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Electrowetting-induced detachment of liquid droplets has application prospects in self-
cleaning and digital microfluidics. Although several models have been provided to estimate
the critical condition for jumping droplet, there is still a lack of a comprehensive under-
standing of the energy conversion during detachment process and an accurate prediction
of the jumping velocity. In this study, an analytical model adopting the energy balance ap-
proach is derived to predict the jumping velocity of an electrowetting-actuated droplet. Our
main contribution is to reformulate the models of four energy components including the
surface energy, kinetic energy, gravitational potential energy at detachment, as well as the
viscous dissipation of entire recoiling. The necessity to correct these energy components
has also been physically explained. On the one hand, the droplet morphology at detachment
is not spherical but a balloonlike shape, leading to the underestimated surface energy
and gravitational potential energy. On the other hand, the previous model that assumes
a constant velocity gradient in the bulk results in the overestimated viscous dissipation.
Moreover, the kinetic energy of jumping droplet cannot be simply characterized by a rigid
body model because of the non-negligible radial velocity. According to the statistics, the
correction of the viscous dissipation term contributes the most to reducing prediction error,
approaching ∼90%, while the relative errors introduced from other three energy terms
are comparable, approaching ∼20%. By testing the prediction results against both present
simulations and the experiments in the literature, it is validated that the present model
successfully identifies the influence of liquid properties, droplet size, surface wettability,
and applied voltage on jumping velocity. The results indicate that the increase in the droplet
size causes a nonmonotonic change in jumping velocity, which first increases due to the
weakened viscous dissipation, then decreases due to the prominent influence of gravity.

DOI: 10.1103/PhysRevFluids.6.123603

I. INTRODUCTION

Detachment of droplets from a solid surface plays an important role in many practical ap-
plications, including condensation heat transfer [1–4], self-cleaning surfaces [5–7] and digital
microfluidics (DMF) [8–10]. To achieve a jumping droplet, additional energy needs to be supplied.
This extra energy can be provided by several methods, e.g., coalescence [4], vibration [11], elec-
trostatic forces [12], and electrowetting [13]. In view of several advantages such as short response
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FIG. 1. Schematics of the liquid droplet during the electrowetting-induced detachment. (I) A liquid droplet
rests on a typical electrowetting device with Young’s contact angle, θY. (II) The contact angle reduces to θYL

as a voltage is applied between the droplet and the conductive substrate. (III), (IV) The excess surface energy
forces the droplet to recoil as the applied voltage is switched off. (V) The droplet detaches from the solid
surface with jumping velocity Uj.

time, low energy consumption, large switching range and high reversibility [14,15], electrowetting
has been considered as one of the most efficient methods to induce the detachment.

Lee et al. [13] observed droplet jumping on superhydrophobic surface by ac electrowetting and
explored how frequencies influenced the jumping height. Since then, extensive studies successively
reported the achievement of droplet detachment by single square pulse [16], double square pulse
[17], and reversed electrowetting [18]. Figure 1 exhibits the schematic of a typical electrowetting-
induced detachment, where a droplet is initially deposited on a conductive substrate coated with
a hydrophobic dielectric layer with Young’s contact angle θY. When a voltage is applied between
the droplet and the electrode below it, the droplet spreads on the dielectric material. This process is
driven by the electrowetting force in the vicinity of contact line. The relationship between the new
equilibrium contact angle θYL and the applied voltage Vapp can be described by the Young-Lippmann
equation [19–21], cos θYL = cos θY + ε0 εdV 2

app/2ddγ . Here, η = ε0εdV 2
app/2ddγ is the electrowet-

ting number, ε0 = 8.854 × 10–12 F/m is the vacuum permittivity, εd is the relative permittivity of
the dielectric layer, d is the thickness of dielectric layer, and γ is the liquid-vapor surface tension.
As the applied voltage is switched off, the droplet starts recoiling under the action of the capillary
force, in which the excess surface energy is converted into kinetic energy and gravitational potential
energy. Meanwhile, a portion of kinetic energy is dissipated due to viscous damping. When the
applied voltage increases to a threshold value, the droplet can jump off the solid surface.

After the applied voltage is switched off, the effect of electric field vanishes, therefore the
dynamic process of droplet retraction becomes a purely hydrodynamic issue. From the perspective
of hydrodynamics, the retraction dynamics depends on the balance of inertial, gravity, capillary, and
viscous forces. Unraveling how these forces play a role in the dynamic retraction helps to provide
a better understanding of the physical mechanism of electrowetting-induced detachment. Since the
droplet impact on a solid surface is also a hydrodynamic issue dominated by the balance of afore-
mentioned forces, which has been widely studied in the past two decades, it is necessary to identify
the important developments of impact dynamics before investigating the electrowetting-induced
detachment. Based on the energy balance of surface energy, kinetic energy, and viscous dissipation,
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numerous models [22–26] have been established to estimate the maximum spreading diameter of
a droplet, providing a useful guide to predict the jumping velocity of an electrowetting-actuated
droplet. By considering the motion of a rim, Roisman et al. [27] proposed a theoretical model to
describe the evolution of contact diameter during the spreading and retraction phase. Moreover,
previous studies [28–30] that focused on the bouncing phenomenon after droplet impingement con-
tribute to better understand the dissipation mechanism and enhance droplet jumping. Attractively,
Ruiter and co-workers [31,32] reported that a liquid droplet bounced multiple times on both wetting
and nonwetting flat surfaces due to the presence of a micrometer-thick air layer sustained below the
droplet.

Although the existing studies concerning impact dynamics can provide a fundamental under-
standing of the electrowetting-induced detachment, the inherent difference between these two
physical processes makes it not applicable to directly use the theoretical models of impact dynamics
to predict the jumping velocity of electrowetting-induced droplets. Specifically, the initial state
of an electrowetting-induced droplet is an unstable, quasistatic spherical cap, while the impacting
droplet begins to retract in a lamella shape with internal flow, thus resulting in different dynamic
characteristics. In the past decade, extensive work has been devoted to improving energy conversion
efficiency and enhancing the jumping phenomenon. Cavalli et al. [33] numerically and experi-
mentally analyzed how the energy conversion efficiency is affected by the applied voltage and the
surface wettability. Based on the phase field method, Weng et al. [34] simulated the nonconductive
oil droplet detachment induced by reversed electrowetting and investigated the effects of applied
voltage, droplet size, and viscosity on the transient variations of surface energy, kinetic energy,
and viscous dissipation during the jumping process. Additionally, the droplet jumping over a
topographical bump was systematically studied by Merdasi et al. [35,36], who indicated that the
detachment could be enhanced by bumps compared with flat surface due to the reduced viscous
dissipation.

