance are given in the Appendix. Three wind speeds are

FIG. 4. Presentation of the three sets of wheels tested: (a) Set 1, (b) Set 2, (c) Set 3.
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FIG. 5. Variation of the drag area SCD (a) and of the side area SCS (b) as a function of the direction of the
apparent wind β using U = 13.9 m/s (50 km/h). The results obtained with wheel Set 1 are presented with blue
squares. Red squares represent the results obtained with wheel Set 2 and green squares those of wheel Set 3.
The solid line in panel (a) stands for the heuristic relation SCD = 0.21 cos β. The solid line in panel (b) stands
for the heuristic relation SCS = 1.3 sin β and the dashed line for SCS = 1.15 sin β.

considered U1 = 13.9 m/s (50 km/h), U2 = 11.1 m/s (40 km/h), and U3 = 16.7 m/s (60 km/h). For
each wind speed Ui the rotation of the wheels ωi is adjusted so that Rωi = Ui, where R = 339 mm
is the radius of the wheel. During the tests, the cyclist is asked to turn his legs at his natural spin
rate. All the experiments are conducted at a pressure patm = 100791 Pa, temperature Tatm = 293 K
corresponding to air density ρ = 1.199 kg/m3.

III. EXPERIMENTAL RESULTS

A. Influence of the set of wheels

In this section, we discuss the influence of the wheels on the force acting on the cyclist, keeping
constant the wind speed at U = 13.9 m/s (50 km/h) and varying the direction of the apparent wind
β. Figure 5 reports the evolutions of the drag area SCD (a) and of the side area SCS (b) as a function
of β. The three different sets of wheels are represented with three different colors (wheel Set 1 in
blue, wheel Set 2 in red, and wheel Set 3 in green). We observe that the evolution of the drag area is
similar for the three sets and can be approximated by the heuristic relation SCD = SCD0 cos β with
SCD0 = 0.21 m2 (within 10% accuracy over the whole range of yaw angles β). The behavior of the
side area SCS is also similar for the three sets. Sets 2 and 3 having the same back wheels and different
front ones are well fitted (within 5% accuracy over the whole range of β) by SCS = SCS90 sin β with
SCS90 = 1.3 m2 whereas Set 1 is well described by SCS90 = 1.15 m2 (within 3% accuracy over the
whole range of β).

From the relations Eqs. (2) and (3) we deduce the x area SCx [Fig. 6(a)] and the y area SCy

[Fig. 6(b)] on the cyclist. As expected, the x area is minimal for pure headwind and pure tailwind
and exhibits a maximum for β = 90◦.

Using the heuristic relations for SCD and SCS in Eq. (2) one deduces the following relations for
the x area [solid line in Fig. 6(a)] and for the y area [solid line in Fig. 6(b)] on the cyclist:

SCx = SCD0 + (SCS90 − SCD0) sin2 β and SCy = (SCS90 − SCD0) sin 2β/2. (4)
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FIG. 6. Variation of the x area SCx (a) and of the y area SCy (b) as a function of the apparent wind direction
β using U = 13.9 m/s (50 km/h). The resulting polar curve SCy(SCx ) is presented in panel (c). Wheel Set 1,
blue; wheel Set 2, red; wheel Set 3, green.

These equations show that both x and y drag areas are minimum for pure headwinds (β = 0◦)
and pure back winds (β = 180◦). Fx reaches a maximum at β = 90◦ (namely, when the apparent
wind is perpendicular to the cyclist direction), whereas the cyclist experiences maximum force in
the y direction when the apparent wind direction is at β = 45◦ and β = 135◦.

From the x and y forces, we construct the polar curve of a cyclist SCy(SCx ) presented in Fig. 6(c).
Apart from its quasicircular shape we observe a clear separation of the three sets of wheels: Set 2
(red) has a larger surface than Set 3 (green) which has itself a larger surface than Set 1 (blue).

