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Janus particles are a class of artificial swimmers with an anisotropic coverage of
catalyst on its surface. This generates a tangential chemical gradient. Solute molecules
interact with the particle surface via a short-range potential. The asymmetric distribution
of solute molecules gives rise to a tangential pressure gradient near the particle surface.
This results in diffusio-osmotic flows in a thin region at the particle surface. The flow
inside the thin layer is modeled as an effective slip velocity at the particle scale. This
slip results in self-propulsion of a freely suspended particle, even in the absence of exter-
nally imposed concentration gradients. Previous studies have shown significant similarity
between artificial and biological chemotaxis. Based on the magnitude of Péclet number
(ratio of advective to diffusive effects), advective effects can have a moderate effect on
the swimming velocity of an artificial swimmer. The current work aims at developing
a theoretical framework to capture weak advective effects on the swimming velocity of
an active particle under the influence of an external concentration gradient. It can be
applied for any active particle with an axisymmetric surface activity distribution. Using
Péclet number as a perturbation parameter, we employ a singular perturbation technique
along with the method of matched assymptotic expansions to evaluate the concentration
field up to O(Pe). Using the Lorentz reciprocal theorem, an analytical expression for the
translational velocity valid up to O(Pe) is obtained. We show O(Pe) correction of solute
advection always reduces the swimming velocity.
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I. INTRODUCTION

Over the recent past there has been a significant increase in research on self-propulsion of
microparticles. These particles convert the chemical energy present in the environment into the
mechanical energy needed for their self-propulsion. The swimming motion is characterized by low
Reynolds number (Re ∼ 10−6), which requires a break in fore aft symmetry [1]. For a microor-
ganism, this is achieved through cellular appendages i.e., flagella or cilia present on its surface.
These actuate in a wavelike motion on the surface to “push” or “pull” the microorganism, thereby
achieving self-propulsion [2,3].

On the other hand, artificial swimmers typically self-propel via asymmetry in the surface
properties [4–6] (such as surface activity, surface mobility, surface absorbance, etc.). For instance, a
Janus particle coated asymmetrically with a catalyst can generate a near surface tangential chemical
gradient. This generates the necessary tangential potential energy gradient for self-propulsion. The
study of artificial swimmers has gained a renewed interest due to its potential application in drug
delivery.
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Microorganisms typically exhibit chemotaxis, i.e., they respond to chemical gradients present in
the environment. Specifically, E.coli moves towards a nutrient-rich region and is repelled from toxic
environments by sensing the local concentration gradient and accordingly regulating its complex
flagellar rotations [7–9]. Chemical signals sent out by mammalian eggs also help sperm cells
to navigate and move towards the eggs [10,11]. Recent works have shown significant similarity
between biological and artificial chemotaxis [12,13]. Artificial swimmers have been shown to
“seek” an external concentration gradient.

Derjaguin and coworkers [14] were the first to study diffusiophoresis, i.e., movement of colloidal
particles in concentration gradients. Later, Anderson [15] mathematically modeled the diffusio-
phoresis of an inert particle using a continuum framework. They showed that the external gradient
creates an asymmetric interaction (attraction or repulsion) inside a thin layer around the particle,
which creates a pressure gradient. The pressure gradient drives the fluid inside a thin layer, causing
diffusio-osmosis. Fluid flow inside the thin layer is represented as a slip velocity at the particle
scale, leading to the motion of the particle. The model at the particle scale considers diffusion as the
dominant mechanism for transport of solute molecules.

Self-diffusiophoresis is another such mechanism, which results in self-propulsion of micron to
sub-micron-sized particles. Howse et al. [5] synthesized a particle with platinum coated on one half
and a nonconducting polystyrene on the other. The particles were placed in a solution with hydrogen
peroxide. The peroxide reacts on the platinum-coated surface and creates a local concentration
gradient inducing near surface flows, resulting in self-propulsion of particles. Golestanian et al.
[18] developed a theoretical model of self-propelling Janus particles in a continuum framework.
The mathematical model is based on three primary assumptions: (1) the interactive layer is thin
compared to the size of the particle, allowing the fluid flow inside the thin layer to be approximated
as a slip velocity at the surface, (2) diffusion was the dominant mode of solute transport, and (3) a
fixed rate of adsorption or desorption of solute capture or release occurred at the “active” site. They
concluded that an asymmetric surface activity is necessary for the self-propulsion of a chemically
active particle. Micron-sized particles propelling using self-generated gradient of electric potential
have also been synthesized recently [4,16,17]. This mechanism is termed as “self-electrophoresis.”

Michelin and Lauga [19] applied numerical methods to explore solute advection and reactive
effects on the swimming velocity of a Janus particle placed in a solution of uniform solute
concentration. The calculations were made for a (i) half-face Janus particle and (ii) nonsymmetric
Janus particle. The effect of Péclet number was found to be significant only for Pe > O(1) for both
the particles.

More recently, Natale et al. [20] investigated the effect of solute advection on the swimming
velocity of a Janus sphere in a weakly viscoelastic medium. They used a combination of perturbation
and numerical methods. The governing equations were perturbed for small Deborah numbers (ratio
of relaxation timescale to the characteristic timescale), and the advection diffusion equation was
solved numerically at each order. Large local viscoelastic stresses were observed due to discontinu-
ity in the surface activity. Solute advection sharpens or reduces the local concentration gradient, thus
directly enhancing or diminishing the viscoelastic stresses. A significant effect of solute advection
was seen for Pe > O(1).

Using perturbation expansion in Pe, Keh and Weng [21] investigated the effect of solute advec-
tion on the swimming velocity of a neutral particle placed in an external concentration gradient.
The method of matched asymptotic expansions was employed to evaluate the O(Pe2) correction
to the swimming velocity. The formulation employed is similar to that used for thermophoretic
spheres or bubbles by Subramanian [22] and Leshansky et al. [23]. However, the physical origin of
thermophoresis is gradient in Marangoni stress.

Recently, Khair [24] extended Keh and Weng’s work to account for two particle interactions.
The formulation employed matched asymptotic expansion to evaluate the effect of advection for
small but finite Péclet number. Numerical methods were employed to investigate the effect of solute
advection for larger Péclet number. It was found that the solute advection reduced the strength of
concentration gradient locally, causing a decrease in translational velocity with increase in Péclet
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number. For a nonspherical particle, the translational velocity was found to be dependent on the
shape and orientation .