As the underlying mechanism of electrowetting-induced detachment is understood more clearly,
more attention has been attracted on predicting the critical condition of a jumping droplet. Ac-
cording to the balance of the electrically stored surface energy and adhesion work, Lee et al. [17]
developed a theoretical model to predict the threshold electrowetting number. However, as clarified
by Wang et al. [18], this model is only valid when the effects of gravity and viscosity are negligible,
i.e., for inviscid and small droplets. In practical applications, liquid droplets are generally viscid
with a radius up to several millimeters. To obtain a more universal model, the following analytical
studies have been conducted. Incorporating the contributions of viscous dissipation and the liquid
inertia, Wang et al. [18] established a semiempirical model to estimate the critical condition of
a nonconductive droplet in an aqueous fluid by reversed electrowetting. A correction factor was
introduced to obtain a more accurate recoiling time. Vo et al. [37] proposed a theoretical model that
considers the bulk dissipation, contact line friction, and the energy loss due to contact line pinning,
which included experimental parameters, e.g., the defect size and macroscopic cutoff length of
substrate. Zhang et al. [38] built a model to quantify the dissipated energy based on the assumption
that the velocity gradient in the droplet was constant. Furthermore, according to the previous work of
Cavalli et al. [33], an analytical model that considers the variation of gravitational potential energy
was proposed by Burkhart et al. [39]. Nevertheless, they neglected the viscous dissipation of entire
recoiling, therefore this model is not applicable for droplets with high viscosity.

Although extensive studies attempted to estimate the critical condition of a jumping droplet,
further improvements on accurately quantifying various energy components are still needed, since
previous models lacked some detailed information as follows. On the one hand, the surface energy
and gravitational potential energy at detachment are formulated on the assumption that the jumping
droplet remains in spherical shape, whereas we clarified that the droplet leaves the substrate in
a balloonlike shape. On the other hand, we found that the velocity profile among liquid droplets
deviates from the assumption of Zhang et al. [38], which would result in the overestimated viscous
dissipation. Moreover, the kinetic energy at detachment is generally characterized by the rigid
body model, whereas we demonstrated that the kinetic energy would be underestimated if this
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FIG. 2. Schematic of the geometric model of droplet at voltage-off position (left) and the initial state of
droplet for present simulation (right).

simplification is adopted, since the kinetic energy provided by the radial velocity is neglected.
Additionally, up to now, few studies except Zhang et al. [38] proposed a theoretical model to
estimate the jumping velocity of electrowetting-induced droplets.

To fill this gap, we theoretically and numerically investigate the electrowetting-induced de-
tachment. The numerical simulation is conducted by an effective, sharp-interface, continuum-level
modeling method [40–47] that employs the notion of Derjaguin (or disjoining) pressure. We aim to
correct four energy components including the surface energy, kinetic energy, gravitational potential
energy at detachment, as well as the viscous dissipation of entire recoiling and develop a prediction
model for jumping velocity. Particularly, the formulas of correction coefficients are physically
correlated with three dimensionless numbers (Bond number, Ohnesorge number, and electrowetting
number) and empirically fitted through regression analysis. The updated model comprehensively
accounts for the combined influence of liquid properties, droplet size, surface wettability, and
applied voltage, which has been examined by both present simulations and the experiments in the
literature.

II. ENERGY BALANCE

It has been aforementioned that the electrowetting-induced detachment is a process where excess
surface energy is converted into kinetic energy and gravitational potential energy, accompanying
viscous dissipation. In this section, the energy balance approach is presented. According to energy
conservation, the surface energy (Es,III) and gravitational potential energy (Eg,III) before the voltage
is switched off should be identical to the surface energy (Es,V), gravitational potential energy (Eg,V),
and kinetic energy (Ek,V) at detaching position as well as the viscous dissipation of entire recoiling
(Wv) [17,18,38,39]. Namely,

Ek,V = Es,III + Eg,III − Es,V − Eg,V − Wv. (1)

Here, we neglect the energy loss due to contact line pinning [37] since the solid surface in the
present simulation is ideally smooth and homogeneous. In the following, the expressions of all the
energy components will be provided.

To quantify Es,III and Eg,III, we initially figure out the geometric model of droplet at equilibrium,
which can be considered as a spherical cap with volume Vdrop = 4πR3

0/3. According to the ge-
ometric model shown in Fig. 2, the radius and contact radius of spherical cap can be evaluated
by R = R0[4/(2 + cos θ )(1− cos θ )2]1/3 and Rc = R sin θ , respectively [37,38,48]. Based on the
formulation of net surface energy of a liquid-vapor-solid system, i.e., Es = γ (ALV − ASL cos θY),
where ALV = 2πR2(1− cos θ ) and ASL = πR2sin2θ are the liquid-vapor and liquid-solid contact

123603-4



JUMPING VELOCITY OF AN …

area, respectively [38,37,48]. Therefore, the surface energy at the voltage-off and detaching position
can be respectively given by

Es,III = πR2
IIIγ (2 − 2 cos θYL − sin2θYL cos θY), (2)

Es,V = 4πγ R2
0. (3)

Here, RIII = kR0 is the radius of droplet at voltage-off position and the parameter k =
[4/(2 + cos θYL)(1− cos θYL)2]1/3 only depends on θYL.

Furthermore, the height of the center of mass for the spherical cap shown in Fig. 2 can
be evaluated by hc = (3 + cos θ )(1− cos θ )R/4(2 + cos θ ) [39]. Then the gravitational potential
energy at the voltage-off and detaching position [39] can be respectively given by

Eg,III = 4
3πρgR3

0hc,III, (4)

Eg,V = 4
3πρgR3

0hc,V, (5)

where ρ is the density of droplet and g is the gravity acceleration. In the above, hc,III =
(3 + cos θYL)(1− cos θYL)RIII/4(2 + cos θYL) and hc,V = R0. We note that Eqs. (3) and (5) are only
valid when the droplet at the detaching position is spherical. However, in this study we found that
the detaching droplet is not spherical but elongated in height, resembling a balloon. The influence
of the balloonlike shape on Es,V and Eg,V as well as the corrections to these two components will be
presented in Sec. IV B.