The above experimental results provide an heuristic expression for the total aerodynamic force
F A acting on a cyclist in crosswind (Fig. 3):

F A = 1

2
ρU 2

[
SCD0 cos β t
SCS90 sin β n

]
= 1

2
ρU 2

[
[SCD0 + (SCS90 − SCD0) sin2 β] ex

1/2(SCS90 − SCD0) sin 2β ey

]
. (5)

B. Influence of the velocity

The influence of the apparent wind velocity on the drag and side areas has been measured
using the bicycle equipped with paracular back and front wheels Corima 3B (wheel Set 2). Three
different velocities have been considered U = 11.1 m/s (40 km/h), U = 13.9 m/s (50 km/h) and
U = 16.7 m/s (60 km/h). The results reported in Fig. 7 show that both the drag area and the side
area are unaffected by the wind velocity at any given yaw angle: over the whole range of yaw angles
β, the difference observed between 16.7 m/s (orange squares) and 11.1 m/s (black squares) is less
than 5%.

IV. SIMPLE MODEL FOR THE AERODYNAMIC FORCE ON A CYCLIST

The basic idea to model the flow around a cyclist consists in observing that the bicycle defines
a plane perpendicular to the ground containing the two wheels and the frame and that the cyclist is
a bluff body. As shown in Fig. 8(a) we thus decompose the flow around the cyclist in two distinct
parts: the flow around a plate of incident angle β accounting for the bike (1) and the flow around a
cylinder accounting for the cyclist (2). Following Hoerner [20], the flow around a plate induces an
aerodynamic force perpendicular to the plate of the form F A1 = 1/2ρSCD1U 2 sin β n. On the other
side, the flow around a cylinder induces the aerodynamic force F A2 = 1/2ρSCD2U 2 ex. Using the
decomposition F A = F A1 + F A2 together with the geometrical relations ex = cos β t + sin β n and
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FIG. 7. Variation of the drag area SCD (a) and of the side area SCS (b) as a function of the direction of
the apparent wind β at three different wind speeds: U = 11.1 m/s in black full squares, U = 13.9 m/s in gray
full square and U = 16.7 m/s in orange full square and using wheel set 2. The solid line in (a) represents the
heuristic relation SCD = 0.21 cos β. The solid line in panel (b) indicates the heuristic relation SCS = 1.3 sin β.

ey = − sin β t + cos β n we get

F A = 1

2
ρU 2

[
SCD2 cos β t

(SCD1 + SCD2) sin β n

]
= 1

2
ρU 2

[[
SCD2 + SCD1 sin2 β

]
ex

SCD1/2 sin 2β ey

]
. (6)

This aerodynamic force is identical to the one obtained experimentally provided the identification
SCD1 = SCS90 − SCD0 and SCD2 = SCD0. While looking for the corresponding polar curve, we
deduce the following relationship between the y and x components:[

SCx

SCD1/2
−

(
SCD2

SCD1/2
+ 1

)]2

+
(

SCy

SCD1/2

)2

= 1. (7)

This equation describes a circle of radius R = SCD1/2 the center of which is located on the
horizontal axis at a distance R + SCD2 from the origin. This circle is presented in Fig. 8(b) and
allows us to understand the features obtained experimentally [Fig. 6(c)].

V. AERODYNAMIC POWER

The power PA dissipated by the aerodynamic force writes PA = F A.U c. Since F A = F D + F S =
FD t + FS n and U c = −Uc t one deduces: PA = −FD Uc. Using the expression of the drag force

FIG. 8. (a) Decomposition of the flow around the cyclist. (b) Polar curve associated with Eq. (7).
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FD = 1/2ρSCD(β )U 2, the aerodynamic power takes the form

PA = − 1
2ρSCD(β )

(
U 2

c + U 2
w + 2UcUw cos α

)
Uc, (8)

where the square of the apparent wind is deduced from the composition presented in Fig. 1(b) as
U 2 = (Uc + Uw cos α)2 + (Uw sin α)2. If PA is negative, then power is dissipated by aerodynamic
resistance. When SCD(β ) < 0 the sign changes and the aerodynamic force becomes propul-
sive. Using the heuristic relation SCD = SCD0 cos β [SCD0 = SCD(β = 0)] one deduces that the
resistance-propulsion transition occurs for β = 90◦. Since cos β = (Uc + Uw cos α)/U , Eq. (8) can
be rewritten as

PA = − 1
2ρSCD0

√
(Uc + Uw cos α)2 + (Uw sin α)2 (Uc + Uw cos α) Uc. (9)