Popescu et al. [25] qualitatively investigated artificial chemotaxis and showed that an additional
symmetry breaking in surface mobility is required for the artificial swimmer to “sense” the external
gradient. Tatulea-Codrean and Lauga [26] theoretically studied artificial chemotaxis of a Janus
particle. The reaction at the active surface followed Michaelis-Menten kinetics in the limit of
low substrate concentration. In this limit the reaction rate becomes proportional to the substrate
concentration. Here, both substrate and the product interact with the particle, leading to chemotaxis.
The same problem in the limit of high substrate (solute) concentration was studied by Vinze et al.
[27].

Typically, Péclet number associated with artificial swimmers is of the order 10−2. This suggests,
solute advection can play a modest role in artificial chemotactic systems. Thus, quantifying its
effect will help in designing potential drug delivery applications. To obtain insights into the role
of solute advection, we theoretically investigate the effect on the translation of an active particle
in a linear concentration gradient to O(Pe). The mathematical formulation of the problem is
presented in Sec. II. Here we describe the characteristic scales present in the system and render
the equations dimensionless. We perturb the system for a small but finite value of Péclet number.
We investigate the effect of solute advection after the particle has reoriented. This results in an
axisymmetric system. In Sec. III, using the principle of linearity and superposition, we first solve for
the concentration field at the leading order. The velocity field is then solved using a stream-function
formulation, and the singular nature of this problem is identified. In Sec. IV, due to the singular
nature, we divide the domain into two regions and solve in each region separately and match them
using Van Dyke’s principle [28]. Using the Lorentz reciprocal theorem, the swimming velocity
corrected up to O(Pe) is obtained in Sec. V. We analyze the system for different surface coverages
of the activity and report the corrected velocity expression valid up to O(Pe). Lastly, in Sec. VI we
conclude with the physical insights obtained from this study and present future perspectives.

II. PROBLEM FORMULATION

Consider a chemically active particle of radius a∗ under the influence of an external linear
concentration gradient of strength (γ ∗). The superscript * denotes a dimensional quantity. The
surface activity of the particle is taken to be axisymmetric and a smooth function of the polar angle
[α∗(θ )]. The surface activity characterizes the rate of adsorption or desorption of solute molecules
on the surface of the particle. The interaction of the solute molecules with the particle surface is
characterized by a mobility coefficient μ∗. Repulsive interactions lead to a positive value of μ∗, and
vice versa. The main aim of this study is to quantify the effect of solute advection on the swimming
velocity of a chemically active particle. The current study quantifies the role of solute advection after
the particle has reoriented along the external concentration gradient. The external concentration is
along the axis of symmetry of the active particle as shown in Fig. 1. The external concentration field
is given by

C∗
∞ = γ ∗z′∗. (1)

The imposed concentration gradient is in a stationary frame of reference. It is transformed in the
moving frame using

z′∗ = z∗ + U ∗
s t∗. (2)

Here U ∗
s is the swimming velocity of the particle. Substituting Eq. (2) into (1), the imposed

concentration field is given by

C∗
∞ = γ ∗(z∗ + U ∗

s t∗). (3)

The characteristic length scale in the system is lch = a∗. Velocity scale is taken as a sum
of the characteristic scales arising from surface activity and the external concentration gradient,
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FIG. 1. Schematic depicting the two frames of references. S’ is the rest frame of reference while S denotes
the moving frame of reference. The system is axisymmetric with external concentration gradient C∞ along the
axis of symmetry. Gray and white colors represent different surface activity.

uch = μ∗(γ ∗ + α∗
D∗ ). Here, α∗ represents the maximum magnitude of the surface activity. The

timescale is taken as tch = lch
uch

and the characteristic concentration as Cch = α∗a∗
D∗ , where D∗ is the

diffusion coefficient of solute molecules in the fluid. The pressure characteristic scale is Pch = ν∗uch
lch

.

A dimensionless number (A = γ ∗D∗
α∗ ) is introduced which expresses the relative strength of the

external gradient compared to the self-generated gradient. Using the above characteristic scales,
the dimensionless solute and momentum balance in the particle (moving frame of reference) frame
is given as

Solute balance:

Pe

(
∂c

∂t
+ u · ∇c

)
= ∇2c, (4)

c → C∞ as r → ∞, (5)

−n · ∇c = α(θ ) at r = 1. (6)

Momentum balance:

Re

(
∂u
∂t

+ u · ∇u
)

= −∇P + ∇2u, (7)

u → −Us as r → ∞, (8)

u = μ(I − nn) · ∇c

A + 1
at r = 1. (9)

Here the far field concentration field C∞ = A(rcosθ + Ust ). Equations (4)–(9) completely govern
the dynamics of solute and momentum transport. The concentration field is coupled with the velocity
field via the slip velocity relation given by (9). Two dimensionless numbers describing the system
behavior are Pe = u∗

cha∗

D∗ and Re = u∗
cha∗

ν∗ . For a particle of size 10 μm, with swimming velocity
of order ∼1 μm/s, taking the diffusion coefficient as 2.3×10−9 m2/s and kinematic viscosity of
water as 1.05×10−6 m2/s, the Reynolds number and Péclet number are 9.52×10−6 and 4.3×10−2,

respectively. The Reynolds number suggests that fluid advection plays a negligible role. Therefore
the assumption of Stokes flow is reasonable for such problems. However, the Péclet number suggests
weak or moderate solute advection exists. To quantify this effect and obtain physical insights, in this
work we use a perturbation technique to find the effect of solute convection to first order in Pe. We
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seek a solution of the form

c = c0(r, t ) + Pec1(r, t ) + O(Pe2)
u = u0(r, t ) + Peu1(r, t ) + O(Pe2)
P = P0(r, t ) + PeP1(r, t ) + O(Pe2).

(10)

This leads to the slip velocity and the swimming velocity of the form

uslip = uslip,0 + Peuslip,1 + O(Pe2)

Us = Us,0 + PeUs,1 + O(Pe2), (11)

where uslip,0 and Us,0 are the contribution of the slip velocity at the leading order (without solute
convection), while uslip,1 and Us,1 account for the first order advective effects on the slip velocity
and swimming velocity. Substituting Eq. (10) into Eqs. (4)–(9), we obtain the governing equations
at each order of Péclet number. At leading order we obtain

Solute transport:

∇2c0 = 0, (12)

−n · ∇c0 = α(θ ) at r = 1, (13)

c0 → C∞ as r → ∞ (14)

Momentum transport:

∇2u0 − ∇P0 = 0, (15)

u0 = −Us,0 as r → ∞, (16)

u0 = μ(I − nn) · ∇c0

A + 1
at r = 1. (17)

At O(Pe) we have
Solute transport:

∇2c1 = ∂c0

∂t
+ u0 · ∇c0, (18)

−n · ∇c1 = 0 at r= 1, (19)

c1 → 0 as r → ∞. (20)

Momentum transport:

∇2u1 − ∇P1 = 0, (21)

u1 = −Us,1 as r → ∞, (22)

u1 = μ(I − nn) · ∇c1

A + 1
at r = 1. (23)

The advective effects of the solute do not contribute at the leading order. The correction to the
swimming velocity due to advection is realized at O(Pe). The solute advection appears as a source
term at O(Pe) in (18). Following previous studies [21,22,24], we describe the solution procedure for
the above equations at each order, starting from the leading order in the next section.

