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Droplet motion on chemically heterogeneous substrates with mass transfer.
II. Three-dimensional dynamics
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We consider a thin droplet that spreads over a flat, horizontal, and chemically hetero-
geneous surface. The droplet is subjected to changes in its volume though a prescribed,
arbitrary spatiotemporal function, which varies slowly and vanishes along the contact
line. A matched asymptotics analysis is undertaken in the long-wave limit of the Stokes
equations with slip to derive a set of evolution equations for the Fourier harmonics of nearly
circular contact lines. Numerical experiments highlight the generally excellent agreement
between the long-wave model and the derived equations, demonstrating that these are able
to capture many of the features which characterize the intricate interplay between substrate
heterogeneities and mass transfer on droplet motion.
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I. INTRODUCTION

When the size of a droplet changes as it spreads, a number of interesting effects emerge.
Alongside the usual pinning, stick-slide, and stick-jump modes which are observed in the absence
of mass transfer, such effects include, e.g., the constant-radius, constant-angle, and the recently
reported snapping modes (see, e.g., Refs. [1–6]; see also Ref. [7] and the references therein).
Such effects are commonly attributed to local variations in the substrates’ topographical and/or
chemical features, which may temporarily trap the contact line [7,8]. Due to the highly nonlinear
and multiscale nature of the mechanisms underpinning the dynamics of contact lines, investigations
based on purely computational approaches are highly nontrivial and are currently capable of only
partly resolving the length scales present [9–11].

Within the long-wave approximation and for weakly distorted contact lines, lower-dimensional
models were derived for droplets of fixed volume that were capable of accurately capturing the
evolution of contact lines in three dimensions (3D) and at a fraction of the computing cost that
would have been required for simulating the full long-wave model [12]. The present paper offers an
extension to Ref. [12] to perform a matched asymptotic analysis for nonaxisymmetric, 3D droplets
of variable mass. It constitutes the second part of the work undertaken by the present authors which
considers the same setting in two dimensions (2D) (see Ref. [7], hereinafter referred to as Part I).
As in these aforementioned studies, we pursue a combined analytical and numerical investigation
of a long-wave evolution equation for the droplet thickness, which is derived by considering thin
viscous droplets in the gravity-free regime with strong surface tension effects and negligible inertia
[13]. Assuming that the spreading of the droplet and the rate of mass transfer is slow, analytical
progress is possible with the method of matched asymptotic expansions in the limit of vanishingly
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small slip lengths. In this manner, the dynamics of the macroscale where capillary forces dominate
are coupled with the processes governing the microscale where slip effects manifest themselves to
ultimately yield a set of simpler equations that approximates the full model [14,15].

To avoid the complications of the analysis arising in the 2D counterpart where transcendental
equations need to be solved for the contact point velocities [7,16], we assume that no fluid transfer
occurs at the contact line, so explicit expressions can be derived for the contact line velocity. While
this assumption is not appropriate for describing mass loss through evaporation since the evaporative
flux is maximized there [17–19], it is valid in other scenarios, e.g., when the liquid flux in the
droplet is localized somewhere within its footprint. Besides, we have shown in Ref. [7] that many
of the interesting features observed in studies involving evaporating droplets are rather general and
characterize the dynamics captured by the present model. A key contribution of this paper is that
the more realistic 3D model allows us to make comparisons with experimental observations, so
features such as the stick-slip events observed by Dietrich et al. for evaporating droplets [3] and the
constant-radius and constant-angle modes observed by Lam et al. for fluid pumping through a needle
[2] can be explored by varying the parameters controlling mass transfer and chemical heterogeneity.

This study is structured as follows. In Sec. II, we present the model and its assumptions. Using
the method of matched asymptotic expansions in Sec. III, we derive a reduced model for the motion
of the contact line that consists of a set of integrodifferential equations, which approximates the
dynamics of the full model of Sec. II. In Sec. IV, the results of the analysis are scrutinized against
numerical solutions to the governing partial differential equation (PDE) to extract insights on the
interplay between mass transfer and surface heterogeneities, contrasting, where appropriate, the
results in Part I of this study. Concluding remarks are offered in Sec. V.