This expression reduces (in absolute value) to the classical expression PAC = 1/2ρSCD0U 2
a Uc

[Eq. (1)] only for sin α = 0, namely, in either pure headwind (α = 0◦) or pure tailwind (α =
180◦). Apart from these two limits the aerodynamic power predicted by Eq. (9) is larger than
the one expected by the classical expression. The perpendicular wind case α = 90◦ allows to
illustrate the difference between both expressions: in this limit, the classical expression predicts
that the aerodynamic power is independent of the wind speed PAC (α = 90◦) = 1/2ρSCD0U 3

c .
On the contrary, Eq. (9) predicts that the aerodynamic power does depend on the wind speed:
|PA| = 1/2ρSCD0

√
U 2

c + U 2
w U 2

c ; the larger the wind speed the larger the dissipation.

VI. WIND IMPACT ON CYCLIST SPEED

The discussion is initially conducted assuming a straight and horizontal road with a constant
cyclist velocity. To analyze the impact of the aerodynamic resistance on the cyclist speed we
first introduce the zero true wind limit (Sec. VI A). The impact of wind on this velocity is then
determined through a balance between the power delivered by the cyclist and the new expression
of the aerodynamic power dissipation (Sec. VI B). The role of rolling resistance and road slope are
discussed in Secs. VI C and VI D, respectively.

A. The zero true wind limit

When Uw = 0, Eq. (9) simply writes |PA0| = 1/2ρSCD0U 3
c0 where Uc0 = Uc(Uw = 0) and PA0 =

PA(Uw = 0). In the limit where the aerodynamic resistance dominates (rolling and slope contribu-
tions are discussed in a second step) the steady velocity of the cyclist is achieved by balancing
this aerodynamic resistance with the power, Pm, delivered by the muscle [7,21]. This balance,
Pm = |PA0|, leads to the expression of the zero wind steady velocity:

Uc0 =
(

2Pm

ρSCD0

)1/3

. (10)

With Pm = 200 W and SCD0 = 0.25 m2 one finds Uc0 = 11 m/s. This velocity increases up to
13.9 m/s (50 km/h) for Pm = 400 W, which is the typical velocity observed in professional flat
time trial [21].

B. Cyclist velocity in a crosswind

Assuming that the muscle power Pm is not affected by the wind (Pm = |PA0|), we use the balance
|PA| = Pm to obtain, via Eq. (9), the equation of the cyclist velocity in a crosswind:√

(Ūc + Ūw cos α)2 + (Ūw sin α)2(Ūc + Ūw cos α)Ūc = 1, (11)

where Ūc = Uc/Uc0 and Ūw = Uw/Uc0. This nonlinear equation is solved numerically and the results
are shown in Fig. 9(a). The isovalues of the reduced velocity Uc/Uc0 are represented in the wind
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FIG. 9. Isovelocity lines Uc/Uc0 in the wind phase space (α,Uw/Uc0 ). The red region corresponds to the
headwind domain whereas the blue region to the tailwind. Panel (a) represents the solution obtained from
Eq. (11); panel (b) reports the predicted isovelocity lines obtained from the classical Eq. (1) reformulated as in
Eq. (12).

phase space (α,Uw/Uc0). The red region corresponds to the domain where the cyclist velocity in
the wind is smaller than his velocity without wind (Uc/Uc0 < 1). This “headwind-type” domain
extends from α = 0 to a value larger than 90◦ which depends on the intensity of the wind. The blue
region corresponds to the domain where the velocity in the wind is larger than the one achieved in the
zero wind limit (Uc/Uc0 > 1) which is the “tailwind-type” domain. At the interface between these
two zones, one finds the isovalue Ūc = 1 where the wind does not affect the velocity of the cyclist.
The isovelocity curves exhibit a hyperbolic behavior: at low relative wind velocities (Uw/Uc0 <

1), they are almost horizontal which means that the cyclist velocity is nearly independent of the
wind direction. However, it changes with the wind intensity. On the contrary, at large relative wind
velocities (Uw/Uc0 > 1), the isovelocity lines are almost vertical which means that the cyclist speed
becomes very sensitive to the wind direction.