124201-5



PRATHMESH M. VINZE AND S. PUSHPAVANAM

III. SOLUTION OF CONCENTRATION AND VELOCITY FIELD AT LEADING ORDER

A. Concentration field

The concentration field is governed by Eqs. (12)–(14) at O(Pe0). Following previous works of
Subramanian [22] and Khair [24], we define a steady disturbance field c′

0(r) = c0(r, t ) − C∞(r, t ).
This is governed by

∇2c′
0 = 0, (24)

−n · ∇c′
0 = α(θ ) + A cos θ, (25)

c′
0 → 0. (26)

Following [27], the solution to (24)–(26) is given by

c′
0 = Aη

2r2
+

∞∑
l=0

αl r−(l+1)

l + 1
Pl (η), (27)

where η = cosθ , Pl (η) is the Legendre polynomial of order l and αl is the lth spectral mode of
surface activity distribution. The first term arises from the contribution of external concentration
gradient while the second term appears due to surface activity. The leading order disturbance in
(27) decays as O(1/r), which corresponds to l = 0 mode of surface activity. The concentration field
at leading order is given by c0(r, t ) = c′

0(r) + C∞(r, t ):

c0 = Arη + AUs,0t + Aη

2r2
+

∞∑
l=0

αl r−(l+1)

l + 1
Pl (η). (28)

B. Velocity field

The velocity field is governed by (15)–(17), where Us,0 is the leading order swimming velocity
of the particle. Using (28), the slip velocity at the surface is evaluated as

uslip,0 = −μ
√

1 − η2

A + 1

(
3A

2
+

∞∑
l=0

αl

l + 1

dPl

dη

)
êθ . (29)

The swimming velocity is evaluated using Lorentz reciprocal theorem [29] as

Us,0 = −1

4π

∫∫
S

uslip,0dA. (30)

Substituting (29) in (30) we obtain the swimming velocity as

Us,0 = −μ

(A + 1)

(
α1

3
+ A

)
êz. (31)

Here α1 is the first mode of activity. Use of the Lorentz reciprocal theorem helps in determining
the swimming velocity at O(Pe0) without calculating the velocity field at O(Pe0). However, to
evaluate the swimming velocity at O(Pe), the velocity field must be evaluated at O(Pe0), which
arises as a source term in (18). The axisymmetric nature of the problem encourages us to seek the
velocity field using a stream-function formulation. We define the stream function ψ0 such that the
radial and polar velocity components are given by

ur = − 1

r2

∂ψ0

∂η
, uθ = − 1

r
√

1 − η2

∂ψ0

∂r
. (32)
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The stream function is obtained as

ψ0 = Us,0

(
r2 − 1

r

)
Q1(η) + μ

2(A + 1)

∞∑
n=2

nαn(r−n − r2−n)Qn(η). (33)

We refer the readers to Appendix A for the detailed derivation of (33). The radial and polar
components are evaluated using (32) as

ur,0 = Us,0

(
1

r3
− 1

)
P1(η) − μ

2(A + 1)

∞∑
n=2

nαn(r−n−2 − r−n)Pn(η),

uθ,0 = 1√
1 − η2

[
−Us,0

(
2 + 1

r3

)
Q1(η) + μ

2(A + 1)

∞∑
n=2

nαn(nr−n−2 + (2 − n)r−n)Qn(η)

]
.

(34)
Having determined the concentration and velocity field at O(Pe0), we seek the solution of the

system of Eqs. (18)–(23).

IV. SOLUTION OF CONCENTRATION FIELD AT O(Pe)

Forced convection types of problems such as the current problem are often singular in nature
[21,22,24,30], i.e., the regular perturbation scheme introduced in (10) fails in the complete domain.
We compare the leading order disturbance of concentration field of the advective and diffusive terms
in the solute transport equation. From Eqs. (28) and (33) the leading order velocity and concentration
fields scale as

u ∼ −Us,0 + O(r−2) (35)

and

c0 ∼ A(r + Ust ) + O(r−1). (36)

From the solute transport equation, we note that the advective field decays as Pe r−2 while the dif-
fusion decays as r−3. The diffusive disturbance decays faster compared to the advective disturbance.
Solute advection balances diffusion at a distance r ∼ Pe−1. The limit Pe → 0 is therefore singular,
i.e., there is a region far away from the particle where advection balances diffusion. An outer radial
coordinate ρ = Pe r is introduced such that at distances r ∼ Pe−1, ρ ∼ O(1) as Pe → 0. Writing
(36) in terms of the outer variable suggests that the singularity in the concentration field appears at
O(Pe). The singular problem is solved via the classic method of matched asymptotic expansion. The
complete domain is divided into an “inner region” close to the particle where diffusion dominates
and an “outer region” far away [r ∼ O(Pe−1)] from the particle where advection balances diffusion.
In the inner region, only the surface boundary condition is applied and the far field boundary
condition is applied only in the outer region. The inner and the outer solutions are then matched
via Van Dyke’s principle [28].

A. Inner region

The solute concentration field close to the particle is governed by Eqs. (18) and (19). We have
intentionally left the far field condition as it falls in the “outer region.” To evaluate the source term
in (18) the velocity from (34) is defined as

u0 =
∞∑

n=1

(
Dn(r)Pn(η)r̂ + En(r)Qn(η)√

1 − η2
θ̂

)
, (37)
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where

D1(r) = −Us,0

(
1− 1

r3

)
and Dn(r) = −μnαn(r−n−2 − r−n)

2(A + 1)
for ∀n 	= 1,

and

E1(r) = −Us,0

(
2 + 1

r3

)
and En(r) = μnαn(nr−n−2 + (2−n)r−n)

2(A + 1)
for ∀n 	= 1.