Previously, Zhang et al. [38] quantified the viscous dissipation of entire recoiling by

Wv =
∫ td

0

∫
Vdrop

�dV dt =
∫ td

0

∫
Vdrop

μ

2

(
∂ui

∂x j
+ ∂u j

∂xi

)2

dV dt ≈ 12μ

(
Uc

R0

)2

Vdroptd, (6)

where μ is the dynamic viscosity, � is the dissipation rate per unit volume, and td is the recoiling
time, defined as the time interval from the beginning of recoiling to the detaching position. Zhang
et al. [38] argued that td is identical to the inertial-capillary time τc = (ρR3

0/γ )1/2 and the velocity
gradient in the droplet bulk is constant, which can be estimated by Uc/R0 . Here, Uc = R0/τc is
the average recoiling velocity. However, in the present work we found that Eq. (6) deserves further
improvement and the details will also be given in Sec. IV B.

The jumping velocity Uj, defined as the vertical velocity of the center of mass at detachment, is
commonly used to calculate the kinetic energy:

Ek,V = 1
2ρVdropU

2
j = 2

3πρR3
0U 2

j . (7)

III. MODELING METHOD

A. Governing equation and boundary conditions

To validate the accuracy and explore the limitation of previous theoretical models, the experi-
mental or numerical results need to be used as a reference. Relying on experimental investigations
for computing the energy components would be infeasible and expensive. Thus, a numerical
study based on an effective, continuum-level, sharp-interface modeling method is conducted in
this work. It should be pointed out that this approach was originally developed in our previous
study by Chamakosand co-workers [40–43], which has been extensively applied to investigate the
droplet impact dynamics and spontaneous spreading dynamics [44–47]. Since we are committed to
predicting the jumping velocity of a liquid droplet, we only simulate the recoiling and detachment
when voltage is off. As shown in Fig. 2, a spherical cap droplet is initially rested on dielectric layer
with contact angle θYL. The electric potential of the bottom of the dielectric layer remains zero while
the electric potential of the liquid droplet decreases from Vapp to 0 immediately.
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In this study, the liquid droplet is considered as incompressible Newtonian fluid and the fluid
flow is governed by Navier-Stokes equation as follows:

ρ

(
∂ �u
∂t

+ �u · �∇ �u
)

= −�∇p + μ∇2 �u +ρ �g, (8a)

�∇ · �u = 0, (8b)

where �u and p represent the velocity vector and pressure, respectively. According to this modeling
method, the liquid-vapor and liquid-solid interfaces are treated in a unified manner, therefore the
solution of governing equation depends on the stress boundary condition applied on the unified
interface. Specifically, the normal component of total stress is formulated as

τnn = �n · �τ · �n = −(p0 + pLS + pel + 2κγ ), (9)

where �τ = −p �I +μ[ �∇�u + ( �∇�u)
T

], �n, κ and p0 denote the total stress tensor, unit normal vector,
local mean curvature, and reference pressure, respectively.

It is worth mentioning that this modeling method incorporates the microscale liquid-solid
interaction in the Derjaguin pressure term [49]:

pLS = γwLS

R0

[(
σ

δ/R0 + ε

)C1

−
(

σ

δ/R0 + ε

)C2
]
, (10)

which resembles the Lennard-Jones potential [50] for molecular dynamics simulations. Due to
the presence of Derjaguin pressure, the liquid and solid phases are separated by an intermediate
layer with thickness δmin = R0(σ−ε) (see Fig. 2). In the above equation, C1 and C2 regulate the
active range of pLS. The Euclidean distance from the solid surface δ determines whether pLS is
attractive (modeling van der Waals interactions, for large δ) or repulsive (modeling steric forces and
electrostatic interactions determined by an overlapping of the electrical double layers, for small δ).
Particularly, at δ = δmin, the repulsive and attractive forces balance each other, i.e., pLS = 0. For a
perfectly smooth substrate, δ can be simply characterized by the vertical distance from solid surface,
while for a structured substrate, δ can be obtained from the solution of the eikonal equation [51].

Besides, the depth of the potential well is proportional to the wetting parameter wLS, which has
a one-to-one correlation with Young’s contact angle. The formulation of wLS is expressed as

wLS = (C1 − 1)(C2 − 1)(1 + cos θY)

σ (C1 − C2)
. (11)

The significance of wetting parameter is to avoid the specification of explicit contact angle
boundary condition to unknown, multiple contact lines on structured surface. Under the combined
actions of Derjaguin and capillary pressure, the dynamic contact angle can emerge in a more
physical manner.

The effect of electric field is incorporated in the form of electrostatic pressure pel, providing a
negative component for the normal component of total stress. The electrostatic pressure is given by
pel = ε0e2/2, where e is the magnitude of the electric field strength �e = −�∇ϕ. Here, ϕ is the electric
potential, computed by solving the Gauss’s law for electricity,

�∇ · (ε0εr �∇ϕ) = 0. (12)

Since the droplet is regarded as an ideal conductor, the electric potential is solved only in the
ambient phase (air for this study) and dielectric material. For simplicity, a continuous function is
used to describe the relative permittivity, i.e.,

εr = (εa − εd ) tanh

(
5

δ

δmin

)
+ εd. (13)
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TABLE I. Liquid physical properties of water and two glycerol-water mixtures.

Glycerol concentration ρ (kg/m3) γ (mN/m) μ (mPa s)

0 wt % 998 72.8 1.0
20 wt % 1043 71.0 1.8
40 wt % 1099 69.0 3.7

This expression can ensure that εr becomes εa and εd in the ambient phase and dielectric layer,
respectively. Moreover, εr undergoes a sharp transition in the intermediate layer between droplet
and dielectric material. To solve Eq. (12), ϕ = Vapp is applied at the droplet interface, where Vapp is
the voltage between conductive droplet and electrode. The boundary condition ϕ = 0 is applied at
the bottom of the dielectric layer. Although the actuated stage of the liquid droplet is not considered
in the present work, the electrostatic pressure is solved to validate the reliability of this modeling
method (see Sec. III C).