This predicted velocity of the cyclist in the wind is compared with the one obtained from the
classical Eq. (1), which is recast for comparison as√

(Ūc + Ūw cos α)2(Ūc + Ūw cos α)Ūc = 1. (12)

The results are presented in Fig. 9(b). The figure shows that the formula that we obtained to estimate
the cyclist velocity using the new expression for the aerodynamic power [Eq. (9)], and the one
obtained by applying the classical expression yield the same results in the limits of pure headwind
(α = 0◦) and pure tailwind (α = 180◦). For a side wind perpendicular to the road (namely, for
α = 90◦) the latter yields Uc/Uc0 = 1 independently of the wind intensity, whereas the new relation
correctly predicts that the cyclist velocity decreases by an amount that depends on the wind intensity.

C. Cyclist velocity in a crosswind with rolling friction

According to Martin et al. [8], the power dissipated by rolling resistance PRR = CRRMgUc is the
second most important dissipation after the aerodynamic resistance. The balance |PA| + PRR = Pm

leads to the equation for the cyclist velocity:√
(Ūc + Ūw cos α)2 + (Ūw sin α)2(Ūc + Ūw cos α)Ūc + εRRŪc = 1, (13)

where εRR = 2CRRMg/(ρSCD0U 2
c0). Using typical values CRR = 0.004, M = 80 kg, SCD0 =

0.25 m2, and Pm = 200 W, one finds Uc0 = 11 m/s and εRR = 0.17.
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FIG. 10. Isovelocity lines Uc/Uc0 in the wind phase space (α,Uw/Uc0 ) for two different rolling friction:
panel (a) εRR = 0.17, panel (b) εRR = 1.

The solution of Eq. (13) for εRR = 0.17 is presented in Fig. 10(a). The first observation is that
the red region spreads out through the full angle range in the limit of zero wind. This means that
even without wind the cyclist will not reach the maximum speed Uc0 due to the rolling friction. The
blue region defined by Ūc � 1 is reduced but the general trend remains unchanged. Increasing the
rolling friction to εRR = 1 leads to the solution presented in Fig. 10(b). The blue region shrinks in
the top right corner.

To further analyze the influence of the rolling resistance, we introduce the steady cyclist velocity
in the zero wind limit, Uc1, that satisfies the following relation:

1
2ρSCD0U 3

c1 + CRRMgUc1 = Pm = 1
2ρSCD0U 3

c0. (14)

This equation can be cast in a Tartaglia-type cubic equation:

Ū 3
c1 + εRRŪc1 = 1, (15)

where Ūc1 = Uc1/Uc0. The solution of Eq. (15) is

Ūc1 = X − (εRR/3)/X with X =
(

1 +
√

1 + 4(εRR/3)3

2

)1/3

. (16)

For εRR = 0.17, one finds Ūc1 = 0.94, and for εRR = 1, one finds Ūc1 = 0.68. If we now normal-
ize the cyclist velocity by the zero-wind limit velocity Uc1 obtained from the Tartaglia solution, then
we observe in Fig. 11 that Uc/Uc1 exhibits the same features observed for Uc/Uc0 when plotted in the
wind phase space (α, Uw/Uc1). In this representation, the headwind (red region) and tailwind (blue
region) domains become similar to the one obtained without friction and presented in Fig. 9(a).

D. Cyclist velocity in the wind with rolling friction and inclined road

The impact of a crosswind on the velocity of a cyclist climbing a slope Gr can easily be treated
since the power associated to the slope writes PPE = GrMgUc [8,21]. This structure is identical to the
one associated to the rolling friction, the road slope playing the same role as the rolling coefficient
CRR. The impact of a crosswind on the velocity of a cyclist climbing an inclined road can thus be
treated using the analysis presented in Sec. VI C replacing CRR by CRR + Gr .

VII. CONCLUSION

The aerodynamic force exerted on a cyclist in a time trial position by an apparent crosswind of
intensity U and yaw angle β is first studied experimentally in a large-scale wind tunnel. For the first
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FIG. 11. Isovelocity lines Uc/Uc1 in the wind phase space (α,Uw/Uc1) for two different rolling friction:
panel (a) εRR = 0.17, panel (b) εRR = 1 .

time, the entire wind range direction from β = 0◦ (pure headwind) to β = 180◦ (pure tailwind) is
explored, thus enabling the establishment of analytical relations for the drag and side areas:

SCD = SCD0 cos β and SCS = SCS90 sin β,

where SCD0 and SCS90 are constants that have been found to be of the order of 0.21 m2 and 1.3 m2,
respectively.