Similarly, from (28) ∇c0 is evaluated as

∇c0 =
∞∑

l=0

(
Fl (r)Pl (η)r̂ −

√
1 − η2Gl (η)

dPl

dη
θ̂

)
, (38)

where

F1(r) = A−A + α1

r3
and Fl (r) = αl r

−(l+2) for ∀l 	= 1,

and

G1(r) = A + A + α1

2r3
and Gl (r) = αl r−(l+2)

l + 1
for ∀l 	= 1.

From (37) and (38), the advective term is evaluated. This appears as a source term in (18). The
source term is expressed as

u0 · ∇c0 =
∞∑

k=0

∞∑
l=0

∞∑
n=1

[Dn(r)Fl (r)Hnlk + En(η)Gl (η)Inlk]Pk (η). (39)

Here, Hnlk and Inlk determine the coupling between velocity and solute concentration field in the
radial and the polar direction, respectively. Hnlk and Inlk are defined as follows:

Hnlk = 2k + 1

2

∫ 1

−1
Pn(η)Pl (η)Pk (η)dη, (40)

Inlk = 2k + 1

2n(n + 1)

∫ 1

−1

dPn

dη

dPl

dη
Pk (η)(1 − η2)dη. (41)

The unsteady term at O(Pe) appears as another source term, which we represent as S0:

S0 = ∂c0

∂t
= AUs. (42)

Using the definition of Dn(r), Fl (r), En(r), and Gl (r), we represent the source term (39) (u0 ·
∇c0) as a sum of four terms S1, S2, S3, and S4, defined below:

(1) S1 containing the term with n = 1, l = 1 in (39),
(2) S2 containing the terms with n = 1, (l � 0 except l = 1),
(3) S3 containing the terms with l = 1 (n � 2), and
(4) S4 containing the terms with (n � 2 and l � 0 except l = 1).
This takes into account all the possible terms in (39). We now evaluate the particular solution

corresponding to each source term. The particular solution in the inner region is given by cp =
cp,0 + cp,1 + cp,2 + cp,3 + cp,4. Here cp.i represents the particular solution corresponding to the
nonhomogeneity Si .The particular solution corresponding to each term in the source Si is of the
form rsPk (η). The specific solution corresponding to each source term is provided in Appendix B.
The homogenous part of the solution to the Laplace equation is expressed in terms of growing and

124201-8



EFFECT OF WEAK SOLUTE ADVECTION …

decaying harmonics as

ch =
∞∑

k=0

(Âkrk + B̂kr−(k+1))Pk (η). (43)

The complete inner solution is given by c1 = ch + cp. Thus, we obtain

c1 =
∞∑

k=0

(Âkrk + B̂kr−(k+1))Pk (η) + cp, (44)

where cp is the particular solution. The coefficients Âk,B̂k must be evaluated using the boundary
condition (19) and the matching condition with the outer solution.

B. Outer region

In the outer region we rescale the radial variable r to ρ as ρ = Pe r. The outer region variables
are denoted by a ∼. The velocity field given by (34) is rescaled by the outer coordinate. In terms of
the rescaled variable ρ in the velocity field given by (34), is

ũr = Us,0

(
Pe3

ρ3
− 1

)
P1(η) − μ

2(A + 1)

∞∑
n=2

nαn(ρ−n−2Pen+2 − ρ−nPen)Pn(η),

ũθ = 1√
1 − η2

[
− Us,0

(
Pe3

ρ3
+ 2

)
Q1(η) + μ

2(A + 1)

×
∞∑

n=2

nαn[nρ−n−nPen+2 + (2 − n)ρ−nPen]Qn(η)

]
. (45)

In the limit Pe → 0, terms of the form Pem, m � 1 do not contribute in the velocity field. Thus
the velocity field in the outer region, in the limit Pe → 0, is given by

ũr = −Us,0P1(η),

ũθ = −2Us,0Q1(η)√
1 − η2

. (46)

Substituting this velocity field in terms of outer variable in the advection diffusion equation and
expressing the solute concentration in the outer region as c̃(ρ, η) we obtain

∇̃2c̃ = ∂ c̃

∂t
− Usη

∂ c̃

∂ρ
− Us

(1 − η2)

ρ

∂ c̃

∂η
(47)

with the boundary condition

c̃ → C̃∞ as ρ → ∞. (48)

Here the external field has also been rescaled as C̃∞ = Aρ cos θ + AUst . Defining a steady
disturbance concentration field, c̃′(ρ, η) = c̃(ρ, η, t ) − C̃∞(ρ, η, t ), Eqs. (47) and (48) yield

∇̃2c̃′ = −2Us,0

(
−A + η

2

∂ c̃′

∂ρ
+ (1 − η2)

2ρ

∂ c̃′

∂η

)
. (49)

We seek the outer solution in the limit Pe → 0 as an asymptotic expansion of the form

c̃′(ρ, η, Pe) =
N∑

n=0

Fn(Pe)c̃′
n(ρ, η), (50)
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where the gauge functions Fn(Pe) are unknown and must satisfy

Fn+1

Fn
→ 0 as Pe → 0.

Substituting (50) into (49) we find to leading order,

∇̃2c̃′
0 = −2Us,0

(
−A + η

2

∂ c̃′
0

∂ρ
+ (1 − η2)

2ρ

∂ c̃′
0

∂η

)
. (51)

Following Subramanian [22] and Leal [31], the solution to (51) is given by

c̃′
0 = A exp

(
Us,0ρη

2

)(
π

Us,0ρ

)1/2
[ ∞∑

k=0

DkKk+1/2

(
Us,0ρ

2

)
Pk (η)

]
. (52)

Here, Kk+ 1
2
(U s,0ρ

2 ) is the modified Bessel function, as described in Abramowitz and Stegun [32]:

Kk+1/2

(
Us,0ρ

2

)
=

(
π

Us,0ρ

)1/2

exp

(−Us,0ρ

2

) k∑
m=0

(k + m)!

(k − m)!m!(Us,0ρ )m . (53)

The coefficients Dk in (52) are determined using matching with the inner solution.