Moreover, the Navier slip boundary condition is used to prevent the droplet freely slipping on
the solid surface. Specifically, the tangential stress applied on the unified interface is expressed as

τnt = �n · �τ · �t = ξeff (�t · �u). (14)

In the above, �t is the unit tangential vector and ξeff denotes the effective slip coefficient, which is
only active in the vicinity of substrate and formulated as

ξeff = μξsl

R0

{
1 − tanh

[
5

(
δ

δmin
− 1

)]}
, (15)

Here, ξsl denotes the dimensionless slip parameter, corresponding to the slip length, R0/ξsl.
This continuous formulation enables the transition from a free slip boundary condition imposed
on the liquid-gas interface to a partial slip boundary condition imposed on the liquid-solid interface.
Finally, the moving mesh method is employed to accurately capture the movement of interface,
which follows the kinematic equation below:

(�umesh − �u) · �n = 0. (16)

Here, �umesh represents the velocity vector of the meshes at the unified interface, which are refined
to ensure the accuracy of computing results. Besides, when the mesh quality drops to the threshold,
automatic remeshing will be enabled.

B. Initialization and modeling setup

In this study, we investigate the detachment of water and two glycerol-water mixtures. The
physical properties of working fluids under room temperature are given in Table I [52]. The
characteristic radius of liquid droplet R0 ranges 10 μm–1.40 mm. Furthermore, the substrate wet-
tability is fixed with θY = 130◦ while θYL ranges 80◦–90◦, corresponding to electrowetting number
η = 0.643–0.816. The parameters relevant to numerical simulation are consistent with our previous
work [40–47], i.e., C1 = 12, C2 = 10, σ = 9 × 10−3, ε = 8 × 10−3, and ξsl = 1000. In addition,
the solution of the governing equations and the setting of the boundary conditions are realized in
COMSOL Multiphysics® software. The governing equations are discretized using the finite element
method (FEM) and integrated in time with the implicit Euler method.

C. Validation

To validate the reliability of this modeling method, we simulate the electrowetting-induced de-
tachment of a 5-μL NaCl droplet from a hydrophobic surface with θY = 116◦ at a 135 V (η = 0.73)
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FIG. 3. Comparison of the experiment study by Lee et al. [17] with present simulation. (a) Consecutive
side-view images of droplet detachment. (b) Temporal evolution of contact radius Rc.

square pulse with a 7-ms pulse width. The comparison of the present simulation with the experi-
mental study of Lee et al. [17]. is shown in Figs. 3(a) and 3(b), which exhibits the variation of
droplet shape and contact radius, respectively. It is noteworthy that the present simulation agrees
well with Lee’s study [17] both qualitatively and quantitatively. The slight discrepancy between
the experimental and numerical results may arise from the presence of needle electrode in the
experiment. Under the actuation of electrostatic pressure, the droplet spreads to the maximum at
∼7 ms, accompanying with the generation of capillary wave. Then it retracts dramatically and
detaches from the solid surface at ∼19.6 ms. According to the validation above, we can confirm that
the modeling method used in this study is capable to efficiently simulate the electrowetting-induced
detachment of a liquid droplet.

IV. RESULTS AND DISCUSSION

A. Retraction dynamics of electrowetting-actuated droplets

To comprehensively investigate the retraction dynamics of electrowetting-induced detachment,
we first exhibit the temporal evolution of contact radius during initial recoiling in Figs. 4(a) and
4(b), which illustrate the effects of liquid properties and applied voltage, respectively. Here, the
contact radius Rc is normalized by the contact radius when voltage is switched off Rc,III, while t
is normalized by the inertial-capillary time τc = (ρR3

0/γ )1/2. Notably, the normalized evolutions
are basically independent of liquid properties, droplet size, and applied voltage, which means that
the initial recoiling is dominated by the balance of inertial pressure ∼ρ(dRc/dt )2 and capillary
pressure ∼γ R0/R2

c . It has been confirmed that the scaling law Rc/R0 = C(t/τc)α can describe the
initial spreading dynamics in the inertial regime [45,52–54], where the spreading exponent α is only
related to substrate wettability. Inspired by these studies, we speculate that a similar scaling law
Rc/Rc,III − 1 = C(t/τc)α can determine the initial recoiling of electrowetting-induced detachment.
Through regression analysis, we obtain an empirical model Rc/Rc,III = 1−0.425(t/τc)0.592 (solid
lines in Fig. 4) that agrees well with the numerical results. The almost constant recoiling exponent
can be ascribed to the fixed substrate wettability, which will increase as the solid surface becomes
more hydrophobic.

Next, the droplet deformation and energy variation in the recoiling process are systematically
analyzed. Figures 5(a) and 5(b) show the snapshots and velocity contour of 20-wt % glycerol
droplets with R0 = 0.9 mm and R0 = 0.1 mm, respectively. Correspondingly, the temporal evo-
lution of the energy difference from the voltage-off state �E = E − EIII (E = Ek, Eg, Es,Wv) is
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FIG. 4. Temporal evolutions of the normalized contact radius Rc/Rc,III with normalized time t/τc in log-log
scale. (a) Various glycerol-water mixtures under θYL = 85◦. (b) 20 wt % glycerol under various θYL. The solid
lines represent the empirical model, Rc/Rc,III = 1−0.425 (t/τc )0.592.

exhibited in Figs. 6(a) and 6(b). Particularly, �E is normalized by the initially available excess
surface energy Eexc = Es,III − Es,I while t is normalized by τc. At early recoiling, capillary waves
are observed to propagate along the droplet interface (see the snapshots at t/τc = 0.098 and 0.263 in
Fig. 5). With the decrease of R0, capillary waves are less visible due to the higher viscous damping.
Simultaneously, the fluctuation of Ek and Es is less significant (see Fig. 6). The capillary wave
propagating to the top can induce an upward velocity and the higher pressure at the top can further
generate a downward velocity, eventually leading to the emergence of a concave (see the snapshots
at t/τc = 0.495 in Fig. 5).