A theoretical model based on the decomposition of the flow around the cyclist as the sum of the
flow around a flat plate (accounting for the plane defined by the bike) and the one around a cylinder
(accounting for the bluff body of the cyclist) is then developed. The model is shown to be able to
account for the main aerodynamic features observed experimentally.

These quantitative results obtained for the force exerted by the wind on a cyclist are then used
to establish the expression of the total aerodynamic power associated to an arbitrary crosswind.
Considering a cyclist of velocity Uc cycling in a wind of intensity Uw and direction α (α = 0 being
headwind), the expression of the total aerodynamic power dissipated in crosswinds is found to be

PA = − 1
2ρSCD0

√
(Uc + Uw cos α)2 + (Uw sin α)2 (Uc + Uw cos α) Uc.

Using this new expression for the total aerodynamic power we finally study the impact of the
wind on the steady velocity of the cyclist and determine the velocity change compared to the zero
wind limit as a function of the relative wind speed and direction.

The impact of rolling resistance and road slope are finally considered and a general framework
is presented to address the impact of any crosswind on a cyclist.
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FIG. 12. (a) Top view scheme of S4 wind tunnel. (b) Side view scheme of S4 wind tunnel. (c) Detail of the
bike connection to the aerodynamic balance.

APPENDIX: MAIN CHARACTERISTICS OF THE S4 WIND TUNNEL OF IAT

A schematic of the S4 wind tunnel is shown in Fig. 12 and we detail below the measurement of
the incoming velocity U , the size of the boundary layer, the accuracy of the balance and the cyclist
setup.

1. Wind speed measurement

The dynamic pressure Pdyn = Ptot − Pstat is measured from a total pressure probe (Ptot) installed at
the inlet of the test section and from two static pressure taps (Pstat) symmetrically positioned on the
lateral walls at the center of the test section using a differential pressure transducer. The atmospheric
pressure is measured by a barometric gage, the air temperature is measured in the test section by
means of a thermocouple and the air density is calculated applying the equation of state. The wind
velocity is then obtained from the dynamic pressure definition:

U =
√

2Pdyn

ρ
. (A1)

TABLE I. Characteristics of the balance.

Forces X Y Z

Capacities (N) 5000±10 000 +5000/ − 10 000
Accuracy (%) 0.05 0.05 0.1
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TABLE II. Characteristics of the balance.

Moments L M N

Capacities (N.m) 5000±10 000 +5000/ − 10 000

2. Boundary layer

At the entrance of the test section, 1 m ahead of the turntable, boundary layer suction is applied
through a slot which reduces the boundary layer thickness to 2 cm.

3. Balance

The aerodynamic forces on the cyclist are measured using a six components aerodynamic balance
integrated in the rotating turntable just underneath the floor of the test section. The balance is made
of three loadcells to measure the vertical load (Z), the pitch moment (M) and the roll moment (L),
two horizontal loadcells to measure the sideforce (Y ) and the yaw moment (N), and one longitudinal
loadcell to measure the drag (X ). To attenuate the effects of the mass of the object to be tested
and minimize the cross-talking interactions between the vertical and horizontal forces, the vertical
loadcells are fitted onto hydraulic conical supports on their nonweighted sides.

The characteristics of the balance are given in Tables I and II:

4. Cyclist setup

The setup used for the cyclist is made of two support plates (front and rear) fitted on the center
interfaces of the floor balances [Fig. 12(c)]. These two support plates hold a pair of vertical struts to
connect the bike at its wheel axis. The lateral and longitudinal positions of the struts are adjustable.
When held by the struts, the wheels sit on the top of two rollers, embedded in the plates. These
rollers are motorized by DC motors controlled from the wind tunnel control room. The speed of the
wheels is set accordingly to the wind speed. Depending on the bike, the rear wheel can be driven
either by its motor or by the cyclist.
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