C. Matching

We first perform a leading order matching for the concentration field. In the limit Pe → 0, the
outer solution at leading order, F (Pe)c̃′

0, must match with the inner solution at leading order c′
0,

that is,

F0(Pe)c̃′
0|ρ→0 ⇔ c′

0|r→∞. (54)

In the limit r → ∞, the inner region disturbance field expressed in the outer variable (ρ) is
given by c′

0 → α0Pe
ρ

. Using (54), it is clearly seen that F0(Pe) = Pe. It follows then that

c̃′
0|ρ→0 ⇔ α0

ρ
. (55)

The inner solution when expressed in terms of the outer variable decays as O(ρ−1). Comparing
this to the outer solution given by (52) and (53) suggests that for all k � 1, Dk = 0. The only
unknown coefficient (D0) is found by matching with the inner solution. Thus we obtain

D0 = α0Us,0

Aπ
and Dk = 0 ∀k � 1. (56)

By substituting Eq. (56) in Eqs. (52) and (53) we obtain the leading order outer solution as

c̃′
0 = (Pe)α0 exp

(−Us,0ρ(1−η)
2

)
ρ

+ O[F1(Pe)]. (57)

We will now perform O(Pe) matching of the inner solution with the outer solution. The inner
solution expanded up to O(Pe) is given by c′

0 + Pe(c1). From (44), we see that all terms in the
particular solution decay to zero in the limit r → ∞, except the term corresponding to l = 0 in cp,2.
The homogenous solution in the inner region is composed of growing and decaying harmonics. The
decaying harmonics do not contribute in the limit r → ∞. Thus, c′

0 + Pe(c1) in the limit r → ∞ is
given by

(c′
0 + Pec1)|r→∞ = α0

r
+ Pe

(
α0Us,0

2
P1(η) +

∞∑
k=0

ÂkrkPk (η)

)
. (58)
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The above equation must match with the outer solution in the limit ρ → 0. The outer solution
from Eqs. (57), (50), and expanded in the limit ρ → 0, containing terms of O(Pe) is given by

c̃′|ρ→0 = Peα0

ρ

(
1 − Us,0ρ(1 − η)

2

)
+ O[F1(Pe)]. (59)

Comparing (59) with (58) we obtain

Â0 = −α0Us,0

2
and Âk = 0 ∀k � 1. (60)

Thus the solute concentration field in the inner region at O(Pe) is given by

c1 = −α0Us,0

2
+

∞∑
k=0

B̂kr−(k+1)Pk (η) + cp. (61)

Note that the first term changes the solute concentration throughout the domain. As the slip
velocity is proportional to surface gradient, it does not have any effect on the particle dynamics.
Based on Van Dyke’s matching [28], the composite solution for the concentration field is given
by ccomp = c1 + c̃′ − (c̃′)|ρ→0. However, as the slip velocity at the particle surface lies in the inner
region, we use only the inner solution to find the slip velocity. We now use the surface boundary
conditions to determine B̂k . We refer the readers to Appendix C for the detailed derivation and
expression for each B̂k .

V. RESULTS AND DISCUSSION

The slip velocity at O(Pe) is evaluated using us,1 = μ(I−nn)·∇c1

A+1 . Substituting this expression in
the Lorentz reciprocal theorem, we obtain the swimming velocity as

Us,1 = 1

2

∫ −1

1
μ(1 − η2)

dc1

dη

∣∣∣∣
r=1

dη. (62)

In the above Eq. (62), (1 − η2) can be written as a sum of two Legendre polynomials [P0(η)
and P2(η)]. Using the orthogonality property of Legendre polynomials, we conclude that only two
modes of the term dc1

dη
contribute to the correction in swimming velocity. We now present results

of three specific cases: (i) a Janus particle with surface activity α(η) = −1−η

2 , (ii) half-coated Janus
particle, and (iii) non-half-coated Janus particle as shown in Fig. 2.

A. Janus particle with surface activity of the form α(η) = −1−η

2

This form of surface activity leads to a closed form solution with far less numbers of terms
compared to other two cases. Here, a Janus-like particle has a surface activity given by

α = −1 − η

2
. (63)

The negative value of surface activity signifies that solute particles are consumed at the particle
surface. The magnitude of surface activity is maximum at the front pole (θ = 0) and it continuously
decreases to zero at the rear pole (θ = π ). This form of surface activity significantly simplifies the
algebra and helps obtain a closed form expression for swimming velocity and O(Pe) concentration
field. The leading order concentration field is given by

c0 = Arη + Aη

2r2
− 1

2r
− η

4r
+ AUst . (64)

Figure 3(a) shows the concentration field around a particle with activity distribution given by
(63). Figure 3(a) shows that this activity distribution gives rise to a qualitatively similar concentra-
tion field as a Janus particle [19,27,30]. Solute particles are adsorbed towards the front pole of the
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FIG. 2. Surface activity as a function of polar angle θ for the cases (i) α(θ ) = −1−cosθ
2 , (ii) half-faced surface

activity, and (iii) non-half-sigmoidal surface activity. (b) depicts surface activity distribution on the particle
surface. Surface activity corresponding to white and gray color is −1 and 0, respectively. θc corresponds to the
transition polar angle, and we take θc = cos−1( −1√

3
).

particle, which results in a drop in concentration there. For a positive (negative) value of mobility
coefficient, this particle will move towards the right (left). Figure 3(b) shows the particle placed in an
external concentration gradient with A = 0.25. The external concentration gradient is stronger than
the local concentration gradient. This results in a reversal in the direction of global concentration
gradient. Consequently, the direction of motion changes from positive (right) to negative (left) z
direction. Using the Lorentz reciprocal theorem, the leading order swimming velocity is evaluated
as

Us,0 = μ

(
1

6(A + 1)
− A

A + 1

)
. (65)

FIG. 3. Concentration field around the particle for the case Pe = 0 for (a) A = 0 and (b) A = 0.25. Surface
activity corresponding to white and gray color is −1 and 0, respectively. The solute molecules are getting
consumed at the front end in panel (a) The concentration field is axisymmetric in nature. The external gradient
dominates the local gradient for the second case (b) and reverses the net concentration gradient.
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FIG. 4. Solute concentration contours for (a) Pe = 0.25, (b) Pe = 0.5, and (c) Pe = 0.75 for μ = 1 and
A = 0. The fluid flow around the particle carries the low concentrated fluid from the front end (θ = 0) to the
rear end. This results in reduction in the difference of concentration at front and rear pole.

Following the methods discussed in preceding sections, O(Pe) correction to the concentration
field is evaluated as

c1 = −α0Us,0

2
+ Us,0(2A − 1)

12

(
1

r
− 1

4r4

)
+ Us,0

4

(
3

4r2
− 1 − 1

2r3

)
P1(η)

+ Us,0

12

(
8A − 3

3r3
− 4A − 1

r
− 2A − 1

2r4

)
P2(η). (66)

The solution is shown as a contour plot in Fig. 4 for various Pe numbers. For a positive value
of mobility coefficient, the particle has a positive swimming velocity. The fluid takes the solute
molecules from the front towards the rear end of the particle. This results in a lower concentration
of solute molecules compared to the case with no advection (Pe = 0). Consequently, the surface
concentration gradient is reduced, which leads to a reduction in swimming velocity. This observation
is qualitatively consistent with the result of Michelin and Lauga [19].