As shown in Fig. 6, Es decreases rapidly before t/τc ∼ 0.795 and most of it is converted into
Ek, while the rest is converted into Eg and Wv. At t/τc ∼ 0.795, Ek and Es approach the maximum
and minimum value, respectively. The normalized time to reach the extreme value of Ek and Es

is almost independent of R0. Meanwhile, the droplet shape is quite close to the one at equilibrium

FIG. 5. Sectional views of the velocity field of 20 wt % glycerol droplets with (a) R0 = 0.9 mm and
(b) R0 = 0.1 mm under θYL = 85◦. The snapshots are colored by the magnitude of velocity and the arrows
only indicate the direction of velocity.
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FIG. 6. Energy difference from the voltage-off state �E normalized by the excess surface energy Eexc

versus normalized time t/τc for 20 wt % glycerol droplets with (a) R0 = 0.9 mm and (b) R0 = 0.1 mm under
θYL = 85◦.

state with Young’s contact angle, because �Es/Eexc ∼ −1. From t/τc ∼ 0.795 to the moment when
the droplet leaves the solid surface, the droplet needs to overcome the adhesion work and gravity,
therefore the conversion of Ek into Es and Eg is observed in Fig. 6. Simultaneously, Wv continues to
increase even though the increasing rate gradually slows down. The droplet is about to detach from
the solid surface at t/τc ∼ 2.286 and the dominant factor of recoiling time will be explained in the
following section. It is noteworthy that during the recoiling process, the kinetic energy dissipated
by viscosity is comparable to the surface energy converted into kinetic energy and the variation of
gravitational potential energy, which is prominent for large droplet. Hence, we further confirm the
necessity of taking the influence of gravity and viscosity into account in the energy balance model.
Additionally, in contrast with Fig. 6(a), the variation of gravitational potential energy in Fig. 6(b) is
quite small. In terms of the Bond number Bo = ρgD2

0/γ (the ratio of gravity to surface tension), as
R0 decreases from 0.9 to 0.1 mm, correspondingly, Bo is reduced by about two orders of magnitude
(from 0.47 to 0.006), which means that the effect of gravity becomes very weak.

As shown from the snapshots at t/τc = 2.286 in Fig. 5, the droplet shape at detachment is not
a standard sphere but a balloonlike shape. Although the balloonlike shape has been observed in
previous experiments [10,17,18,37,39,55] and simulations [33,34,56,57], its influence on the energy
balance model has not been clarified until now. We analyze that the balloonlike shape gives rise to
the increase of liquid-vapor interface ALV and the height of the center of mass hc, which can induce
the underestimation of Es,V and Eg,V, i.e., Eqs. (3) and (5). According to the velocity contour in
Fig. 5, it is also worth mentioning that the velocity gradient during recoiling is nonuniform and
the kinetic energy at the detaching position is not completely supplied by vertical velocity, which
means that the formulation of Wv and Ek,V, i.e., Eqs. (6) and (7), is also not sufficiently accurate.
Therefore, exploring how to correct these theoretical models is the priority, which will be presented
in the following section.

After leaving the solid surface, most kinetic energy would transform into gravitational potential
energy, while the rest would be dissipated by viscosity (see continuously increasing Wv in Fig. 6),
since the droplet oscillates repeatedly due to the unbalanced pressure in the bulk. The droplet would
bounce on the solid surface many times until all the kinetic energy is dissipated viscously. However,
the energy variation after detachment is not the focus of this study, which will be systematically
analyzed in our future work.
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FIG. 7. Comparison of the (a) theoretical surface energy at detachment Es,V and (b) gravitational energy at
detachment Eg,V respectively estimated by Eqs. (3) and (5) (solid line) with the ones measured in the present
simulation (solid symbol) under θYL = 85◦. The insets show the correction coefficients Cs and Cg as a function
of Bond number Bo, where the solid line denotes an empirical model fitted by aBob + cBod .

B. Energy component corrections

In the above, we have demonstrated that the assumption or simplification in the literature deviates
from practical conditions. Therefore, modifying conventional models becomes an urgent issue to
deal with. In this section, four empirical models have been established, associating correction
coefficients with three dimensionless numbers, i.e., Bond number Bo = ρgD2

0/γ (the ratio of
gravity to surface tension), Ohnesorge number Oh = μ/(ρR0γ )1/2 (the ratio of viscous force to
inertial force and surface tension), and electrowetting number η = ε0εdV 2

app/2ddγ (a dimensionless
number that characterizes the influence of applied voltage), and normalized jumping velocity Uj/Uc.
Here, D0 = 2R0 is the initial diameter of droplet. To ensure that each correction factor is not
only numerically accurate but also physically meaningful, we use specific parameters instead of
all parameters for fitting and explain the reason from a physical point of view.

It is known that Es,V and Eg,V are determined by the droplet morphology at detachment. Since
it is tough work to parametrize the droplet profile by a universal, analytical model, we introduce
correction coefficients Cs and Cg to modify Es,V and Eg,V, respectively. The values of correction
coefficients are calculated by dividing Es,V and Eg,V measured in the present simulation by the ones
estimated by Eqs. (3) and (5). During the retraction process, the three-phase contact line cannot
detach from the solid surface due to adherence (related to surface tension), while the liquid-vapor
interface moves upwards freely, which promotes the elongation of the droplet. On the contrary,
gravity inhibits the elongation. Since Bo describes the balance of gravity and surface tension, the
correction coefficients Cs and Cg as a function of Bo are illustrated in the insets of Figs. 7(a) and 7(b),
respectively, where the comparison of simulated Es,V and Eg,V with the theoretical ones estimated
by Eqs. (3) and (5) is also shown. It is seen that the viscosity of liquid droplet hardly affects Es,V and
Eg,V. More importantly, both Cs and Cg of different liquids are collapsed into a single curve by Bo.
As Cs, Cg > 1, the theoretical results of Eqs. (3) and (5) are both underestimated, thus proving our
aforementioned speculations. Even though the relative deviation of Eq. (3) (∼ 0.5%) is extremely
small and negligible compared with the one of Eq. (5) (∼ 25%), Es,V is much larger than Eg,V,
especially for a small droplet (up to five orders of magnitude). Consequently, the underestimation
of Es,V cannot be completely ignored.
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FIG. 8. Comparison of the empirical models of (a) Cs and (b) Cg, i.e., Eqs. (17) and (18), with the numerical
results (solid symbol).

The nonmonotonic variation of Cs and Cg with Bo indicates that as the effect of gravity becomes
more dominant, the aspect ratio of a liquid droplet first increases, then decreases. Through regression
analysis, Cs and Cg can be fitted by an empirical correlation, aBob + cBod [see the solid line in the
insets of Figs. 7(a) and 7(b)]. Because the droplet morphology at detachment is also closely related
to the initial condition of the droplet, which is determined by the applied voltage [18,39], Cs and
Cg should also be a function of the electrowetting number, which is found to follow ∼η f . Based on
the statistical analysis above, Cs and Cg can finally be described as (aBob + cBod )η f and the final
forms of the empirical model are fitted by

Cs = (−0.011Bo0.522 + 1.019Bo0.00086)η0.0218, (17)

Cg = (−0.308Bo0.913 + 1.539Bo0.0090)η0.413. (18)

Figures 8(a) and 8(b) compare the empirical models above with the numerical results. It is
noteworthy that both Eqs. (17) and (18) are in good agreement with the present simulations, proving
the reliability of these two models.