II. PROBLEM FORMULATION

Consider a droplet in 3D moving on a flat, horizontal, and chemically heterogeneous substrate
under the action of capillary pressure and mass transfer effects. The problem formulation and
assumptions closely follow Part I, so the corresponding nondimensional long-wave PDE which
governs the evolution of the droplet thickness h(x, t ) is given by

∂t h + ∇ · [h(h2 + λ2)∇∇2h
] = q, (1a)

where q(x, t ) models the mass transfer, hereinafter referred to as the liquid flux, λ is the slip
length, and the gradient and Laplacian operators are defined in 2D. Equation (1a) has been made
nondimensional by scaling the lateral scales with � = [V/(2παs)]1/3, h with αs�, λ with αs�/

√
3, t

with τ̄ = 3μ�/(σα3
s ), and q with ραs�/τ̄ . In these scalings, σ is the surface tension, ρ is the liquid

density, μ is the viscosity of the fluid, and V and αs are some reference values for the volume and
contact angle, respectively. Consistent with Part I, we have employed the inverse linear slip model,
which, unlike the classical Navier slip model, does not exhibit logarithmic singularities for ∇2h at
the contact line, a desirable feature in simulations of Eq. (1a). However, it turns out that, within the
orders of terms retained in the asymptotic analysis, the results are identical for both models [7,20].

The substrate is decorated with chemical heterogeneities, which are described with locally
varying contact angles according to θ (x), as scaled with respect to αs. Along the contact line, x = c,
we have

h = 0, |∇h| = θ, and
(
∂t c − λ2∇∇2h

) · ν = q/θ, (1b), (1c), (1d)

where ν denotes the outward unit normal vector to the contact line, which is in the plane of the
substrate (see Fig. 1). We note here that, just as in the 2D case [7], condition Eq. (1d) is of kinematic
type and arises from a local expansion of Eq. (1a) near x = c so Eqs. (1b) and (1c) together with

d

dt

∫
�(t )

h(x, t ) dx =
∫

�(t )
q(x, t ) dx = v̇(t ) (1e)
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FIG. 1. A top view of the geometry highlighting the wetted region �(t ) (in shaded gray). The contact line
c is described by the polar curve a(φ, t ) in the coordinate system with origin at (xc, yc ) and corresponds to a
perturbation from a circle (dotted curve). The vectors r̂ and φ̂ represent the unit radial and azimuthal vectors in
the moving frame, respectively; ν and τ denote the outward unit normal and tangent vectors to the contact line
c, respectively

simultaneously hold [see Appendix A for an outline of the derivation of Eq. (1d)]. In Eq. (1e), �(t )
and v(t ) denote, respectively, the wetted region of the substrate and the (dimensionless) droplet
volume, and the dot denotes differentiation with respect to t . In the present paper, we assume that
q → 0 as x → c, so Eq. (1d) reduces to (∂t c − λ2∇∇2h) · ν = 0 along the contact line. In this
manner, as mentioned in Sec. I, we avoid having to work with transcendental equations like the
ones which arise if such analysis is carried out in 2D [7,16]. In this context, having vanishingly
small fluxes along the contact line is realistic if, say, the mass flux is localized somewhere within
the droplet. Thus, solving the long-wave model Eqs. (1) determines how the droplet thickness, h,
and contact line position, c, evolve in time for prescribed contact angles θ , mass transfer q, and slip
length λ. In this paper, q may be taken to be an arbitrary spatiotemporal function whose contributions
are dominant within the droplet footprint and vanish along the contact line. This situation can model,
for example, localized fluxes, e.g., by pumping fluid through a needle. For the analysis that follows,
we introduce the normalized flux q̃, defined as q = v̇q̃, which, in accordance with Eq. (1e), must
satisfy ∫

�(t )
q̃(x, t ) dx = 1. (2)