We quantify the reduction in swimming velocity using the Lorentz reciprocal theorem (62) with
(66). Substituting (66) in (62) we obtain the correction in swimming velocity as

Us,1 = − μUs,0

8(A + 1)
, (67)

where Us,0 is given by (65). The correction is proportional and opposite to the swimming velocity.
The net swimming velocity up to O(Pe) is given by

Us = Us,0

(
1 − μPe

8(A + 1)

)
. (68)

It is important to note that the correction at O(Pe) is proportional to μ2(as Us,0 is also proportional
to μ). Thus the correction to the swimming velocity is independent of the sign of the mobility
coefficient. Additionally, O(Pe) correction always reduces the magnitude of the swimming velocity.
This is shown in Fig. 5(a), where the magnitude of the swimming velocity reduces for both positive
and negative mobility. The swimming velocity at the leading order is a function of activity number
A. Consequently, the correction to the swimming velocity is an implicit function of A. As A is
increased, the correction reduces, in the limit A → ∞, and the correction tends to zero.

B. Half-coated Janus particle

We now look at the case of a half-coated Janus particle. The surface activity of a half-coated Janus
particle changes sharply at θ = 0. Expressing a steplike function in Legendre polynomial basis
leads to a very slowly convergent series for the O(Pe) correction. This increases the computational
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FIG. 5. The swimming velocity variation with Péclet number. (a) shows the swimming velocity for positive
and negative mobility for A = 0. In both cases, O(Pe) effect reduces the magnitude of the swimming velocity.
(b) shows the swimming velocity for different activity numbers and μ = 1. The correction is proportional and
opposite to the leading order swimming velocity.

power needed to evaluate the corrected concentration field, slip velocity, and swimming velocity. To
overcome this, we approximate the surface coverage with a smoothly varying sigmoidal function:

α = f (η) = − exp (mη)

1 + exp (mη)
. (69)

Here, m (transitional parameter) determines the sharpness of the activity function, and η = cos θ .
This introduces an additional length scale in the system, which scales as lc = 4a∗

m . For m = 12,
the characteristic length scale for a particle of size 10 μm is ∼ 3 μm. As shown in Fig. 6, a higher
value of m leads to a better approximation but increases computational power, while a lower value
to m leads to a poor approximation. To balance both the accuracy and the computational power,
in all analysis we choose m = 12. However, the methodology discussed in preceding sections is

FIG. 6. Approximation of step function surface activity as a function of η(cos θ ). Increase in transitional
parameter increases the sharpness and leads to better approximation of a step function. A negative activity
signifies solute adsorption on the surface.
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FIG. 7. Concentration contours around a particle with sigmoidal surface activity, for m = 12. Surface
activity corresponding to white and gray color is −1 and 0, respectively. (a) shows the contour for A = 0, while
in (b) A = 0.1. The direction of concentration gradient is towards the right, and it reduces the net concentration
gradient, and consequently the swimming velocity.

applicable for any value of m. The leading order concentration field around a particle having surface
activity expressed as (69) with m = 12 is given by (28) with αl = (2l+1)

2

∫ 1
−1 f (η)Pl (η)dη as the lth

activity mode.
We approximate (28) by truncating the infinite series to a finite number of modes. The surface

concentration as a function of η and the concentration field as a function of distance (r) is shown
in Fig. 8 for A = 0. As seen in Figs. 8(a) and 8(b), the surface concentration and the concentration
field as a function of r for 20 modes overlaps completely for ten modes. Thus we conclude that the
solution has converged for ten modes, and we use ten modes in (28) for our analysis.

The solute concentration field is shown in Fig. 7(a) for the case A = 0 and Fig. 7(b) with external
concentration gradient (A = 0.1). As seen in Fig. 7(b), the external concentration gradient opposes
the self-generated concentration gradient, resulting in a decrease in magnitude of surface gradient.
This leads to reduction in slip velocity and consequently reduction of the swimming velocity at
the leading order. The first order correction to concentration field is evaluated using (61). The net
concentration field up to O(Pe) is shown in Figs. 9(a)–9(c) for Péclet numbers 0, 0.25, and 0.5,
respectively.

FIG. 8. Surface concentration is shown for different numbers of modes for A = 0, Pe = 0.5, where (b)
shows the decaying concentration field as a function of r. It is clearly visible that the surface concentration has
converged at ten modes.
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FIG. 9. Solute concentration contour for (a) Pe = 0, (b) Pe = 0.25, and (c) Pe = 0.5 with μ = 1. The
solute advection transports the fluid with low concentration to the inert side of the particle. This reduces the
difference between the concentration difference between the active and inert half.

Figures 9(a)–9(c) show the concentration contours for Pe = 0, 0.25, and 0.5, respectively. Here
again, the solute advection transports solute from the front pole (θ = 0) in Fig. 9(a) towards the rear
pole (θ = π ). We now look at the swimming velocity obtained from our analysis. For a positive
mobility (μ = 1), the leading order swimming velocity obtained using the Lorentz reciprocal
theorem is given by

Us,0 = 0.2442

A + 1
− A

A + 1
, (70)

and O(Pe) correction is given by

Us,1 = − Us,0

8(A + 1)
. (71)

The net swimming velocity is obtained as

Us = Us,0

(
1 − Pe

8(A + 1)

)
. (72)

Note that the relation for the corrected velocity is the same as obtained for the previous simple
case. However, the expression for Us,0 is different for a Janus particle. Figure 10(a) shows the
swimming velocity for different values of the transition parameter (m). As the value of transition
parameter m increases, the swimming velocity expression gets closer to a Janus particle with sharp
variation in activity obtained numerically by Michelin and Lauga [19]. As shown in Fig. 10(a), the
velocity expression given in (72) matches well with numerical results of Michelin and Lauga [19]
up to Pe ∼ 1, in spite of the assumption of Pe � 1. Figure 10(b) shows the relation of swimming
velocity with the activity number.

Here again, the correction is independent of nature of molecular interactions characterized by μ.
Additionally, the correction reduces the swimming velocity for both kinds of interactions. The limit
A → ∞ corresponds to a neutral particle placed in the external gradient. In this limit, the correction
tends to zero as observed by previous studies [21,24].