As aforementioned in the Sec. II, Zhang et al. [38] pointed out that the recoiling time td was
identical to τc. To validate their elaboration, Fig. 9(a) shows the variation of td with τc. It is seen
that td is not identical to τc but actually linear with it. More importantly, this conclusion is always
valid for the cases with different liquid properties, droplet size, and applied voltage. Through re-
gression analysis based on the least squares method, an empirical correlation td = (2.37 ± 0.20) τc

is obtained.
According to Eq. (6), the formulation of the viscous dissipation before detachment can be given

by

Wv = 12μ

(
Uc

R0

)2

Vdroptd ≈ 36.8πμ

√
γ R3

0

ρ
. (19)

To verify its efficiency, we compare Eq. (19) with the dissipated energy measured in the present
simulation,

Wv =
∫ td

0

∫
Vdrop

�dV dt, (20)

where

� = 2μ

{(
∂ur
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)2

+
(
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)2

+
(

ur

r

)2

+ 1

2

[(
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]}
. (21)
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FIG. 9. (a) Recoiling time td as a function of inertial-capillary time τc. The dashed and solid lines denote
the previous and present models of td, respectively. (b) Comparison of viscous dissipation estimated by Eq. (19)
(solid line) with the simulated ones (solid symbol) under θYL = 85◦.

As shown in Fig. 9(b), Wv is generally overestimated by Eq. (19) and the deviation becomes more
prominent with the increase of viscosity. The assumption of constant velocity gradient may account
for this overestimation.

To modify Eq. (19), we introduce a correction coefficient Cv. As analyzed above, the computing
error of Eq. (19) arises from the quantification of velocity gradient. From the perspective of hydro-
dynamics, the velocity profile of droplet depends on the balance of inertial pressure ∼ρ(dRc/dt )2,
capillary pressure ∼γ R0/R2

c , and viscous stress ∼μ(dRc/dt )/l , where l is a characteristic length
scale that determines the effective range of viscous stress [53,58]. Additionally, previous studies
[33,34,36] have numerically indicated that the velocity field is also closely related to applied voltage
(or the initial condition of droplet). Since the Ohnesorge number Oh = μ/(ρR0γ )1/2 unifies the
relative strength of viscous force with inertial force and capillary force, and electrowetting number
η = ε0εdV 2

app/2ddγ characterizes the influence of applied voltage, we speculate that Cv is governed
by Oh and η.

The log-log plot of Cv versus Oh under various η is exhibited in Fig. 10(a). It is observed that
Cv is generally below unit. The modification of Wv is not needed only when Oh is sufficiently
small, corresponding to low viscosity, high surface tension, and large droplet size. Besides, Cv

shows positive and negative correlation with η and Oh, respectively, which may be attributed to the
enhanced shear stress. Attractively, for various liquids and applied voltage, Cv scales as ∼Oh−0.656.
Similar to Cs and Cg, Cv is also found to follow a power law of η. Through regression analysis, Cv

are finally fitted by

Cv = 0.0388Oh−0.656η2.212. (22)

Then the modified viscous dissipation can be given by

Wv = 36.8Cvπμ

√
γ R3

0

ρ
. (23)

Figure 10(b) compares the estimation of Eq. (23) with the simulated Wv. Notably, Eq. (23) agrees
well with the numerical result and the accuracy of present model is significantly improved, thus
confirming the reliability of Eq. (22).
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FIG. 10. (a) Correction coefficient Cv as a function of Ohnesorge number Oh under various η. The solid
lines represent the power law, ∼Oh−0.656. (b) Comparison of the viscous dissipation estimated by Eq. (23)
(solid line) with the simulated ones (solid symbol) under θYL = 85◦.

In Sec. IV A, we have clarified that Ek,V cannot be simply determined by Eq. (7) due to the
contribution of radial velocity. The kinetic energy in the present simulation is integrated by

Ek,V=
∫

Vdrop

1

2
ρU 2dV . (24)

To examine our demonstration, Fig. 11(a) shows the comparison of Eq. (24) with the theoretical
Ek,V estimated by Eq. (7). It can be seen that although both the theoretical and simulated Ek,V are
nonmonotonic with R0, the theoretical ones are underestimated especially for low-viscosity liquid.
Hence, we introduce a correction coefficient Ck to eliminate this underestimation. Then Eq. (7) is

FIG. 11. Comparison of the kinetic energy estimated by (a) Eq. (7) and (b) Eq. (25) (hollow symbol) with
the simulated ones measured by Eq. (24) (solid symbol) under θYL = 85◦.

123603-14



JUMPING VELOCITY OF AN …

modified as

Ek,V = 2
3πCkρR3

0U 2
j . (25)

Figure 11(a) also illustrates that the deviation between Eqs. (7) and (24) increases with increasing
Ek,V. In other word, Ck may be positively related to Ek,V. However, since the value of Ek,V is de-
termined by multiple parameters (e.g., liquid properties, droplet radius, applied voltage, and surface
wettability), using all of these parameters to establish the empirical model of Ck is complicated and
impractical. Therefore, in terms of the positive correlation of Ek,V with normalized jumping velocity
Uj/Uc, we decide to characterize Ck by Uj/Uc. Nevertheless, it is still very difficult to characterize
Ck as a single-valued function of Uj/Uc. To minimize the prediction error, we finally think it is more
appropriate to express Ck as a function of Uj/Uc and η. Through regression analysis, Ck is fitted by

Ck = 1.182η1.224

(
Uj

Uc

)−0.437

. (26)

As shown in Fig. 11(b), the prediction of Eq. (25) is in good agreement with the numerical
results, therefore all energy components have been reformulated so far.