In this manner, we may describe processes where we can control how the volume of the droplet
changes in time (e.g., by artificially pumping fluid in and out of the droplet), as opposed to, say,
evaporative effects, where volume variations are not explicitly controllable but emerge from natural
processes. To facilitate the analysis, the free-boundary problem Eqs. (1) is transformed to a problem
defined on a disk of unit radius, centered at x = xc(t ) [12]. In principle, the choice for xc(t ) can be
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arbitrary as long as it is contained within �(t ), so we are able to define the following mapping:

x = xc(t ) + ra(φ, t )r̂, (3)

where 0 � r � 1, 0 � φ < 2π , a(φ, t ) is assumed to be a single-valued function of φ and r̂ =
(cos φ, sin φ). At the contact line, for which r = 1, we have that

c = xc + ar̂. (4)

With the transformation Eq. (3), the original problem Eqs. (1) reduces to one of determining
h(r, φ, t ), a(φ, t ), and xc(t ) by casting their corresponding PDEs and conditions in the new (r, φ)
coordinate system. Lastly, we assume that xc(t ) evolves such that the origin of the moving frame is
always located at the centroid of the wetted area �(t ), which requires that∫ 2π

0
a3 cos φ dφ = 0,

∫ 2π

0
a3 sin φ dφ = 0. (5a), (5b)

From Eqs. (5), we are able to obtain an evolution of equation for each of the two components of
xc(t ) [see Ref. [12] for more details on the transformation of the temporal and spatial derivatives
in the new coordinate system, and the resulting equations for ẋc(t ) and ẏc(t )]. As in Part I, we
will pursue a combined analytical–numerical approach to deduce lower dimensional models for the
evolution of the contact line, given that as λ assumes realistically small values, the curvature of the
free surface shape steepens near the contact line. Hence, the full problem Eqs. (1) becomes stiff
due to these boundary layers which require denser computational meshes to be resolved, therefore
making simulations more demanding [12].

III. MATCHED ASYMPTOTIC ANALYSIS

Just as in the case for droplets of constant volume [12], we assume that a � ∂φa, expanding
a(φ, t ) as a truncated Fourier series of the form

a(φ, t ) =
M∑

m=0

am(t )eimφ, (6)

where am are generally complex functions of t to be determined, with |am(t )| � a0(t ), so a(φ, t )
describes weak perturbations from a circular contact line of radius a0(t ). The series is truncated at
M � λ−1 to suppress nonphysical behaviors that may arise in the asymptotic model if we allow
for contact line variations occurring at length scales that are smaller than λ [12]. We note that the
complex series representation in Eq. (6) and all expressions containing complex exponentials that
are going to be discussed hereinafter are considered with their imaginary parts discarded.

The same assumptions put forth in the analysis of Part I of this study hold, namely, that we focus
on slow droplet dynamics occurring on the slow timescale τ = εt , where ε = 1/ ln λ−1 � 1 as
λ → 0, assuming that both |∂t c| and v̇ are O(ε). Provided that there is sufficient separation of scales
(e.g., for droplets away from equilibrium and when v(t ) � λ and λ|∂φa| � 1), we may develop
a lower-dimensional model based on matched asymptotic expansions that adequately describes the
dynamics for all t without having to construct some composite expansion to capture all the pertinent
timescales. Before embarking on such analysis, it is important to note that, unlike the numerics,
xc is chosen differently for the analysis. In particular, we require that for any given contact line
shape c, the coordinates xc(t ) = (xc(t ), yc(t )) are chosen such that the first harmonic of a(φ, t ) is
always suppressed so a1(t ) ≡ 0, associating eiφ terms with the origin of the moving frame. Uniquely
defining xc in this manner is always possible for all single-valued functions a(φ, t ). Although for
such a choice for the coordinate system the contact line shape is no longer centered at the centroid
of the drop, Eq. (6) in Eqs. (5) gives Re(a1) + O(a2

m) = Im(a1) + O(a2
m) = 0, readily implying that

the two choices are equivalent to each other, at least within the orders of terms retained in the
asymptotics.
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For the analysis, we introduce the smallness parameter δ � 1 as a characteristic size of the
azimuthal disturbances of the contact line. In this setting, ȧ0, ẋc, and ẏc are all assumed to be O(ε)
quantities, whereas ȧk , k > 1 are O(δε). Thus, by treating ε and δ as ordering parameters in the
asymptotics to identify the various terms that need to be retained, we introduce the O(1) variables:

bk (t ) =
⎧⎨⎩ a0(t ) for k = 0

0 for k = 1
ak (t )/δ for k � 2,

uk (t ) = 1

ε
×

{
ḃk for k �= 1
ẋc(t ) − iẏc(t ) for k = 1

. (7)