C. Non-half-coated Janus particle

We now consider a non-half Janus particle. The surface activity for a non-half particle is
expressed similar to (69). For a non-half Janus particle with activity transitioning at θc, we shift
(69) by ηc = cos θc. The surface activity is given by

α = g(η) = − exp [m(η − ηc)]

1 + exp [m(η − ηc)]
. (73)
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FIG. 10. Variation of swimming velocity with Péclet number for (a) different transitional parameter and
(b) for different A. (a) also serves as verification of our results; the swimming velocity approaches the results
of Michelin and Lauga [19] as m is increased. Swimming velocity as a function of activity number is shown in
(b). The advective effects reduce the magnitude of swimming velocity for all values of activity number.

The negative sign in (73) refers to consumption of the solute molecules on the surface. We
consider the transition occurs at ηc = −1√

3
. The leading concentration field is given by (28) with

αl = (2l+1)
2

∫ 1
−1 g(η)Pl (η)dη. We truncate the leading order solution (28) again at l = 9 (ten modes).

The leading concentration field for this case with m = 12 is shown in Fig. 11. As shown in the
figure, the effect of the external concentration gradient is to oppose the self-generated concentration
gradient. As activity number increases, the relative strength of external concentration gradient in-
creases. At A = 0.5, the external concentration gradient dominates the local concentration gradient.
Using the Lorentz reciprocal theorem, we evaluate the leading order swimming velocity.

For a particle with positive mobility, the swimming velocity expression is

Us,0 = 0.1612

A + 1
− A

A + 1
, (74)

whereas for a non-half Janus particle with ηc = −1√
3

and in the absence of external concentration

gradient, the swimming velocity is 1
6 . As the value of the transition parameter increases, the

FIG. 11. Concentration field for a non-half Janus particle for (a) A = 0, (b) A = 0.1, and (c) A = 0.5
with m = 12. Surface activity corresponding to white and gray color is −1 and 0, respectively. The effect
of concentration gradient is to oppose the self-generated concentration gradient. At A = 0.5, the external
concentration gradient dominates the local concentration gradient.
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FIG. 12. Effect of solute advection on the concentration field for a particle with positive mobility for (a)
Pe = 0, (b) Pe = 0.25, and (c) Pe = 0.75. Solute advection brings the solute deficient region towards the inert
pole, reducing the magnitude of difference of concentration between the front and rear pole. As Pe increases,
more solute is brought from the active face towards the inert face.

swimming velocity approaches the swimming velocity of a non-half particle with a sharp transition.
The effect of solute advection characterized by Péclet number is shown in Fig. 12. The difference
in surface concentration at the front and rear pole reduces from 0.5 for Pe = 0 to 0.4 for Pe = 0.75.
This shows a reduction in surface concentration gradient, which results in a slower slip velocity.
Using the Lorentz reciprocal theorem, we get an expression for swimming velocity at O(Pe) given
by

Us,1 = −0.032

(A + 1)2 + 0.144

(A + 1)2 . (75)

This can be reasonably approximated as

Us,1 = −
(

Uself

5(A + 1)
+ Uext

7(A + 1)

)
, (76)

where Uself = 0.1612
(A+1) and Uext = −A

A+1 . Comparing this result with (71), we observe that for a half-
coated particle, the correction depends equally on both the components, whereas for a non-half Janus

FIG. 13. Swimming velocity as a function of Péclet number. (a) compares the result obtained by numerical
investigation of Michelin and Lauga [19] (shown by black dashed lines) for A = 0 with the current framework
for half and non-half particle. (b) shows the swimming velocity for different activity numbers.
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particle, two components contribute unequally. Combining (76) and (74), the complete swimming
velocity up to O(Pe) is given by

Us = 0.1612

A + 1
− A

A + 1
+ Pe

( −0.032

(A + 1)2 + 0.144A

(A + 1)2

)
. (77)

The direction of motion at leading order reverses at A = 0.162, while the correction reverses
the direction at A = 0.223. Therefore, when 0.1612 � A � 0.223, the solute advection gives rise to
increase in swimming velocity. The effect of solute advection is to reduce the swimming velocity
when A � 0.223 and A � 0.1612. This is seen in Fig. 13(b), where solute advection reduces the
swimming velocity for A = 0, 0.1, 0.3, and 0.4, whereas when A = 0.2 it lies in the range
0.1612 � A � 0.223; solute advection increases the swimming velocity. In this range of A, the
solute advection increases the surface concentration gradient. This results in a higher slip and
swimming velocity. For the swimming velocity in terms of the contribution of both the effects,
the expression is given by

Us = Uself + Uext − Pe

(
Uself

5(A + 1)
+ Uext

7(A + 1)

)
. (78)

Figure 13(a) shows our asymptotic analysis compares favorably with the numerical study of
Michelin and Lauga [19] for the case A = 0 up to Pe ∼ 0.5.

VI. CONCLUSIONS

In this study we have investigated the effect of solute advection on the swimming velocity of
an active particle under the influence of an external concentration gradient. We quantify the role
of solute advection once the particle has reoriented along the external concentration gradient. We
assume the solute concentration is high, resulting in a constant rate of reaction on the active face. The
Péclet number which characterizes these systems is typically small [O(10−2)] [5,6]. We provide a
theoretical framework quantifying O(Pe) corrections to the swimming velocity of an active particle
with axisymmetric distribution of surface activity. We use a singular perturbation scheme along
with the method of matched asymptotics to obtain the solute concentration field in a closed form.
We employ Lorentz reciprocal theorem to evaluate O(Pe) corrections to the swimming velocity.

Our analysis reveals that the correction in swimming velocity is seen at O(Pe), in contrast to
O(Pe2) corrections seen for an inert particle [21]. The correction in swimming velocity is shown to
reduce the swimming velocity of the particle. However, O(Pe) corrections are modest. The reduction
in swimming velocity for a half-faced active particle is proportional to the swimming velocity at the
leading order. Specifically, the reduction is of the form Us,1 = − Us,0

8(A+1) , where Us,0 is the swimming
velocity at the leading order. We also show that a simple model with surface activity of the form
α(θ ) = −1− cos θ

2 is sufficient to obtain an identical relation. As the magnitude of external gradient
increases, the relative magnitude of the correction at O(Pe) reduces. In the limit A → ∞, which
physically translates to the case of an inert particle, the correction tends to zero. This is in agreement
with previous work [21,24], whereas for a non-half particle, O(Pe) correction to the swimming
velocity is proportional to a linear combination of Uself and Uext. The contribution due to surface
activity is larger than that due to external gradient in the corrected swimming velocity.