C. Model development

According to the corrections above, by substituting Eq. (2)–(5), (17), (18), (22), (23), (25), and
(26) into Eq. (1), the updated energy balance model is developed in the following:

πR2
IIIγ (2 − 2 cos θYL − sin2θYL cos θY) + 4

3
πρgR3

0

(3 + cos θYL)(1 − cos θYL)

4(2 + cos θYL)
RIII

= 4

3
CgπρgR4

0 + 4Csπγ R2
0 + 2

3
CkπρR3

0U 2
j + 36.8Cvπμ

√
γ R3

0

ρ
. (27)

Then the final form of the present model is given by

Uj

Uc
= 0.898η−0.783

(
3m

2
− n

2
Bo − 2.149Oh0.344η2.212

)0.640

, (28)

where

m = (2 − 2 cos θYL − sin2θYL cos θY)k2 − 4Cs, (29)

n = Cg − (3 + cos θYL)(1 − cos θYL)k

4(2 + cos θYL)
. (30)

It can be seen that Uj/Uc is determined by the joint effects of liquid properties, applied voltage,
and substrate wettability, i.e., Uj/Uc = f (Bo, Oh, η, θY). To validate the reliability of the present
model, the comparison of the value of Uj/Uc predicted by Eq. (28) with numerical results is
shown in Fig. 12(a). Notably, the present model shows good predicting performance, though the
jumping velocity of water droplet with moderate R0 is a little overestimated with an average
relative error ∼12%. We believe that this error mainly results from the fitting of correction
coefficient Ck, which is a little underestimated. In contrast, the prediction of Zhang’s model [38],
Uj/Uc = [1.5 A (θY, θYL) − 6(1 + 4 Oh)]1/2, significantly overestimates the jumping velocity in the
case of large R0 due to the ignorance of gravity and shows pronounced underestimation in the
case of small R0 due to the inaccurate expression of viscous dissipation. Meanwhile, the neglected
influence of droplet morphology on surface energy and gravitational potential energy also results in
the overestimated Uj/Uc. In the above, A(θY, θYL) = k2(2−2 cos θYL − sin2θYL cos θY).

It is also observed from Fig. 12(a) that as R0 becomes large, Uj/Uc first increases, then decreases,
and its peak value arrives at moderate R0. This observation demonstrates that the droplet with
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FIG. 12. (a) Comparison of the normalized jumping velocity estimated by Eq. (28) (solid lines) and
Zhang’s model [38] (dashed lines) with the simulated ones (solid symbol) under θYL = 85◦. (b) Phase diagram
of detachable (circle) and nondetachable (cross) regimes in the parameter space spanned by R0 and η. The
dashed lines represent the critical conditions predicted by present model.

moderate size is easier to jump off the substrate and there are two critical conditions where the
droplet begins to be nondetachable. We analyze that the existence of the smaller critical R0 is due
to the enhanced viscous dissipation, corresponding to high Oh, while the existence of the larger one
is because of the prominent influence of gravity, corresponding to high Bo. On the contrary, the
model of Zhang et al. [38] and other relevant models in the literature [17,37,39] fails to describe the
nonmonotonic correlation of Uj/Uc with R0 and the critical R0 estimated by these models is unique,
since they neglected the variation of gravitational potential energy or viscous dissipation.

The analysis above is on the basis of η = 0.730; whether the present model can still show
good performance under various η deserves discussion. By substituting Uj = 0 into Eq. (28), the
critical condition of droplet detachment can be solved. Figure 12(b) exhibits the phase diagram
of detachable and nondetachable regimes in the parameter space spanned by R0 and η, where the
symbols denote the numerical results while the dashed lines denote the predictions of the present
model. It is noteworthy that the critical conditions are well predicted under different η. Moreover,
with the decrease of η, the larger critical R0 decreases while the smaller critical R0 increases,
inducing a narrower detachable regime. We speculate that if the applied voltage continues to be
reduced, the droplet may no longer be able to jump. A similar phenomenon has been reported by
Wang et al. [18] and Vo et al. [37].

In this study, the intrinsic wettability of a solid surface is fixed with θY = 130◦. Whether the
present model is universal under various θY and the advantages over previous models need to be
further discussed. The electrowetting-induced detachment of a water droplet surrounded by silicone
oil with a viscosity of 0.65 cSt was experimentally and numerically studied by Cavalli et al. [33].
According to their study, Vdrop = 5.5 μL, ρ = 1000 kg/m3, γ = 24.0 mN/m, μ = 1.0 mPa s, and
θYL = 50◦ are used to predict Uj/Uc. Figure 13(a) shows the normalized jumping velocity as a
function of substrate wettability, where the predictions of Eq. (28) and Zhang’s model [38] are
both displayed. Notably, the jumping velocity of Cavalli et al. [33] is significantly overestimated
by Zhang et al. [38] and the overestimation can be attributed to the ignorance of the variation of
gravitational potential energy and the uncorrected viscous dissipation. In contrast, the prediction of
the present model is in good accordance with the previous work of Cavalli et al. [33], although the
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FIG. 13. (a) Comparison of the normalized jumping velocity estimated by Eq. (28) and Zhang’s model [38]
(dashed lines) with the previous work of Cavalli et al. [33] (solid symbol). (b) Phase diagram of detachable
(circle) and nondetachable (cross) regimes in the parameter space spanned by θY and θYL. The circle and
cross symbols are obtained from the previous work of Nayak et al. [59]. The solid, dashed, and dashed-dotted
lines represent the critical conditions predicted by present model, Zhang’s model [38], and Lee’s model [13],
respectively. The volume of water droplet is 5.0 μL.

jumping velocity at θY = 120◦ and 130◦ is slightly overestimated. We speculate that the predicting
error can be explained by the influence of the surrounding silicone oil.

Furthermore, the critical conditions of a 5.0-μL water droplet under various θY and θYL predicted
by the present model, Zhang’s model [38], and Lee’s model [13] η = 1 + cos θY are shown in
Fig. 13(b), which are compared with the numerical results of Nayak et al. [59]. Under the prediction
of Lee’s model [13], the droplet is the easiest to jump, since it completely neglects the viscous
dissipation of entire recoiling and the variation of gravitational potential energy. The present model
predicts the critical conditions of Nayak et al. [59] most accurately, whereas the critical θY is
underestimated by Zhang’s model [38] due to neglecting the effect of gravity.

To examine the applicability of the present model for other fluids that are not used to fit the
formulas of a correction coefficient, we simulate the electrowetting-induced detachment of silicone
oil (ρ = 760 kg/m3, γ = 24 mN/m, μ = 0.49 mPa s [33]) and Galinstan (ρ = 6440 kg/m3, γ =
718 mN/m, μ = 2.4 mPa s [60]) droplets. In such cases, θY = 130◦ and θY = 85◦. As shown in
Fig. 14, the values of normalized jumping velocity predicted by Eq. (28) are also in good agreement
with the ones measured in the simulation. Accordingly, it is confirmed that the present model has
good universality and the applicability can be extended to a variety of fluids.