As in Ref. [12], the analysis pursued entails deducing evolution equations for xc and the Fourier
coefficients of a(φ, t ) to approximate the corresponding evolution of c of the full problem Eqs.
(1) as λ → 0. This is done by probing separately into the dynamics at the microscale, the inner
region, and the macroscale, the outer region, developing the asymptotic expansions of ∂νh = ν · ∇h
corresponding to each region as the other is approached. Obtaining the evolution equations for
c is achieved by matching the two expansions in the distinguished limit λ � δ2 � ε � δ � 1.
Although certain parts of the analysis that were carried out in the aforementioned work of Savva
et al. are applicable in this setting as well; here we include the contributions of the mass flux term,
q in Eqs. (1) and additional correction terms coming from the axisymmetric mode and the centroid
motion that were previously omitted.

A. Inner region

The dynamics of the inner region may be examined by sufficiently zooming into the vicinity
of the contact line through the appropriate stretching transformations. Given that, by assumption,
q(c, t ) = 0, mass transfer effects contribute to the O(λ) terms, which are neglected here. Hence, the
analysis is identical to the inner region asymptotics for droplets of constant volume [12]. The key
idea behind the inner region asymptotics in 3D is that if |∂t c · ν| � λ and the contact line varies at
length scales that are longer than slip (equivalently, λ|∂φa| � 1 and λ|∂2

φa| � 1), the analysis of
the inner region is the same as in the 2D geometry at leading order as λ → 0. The 2D geometry
has been tackled in Ref. [21], but for the case of the Navier slip. As previously mentioned (see also
Part I), both models possess the same leading-order asymptotics [20,22], giving rise to the following
two-term expansion for the inner region, hin:

−∂νhin ∼ θ∗ + ε
∂τ c · ν

θ2∗
ln

[
eθ∗(c − x) · ν

λ

]
+ · · · as

(c − x) · ν

λ
→ ∞, (8)

where dots denote the higher-order corrections which are omitted and θ∗ = θ |x=c is the het-
erogeneity evaluated along the contact line. Combining Eqs. (4) and (6), and noting that ν =
r̂ − ∂φa φ̂/a0 + · · · where φ̂ = (− sin φ, cos φ), we can produce an expansion for ∂τ c · ν in the limit
of nearly circular contact lines as

∂τ c · ν = u0 +
(

u1 − δ
b2

b0
u∗

1

)
eiφ + δ

M∑
m=2

[
um + (m − 1)bm−1

2b0
u1 − (m + 1)bm+1

2b0
u∗

1

]
eimφ + . . . ,

(9)

where bM+1 = 0 and superscripted stars denote complex conjugation. Using Eq. (9), we can write
Eq. (8) in terms of the moving polar coordinate system, Eq. (3), which is to be matched with the
corresponding outer-region expansion. In the end, the expansion in Eq. (8) becomes

−∂νhin ∼θ∗+ ε

θ2∗
ln

(
eaθ∗

1 − r

λ

)

×
{

u0 +
(

u1 − δ
b2

b0
u∗

1

)
eiφ +δ

M∑
m=2

[
um+ (m − 1)bm−1

2b0
u1− (m + 1)bm+1

2b0
u∗

1

]
eimφ

}
(10)

as (1 − r)/λ → ∞.
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B. Outer region

Slip effects are neglected in the outer region, thus dropping O(λ) terms. Introducing the change
of variable τ = εt transforms Eq. (1) to