The analytical result obtained for both half and non-half surface activity coverage matches well
with the numerical result reported by Michelin and Lauga [19]. Solute advection transports the
solute molecules near the active surface towards the inert surface, thus reducing the concentration
gradient. This results in a reduction in its swimming velocity.

This study derives a closed form solution to the concentration field and swimming velocity to
account for weak advective effects up to O(Pe). Recent studies [33–35] have shown the complex
collective behavior of such particles, and this study will help analyze this. This study also helps in
developing control strategies for applications such as drug delivery, cargo transport, etc.
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APPENDIX A: EVALUATION OF STREAM FUNCTION

The stream function satisfies the biharmonic equation

∇4ψ0 = 0. (A1)

The general solution of this equation is given by

ψ0 =
∞∑

n=1

(Anrn+3 + Bnrn+1 + Cnr2−n + Dnr−n)Qn(η), (A2)

where Qn(η), the Gegenbauer polynomial of order n and degree −1/2, is defined as Qn(η) =
∫η

−1 Pn(x)dx. The constants appearing in (A2) are determined using the boundary conditions (16)
and (17). Using the far field condition (16), we obtain

An = 0 ∀n and Bn = 0 ∀n 	= 1, B1 = Us,0. (A3)

Using the boundary condition (17) and the solution to c0 from (28), we obtain

Dn = −Cn and Dn = μαnn

2(A + 1)
for n � 2. (A4)

The swimming of Janus particle is force free and torque free. The Stokeslet contribution to the
velocity field does not contribute, i.e., C1 = 0 and D1 = −Us,0.

APPENDIX B: PARTICULAR SOLUTION CORRESPONDING TO THE SOURCE TERM

The particular solution corresponding to the nonhomogeneity Si is given by cp,i. The solutions
corresponding to source term Si is assumed to be of the form βrsPk (η). After the application of
Laplace operator, the assumed solution is compared to the source Si to evaluate β. The solution
corresponding to each source term is given as follows:

For the nonhomogeneity S0 + S1, the particular solution is

cp,0 + cp,1 =
[
− (A + α1)

24
· Us

r4
− Us

(
A + α1

12r4
+ 2A + α1

6r

)
P2(η)

]
. (B1)

For the nonhomogeneity S2, the particular solution is

cp,2 = Usαl

( (
H1lk − I1lk

l+1

)
r−(l+3)

(l + 3)(l + 2) − k(k + 1)
−

(
H1lk + 2

l+1 I1lk
)
r−l

l (l − 1) − k(k + 1)

)
Pk (η). (B2)

For the nonhomogeneity S3, the particular solution is

cp,3 = μnαn

2(A + 1)

(
A(−Hn1k + nIn1k )r−n

n(n − 1) − k(k + 1)
+ A[Hn1k + (2 − n)In1k]r2−n

(n − 2)(n − 3) − k(k + 1)

+ (A + α1)
(
Hn1k + n

2 In1k
)
r−n−3

(n + 2)(n + 3) − k(k + 1)
+ (A + α1)

(−Hn1k + (2−n)
2 In1k

)
r−n−1

n(n + 1) − k(k + 1)

)
Pk (η). (B3)

For the nonhomogeneity S4, the particular solution is

cp,4 = μnαnαl

2(A + 1)

( (
Hnlk + n

l+1 Inlk
)
r−(n+l+2)

(n + l + 1)(n + l + 2) − k(k + 1)
−

(
Hnlk − (2−n)

l+2 Inlk
)
r−(n+l )

(n + l )(n + l + 1) − k(k + 1)

)
Pk (η).

(B4)

APPENDIX C: EXPRESSION FOR EACH B̂k

Here we evaluate the coefficients B̂k of the decaying harmonics in the homogenous solution.
Substituting (61) in the no-flux boundary condition given by (19) at the surface of the particle, we
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find the following:

B0 =
[

(A + α1)Us,0

6
+ μnαnαm

2(A + 1)

(
Hnl0 − nInl0

l+1

n + l + 1
− Hnl0 + (2−n)Inl0

l+2

n + l − 1

)]
. (C1)

B2 =
(

1

3

)(
4A + 3α1

6
Us,0 − Us,0αl

((
H1l2 − I1l2

l+1

)
(l + 3)

(l + 2)(l + 3) − 6
−

(
H1l2 + 2

l+1 I1l2
)
l

l (l − 1) − 6

)

+ μαn

2(A + 1)

(
A(2 − n)[Hnl2 + (2 − n)Inl2]

(n − 2)(n − 3) − 6
− An(nInl2 − Hnl2)

n(n − 1) − 6

)

− μαn

2(A + 1)

(
(A + α1)(n + 1)

[(
2−n

2

)
Inl2 − Hnl2

]
n(n + 1) − 6

+ (A + α1)(n + 3)
(
Hnl2 + n

2 Inl2
)

(n + 2)(n + 3) − 6

)

− μαnαl n

2(A + 1)

([(
n

l+1

)
Inl2 − Hnl2

]
(n + l + 2)

(n + l + 1)(n + l + 2) − 6
+

[(
2−n
l+1

)
Inl2 + Hnl2

]
(n + l )

(n + l )(n + l − 1) − 6

))
. (C2)

For k 	= 0, 2,

B̂k = 1

k + 1

(
−Us,0αl

( (
H1lk − I1lk

l+1

)
(l + 3)

(l + 2)(l + 3) − k(k + 1)
−

(
H1lk + 2I1lk

l+1

)
l

l (l − 1) − k(k + 1)

)

+ −μnαnαl

2(A + 1)

( (
n

l+1 Inlk − Hnlk
)
(n + l + 2)

(n + l + 1)(n + l + 2) − k(k + 1)
+

(
2−n
l+1 Inlk − Hnlk

)
(n + l )

(n + l )(n + l − 1) − k(k + 1)

)

+ μnαn

2(A + 1)

(
A(2 − n)[Hn1k + (2 − n)In1k]

(n − 2)(n − 3) − k(k + 1)
− An(−Hn1k + nIn1k )

n(n − 1) − k(k + 1)

)

− μnαn

2(A + 1)

(
(A + α1)(n + 1)

(−Hn1k + (2−n)
2 In1k

)
n(n + 1) − k(k + 1)

+ (A + α1)(n + 3)
(
Hn1k + n

2 In1k
)

(n + 2)(n + 3) − k(k + 1)

))
.

(C3)

The above expressions (C1)–(C3) are summed over both n and l for each B̂k . The correction of
concentration field at O(Pe) is thus given by (61) with the constant factors (B̂k) evaluated using
(C1)–(C3) and cp obtained from (B1) to (B4).
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