Hence, the analysis and validation above demonstrate that after systematic corrections, the
renewed model has shown good performance to predict the jumping velocity and critical condition
of electrowetting-induced detachment under various conditions including liquid properties, applied
voltage, droplet volume, and surface wettability. However, a subsequent improvement is also needed
when applying the present model to the cases with high contact angle hysteresis and high-viscosity
oil bath, since the present model does not take into account the energy loss due to contact line
pinning and the viscous dissipation of the surrounding fluid.

Finally, to identify whether there will be any substantive difference in the prediction results, when
the correction of different energy components is entirely neglected, we display Figs. 15(a)–15(d),
which compare the simulated jumping velocity with the ones predicted by Eq. (27) under Cg = 1,
Cs = 1, Cv = 1, Ck = 1, respectively. Meanwhile, the average value of relative error for each case
is shown in Fig. 15(e). Here, the relative error is evaluated by dividing the difference between the
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FIG. 14. Comparison of the normalized jumping velocity estimated by Eq. (28) (solid lines) with the
simulated ones (solid symbol) under θYL = 85◦ for silicone oil and Galinstan.

simulated Uj/Uc and the predicted Uj/Uc by the simulated Uj/Uc. Noted from Fig. 15(a), when Cg = 1,
the prediction of Eq. (27) is generally overestimated especially under large R0, where gravity plays
a more important role. On the contrary, when the surface energy term is not corrected, prominent
errors appear mainly under relatively small droplets, since surface tension is more dominant in
such a case [see Fig. 15(b)]. It is noteworthy from Fig. 15(c) that if the correction of viscous
dissipation term is ignored, the prediction results will undergo a substantial change, since the
numerous detachable droplets in the simulation become nondetachable in the estimation. Besides,
as shown in Fig. 15(d), neglecting the correction of the kinetic energy term has a slight influence on
the critical conditions of a jumping droplet, whereas it will cause a generally overestimated jumping
velocity.

It is seen from Fig. 15(e) that without correction, each energy term will induce a considerable
prediction error. Particularly, correcting viscous dissipation has a great influence on the prediction
results, which reduces the relative error from ∼10% to ∼100%. In contrast, the relative errors
introduced from the surface energy, gravitational potential energy, and kinetic energy at detachment
are comparable, approaching 20%. Additionally, the sensitive analysis and statistical results shown
in Figs. 15(b) and 15(e) verify the elaboration forementioned in Sec. IV B, i.e., although the relative
deviation between the surface energy at detachment quantified by Eq. (3) and the one measured in
the simulation is only ∼0.5%, it is still necessary to correct the surface energy term.

V. CONCLUSIONS

In this study, we theoretically and numerically investigate the jumping velocity of an
electrowetting-actuated droplet. The numerical simulation is conducted for three glycerol-water
mixtures with initial radius R0 = 10 μm–1.40 mm actuated by three applied voltages on a hy-
drophobic surface. The examined Ohnesorge number Oh, Bond number Bo, and electrowetting
number η range 0.003–0.07, 0.001–1.05, and 0.643–0.816, respectively. Based on the energy
balance approach, we derive an analytical model that unifies the influence of liquid properties,
droplet size, and applied voltage to predict the jumping velocity, which has been validated with
both present simulation and the experiment in the literature. The present model demonstrates that the
normalized jumping velocity Uj/Uc has a nonmonotonic relationship with droplet size, which first
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FIG. 15. Comparison of the value of Uj/Uc estimated by Eq. (27) (solid lines) when (a) Cg = 1, (b) Cs = 1,
(c) Cv = 1, and (d) Ck = 1 with the simulated ones (solid symbol) under θYL = 85◦. (e) The average value of
relative error of present model when neglecting the correction of different energy components.

increases due to the weakened viscous dissipation, then decreases due to the prominent influence
of gravity. Hence, medium-sized droplets leave the substrate much more easily. In addition, the
jumping velocity is enhanced by reducing the liquid viscosity and applying higher voltage. However,
due to the saturation effect of contact angle, the jumping velocity will not increase continuously with
the increase of the applied voltage [18].
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Our main contribution is to reformulate the models of surface energy, gravitational potential
energy, and kinetic energy at detachment, as well as the viscous dissipation of entire recoiling
by introducing four correction coefficients. Although the formulas of correction coefficients are
empirical, it is noteworthy that the applicability of present model can be extended to predict
the jumping velocity of silicone oil and Galinstan droplets, which is not used for fitting. More
importantly, we physically clarify the necessities to correct them. On the one hand, the simplification
of spherical shape for jumping droplet leads to the underestimation of surface energy and gravity
potential energy, since the droplet at detachment actually resembles a balloon. The correction
coefficients of these two components are determined by Bond number Bo and electrowetting number
η, which first increase, then decrease with the increase of Bo. On the other hand, we demonstrate
that the assumption of constant velocity gradient during recoiling can account for the overestimated
viscous dissipation by the previous model of Zhang et al. [38]. By substituting the recoiling
time td = (2.37 ± 0.20) τc and the associated correction coefficient scaled by Oh−0.656η2.212 into
previous model, the formulation of viscous dissipation is refined. Furthermore, the kinetic energy
at detachment is generally underestimated by the rigid body model since the contribution of radial
velocity is neglected. Through the regression analysis, we find that the correction coefficient of
kinetic energy follows the power law of electrowetting number and normalized jumping velocity.
According to the error analysis, correcting the viscous dissipation term reduces the prediction error
by ∼90%, while the relative error introduced from the other three energy terms are comparable,
approaching ∼20%.

The numerical result indicates that at initial recoiling, the surface energy is rapidly converted into
kinetic energy and gravitational potential energy, where the retraction dynamics is dominated by the
balance of inertial force and capillary force. Consequently, the temporal evolution of contact radius
is scaled by Rc/Rc,III = 1−0.425 (t/τc)0.592. The propagation of capillary wave along the droplet
interface is also observed during initial recoiling, which is less visible for smaller droplet due to
stronger viscous damping. At late recoiling, the kinetic energy is reduced to overcome adhesion
work and gravity. Throughout the recoiling and the process after detachment, viscous dissipation
continues to increase. In our future work, we will focus on how to improve the energy conversion
efficiency of electrowetting-induced detachment and how to reduce energy consumption as much as
possible under the premise of similar jumping velocity.
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