∇ · [h3
out∇∇2hout

] = ε[v′q̃ + (x′
c + r∂τ ar̂) · ∇hout − ∂τ hout], (11a)

where primes denote differentiation with respect to τ , and this is solved subject to the conditions

hout(1, φ, t ) = 0, (11b)∫ 2π

0

∫ 1

0
ra2hout dr dφ = v(τ ). (11c)

We then consider a quasistatic expansion of the form

hout(r, φ, τ ) = h0(r, φ, τ ) + εh1(r, φ, τ ) + . . . , (12)

where h1 is assumed to be linear in δ. The first term, h0, describes the leading-order shape of the
droplet in the bulk, and is determined by solving the quasiequilibrium problem

∇2h0(r, φ, τ ) = k(τ ), (13a)

h0(1, φ, τ ) = 0, (13b)∫ 2π

0

∫ 1

0
ra2h0 dr dφ = v(τ ). (13c)

We can straightforwardly obtain h0 using a perturbation series in δ, deducing k(τ ) from the volume
constraint, Eq. (13c). This yields

h0(r, φ, τ ) = ϑ̄

[
b0(1 − r2)

2
+

M∑
m=2

bm
(
rm − r2)eimφ

]
+ . . . , (14)

where ϑ̄ (t ) = 4v(t )/(πb3
0) denotes the (time-dependent) average value of the apparent contact angle

ϑ , which may be determined from the normal derivative of h0 and is expanded as

ϑ = −∂νh0|c = ϑ̄

[
1 +

M∑
m=2

bm(1 − m)

b0
eimφ

]
+ . . . . (15)

In the analysis that follows, the expression for h0 in Eq. (14) is rearranged to factor out a and ϑ , so

h0(r, φ, τ ) = ϑa

[
h0,0(r) + δ

M∑
m=2

bm

b0
h0,m(r)eimφ + · · ·

]
, (16)

where

h0,0(r) = 1

2

(
1 − r2

)
, (17)

h0,m(r) = rm − 1 + m

2

(
1 − r2

)
. (18)

The next order term in Eq. (12), h1, captures the contributions due to mass transfer as well as the
motion of the contact line. It satisfies the following linear PDE:

∇ · (h3
0∇∇2h1

) = v′q̃ − ∂τ h0 + (x′
c + r∂τ ar̂) · ∇h0, (19a)
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with conditions

h1(1, φ, t ) = 0,

∫ 2π

0

∫ 1

0
ra2h1 dr dφ = 0. (19b), (19c)

The analysis of h1 revolves around the truncated Fourier series for h1(r, φ, τ ) and q̃, which are
written as

h1(r, φ, τ ) = a

ϑ2

(
h1,0(r, τ ) + h1,1(r, τ )eiφ + δ

M∑
m=1

h̃1,m(r, τ )eimφ

)
, (20)

q̃(r, φ, t ) = ϑ

(
q0(r, t ) + q1(r, t )eiφ + δ

M∑
m=2

qm(r, t )eimφ

)
, (21)

where qm(1, t ) = 0, m � 0, since, by assumption, q → 0 as x → c. The specific form of the series
of h1 captures the dominant axisymmetric and centroid motions, the h1,0 and h1,1 terms, respectively,
as well as the higher-order azimuthal terms, h̃1,m. It is important to note that in Eqs. (16), (20), and
(21) we have factored out expressions involving a and ϑ , so the analysis that follows can be more
concisely presented. The goal is to construct the asymptotic expansion of the normal derivative of
hout as r → 1−, cast in the form

−∂νhout ∼ ϑ − ε

ϑ2

(
∂rh1,0(r, τ ) + ∂rh1,1(r, τ )eiφ + δ

M∑
m=1

∂r h̃1,m(r, τ )eimφ

)
. (22)

To achieve this, a series of laborious algebraic manipulations are required, some details of which
are relegated to the Appendices that follow the main text. First, we obtain in Appendix B a set of
linear boundary value problems for h1,0, h1,1, and h̃1,m, m � 1. In Appendix C, we examine their
derivatives with respect to r as r → 1− in accordance with Eq. (22). Consistently with relevant
works in the literature, we find that the expansion in Eq. (22) consists of logarithmically diverging
terms as r → 1− and r-independent terms, which may be cast in the form of integrals, see Appendix
C. For further insights into their form, a discussion on their large-m asymptotics is offered in
Appendix D.

Anticipating ahead the matching which is to be performed for the cubes of the normal derivatives,
we write the asymptotics of Eq. (22) as r → 1− in the form

−(∂νhout)
3 ∼ ϑ3 + 3ε

{
∂τ c · ν ln(1 − r) + β0u0 + β1u1eiφ + δ

M∑
m=1

[
χmβmum − mβ̃0

m

b0
bmu0

+ m − 1

2b0
(γm − β̃−

m )bm−1u1 − m + 1

2b0
(2βm − γm + β̃+

m )bm+1u∗
1

+ v′
(

ζm − 3

2v
(2mζ0bm + ζ1(m − 1)bm−1 + (m + 1)ζ ∗

1 bm+1)

)]
eimφ

}
, (23)

as derived from Eqs. (C10), (C11), and (C15) together with Eqs. (9) and (D13). As discussed in
Appendix D, the O(v′ζ0bm), O(v′ζ ∗

1 bm+1), and O(v′ζ1bm−1) terms in Eq. (23) come from the large-m
asymptotics of the associated integrals. We opted against the much more involved route of capturing
these terms by solving at each time the corresponding boundary value problems and extracting
their pertinent asymptotics, which is deemed to be a reasonable compromise between accuracy and
efficiency. In fact, in all the numerical tests we have performed, the omission of such terms has had
very little impact on how well the derived asymptotic model agrees with full simulations of Eqs. (1).
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C. Matching

As in the 2D analysis conducted in Part I with no mass transfer at the contact points, we may
asymptotically match the cubes of the inner and outer normal derivatives given by Eqs. (10) and (23).
In this manner, and within the appropriate overlap region, we have that (∂νhin )3 ∼ (∂νhout)3 [23].
This allows us to eliminate the ln(1 − r) terms, deducing a Cox–Voinov-type evolution equation for
the contact line from the remaining terms. Reverting to derivatives with respect to t and the original
variables for the harmonics, the equation obtained from matching takes the form

ϑ3 − θ3
∗

3
= ∂t c · ν ln

(
eaθ∗
λ

)
−

M∑
m=0

[
βmUm − mβ̃0

m

am

a0
U0 + m − 1

2a0
(γm − β̃−

m )am−1U1

− m + 1

2a0
(2βm − γm + β̃+

m )am+1U
∗
1

+ v̇

(
ζm− 3

2v
(2mζ0am + ζ1(m − 1)am−1 + ζ ∗

1 (m + 1)am+1)

)]
eimφ, (24)

where we set Um = ȧm for m �= 1 and U1 = ẋc − iẏc. From the Fourier coefficients of Eq. (24) we
obtain differential equations for each of the components of a(φ, t ) and the centroid dynamics, xc(t ).
Specifically, we determine U0 and U1 from (

ψ0 + β̂0
0

)
U0 = w0 + v̇ζ0, (25a)(

ψ0 + β̂0
1

)
U1 −

[a2

a0
(ψ0 + β̂+

1 ) − ψ2

]
U ∗

1 = w1 − U0ψ1 + v̇ζ1, (25b)

whereas Um with m > 1 satisfy(
ψ0 + β̂0

m

)
Um = wm + 1

2

[
(m + 1)(ψ0 + β̂+

m )
am+1

a0
− ψm+1

]
U ∗

1

− 1

2

[
(m − 1)(ψ0 + β̂−

m )
am−1

a0
+ ψm−1

]
U1 −

(
mβ̃0

m

am

a0
+ ψm

)
U0

+ v̇

[
ζm− 3

2v
(2mζ0am + ζ1(m − 1)am−1 + (m + 1)ζ ∗

1 am+1)

]
. (25c)

In Eqs. (25), we defined the constants

β̂0
m = 1 − ln λ − βm, β̂+

m = 1 − ln λ − 2βm + γm − β̃+
m , β̂−

m = 1 − ln λ − γm + β̃−
m , (26)

and the ψm and wm correspond to the coefficients of the truncated Fourier series of ln(aθ∗) and
(ϑ3 − θ3

∗ )/3, respectively,

ln(aθ∗) =
M∑

m=0

ψmeimφ,
ϑ3 − θ3

∗
3

=
M∑

m=0

wmeimφ. (27a), (27b)

Likewise, we set δ = 1 in Eq. (21) and the ζm terms are determined with the bm being replaced
by the am, see Eq. (C12c). The reduced system of Eqs. (25) describes fully the leading-order
droplet spreading dynamics as λ → 0, confirming a posteriori the assertion that both |v̇| and Um

are O(1/| ln λ|) as λ → 0. Like the 2D analysis, in the special case when

q(r, φ, t ) = v̇(t )h(r, φ, t )/v(t ), (28)

the ζm terms vanish, so terms involving v̇(t ) are absent from Eqs. (25) and volume changes appear
only through the apparent contact angle, Eq. (15).
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The low-dimensional system of Eqs. (25) may be simplified if further assumptions are invoked.
For example, in Ref. [12], where the case with v̇ = 0 was treated, terms involving β̃0

m, β̃±
m , and ψm

with m � 1 were omitted without compromising the generally favorable agreement reported with
the solution to the governing PDE, since such terms do not arise from any logarithmically singular
terms. Although in a consistent asymptotic scheme such terms need to be retained, we can argue
heuristically that the O(β̃0

mamU0) terms make small contributions because, by the time the contact
line starts deforming, typically the axisymmetric spreading of the droplet nearly ceases so U0 ≈ 0;
the contributions of O(β̃±

m ), just as those of O(U1am) and O(U ∗
1 am), may only become important

for droplets with deformed contact lines which undergo long excursions away from their initial
positions, whereas those of ψm with m � 1 merely introduce O(ε2am) corrections to Um. However,
in all cases explored, all the terms in Eqs. (25) were retained, since they may possibly accumulate
non-negligible contributions when multiple periods of inflow/outflow are considered and because
their inclusion adds insignificant computational overhead.

IV. RESULTS

In this section, we assess the outcomes of the asymptotic analysis of the preceding section
through a series of numerical experiments which compare the predictions of Eqs. (25) with those
of the governing equation and the appropriate initial conditions, Eqs. (1), hereinafter referred to as
the full model. Central to the calculations using the asymptotic model, Eqs. (25), is the way the
apparent contact angle, ϑ , is evaluated. Once ϑ is known, the system constitutes a set of generally
weakly coupled and nonstiff integrodifferential equations and their implementation is relatively
straightforward. It is decomposed into 2M + 1 unknowns for the evolution of a0, xc, yc, and the real
and imaginary parts of am, m = 2, 3, . . . , M (considering M = 50 is typically sufficient, unless the
structure of the heterogeneities has small-scale features). The whole process involves moving back
and forth in Fourier space while time stepping is performed with a standard ordinary differential
equation integrator, coupled with numerical quadrature for computing the time-dependent integrals
ζm(t ) (see also Appendix. D).

Just as in Ref. [12], ϑ is computed using two different methods. The first is based on the
perturbative approximation of ϑ given by Eq. (15) and this model is referred to as reduced. Through
the second approach, ϑ is determined more accurately for a given contact line shape by solving
Eqs. (13) with the boundary integral method. In this manner, we formulate a linear integral equation
which outputs ϑ by solving a linear system. Since this approach leverages the simpler system arising
from the asymptotics, Eqs. (25), with the numerical solution of leading-order problem, Eqs. (13),
the resulting model is referred to as hybrid. The general methodologies adopted for solving the
full, reduced, and hybrid models, and for computing the associated integral terms are described in
Ref. [12] [see Ref. [24] for a Python implementation of the reduced and hybrid models].

Unless stated otherwise, we fix a(φ, 0) = 1, xc(0) = 0, and plot solutions to the full, hybrid,
and reduced models with solid, dashed, and dotted curves, respectively. Likewise, in all cases
where θ (x) is represented by shading regions of the x-y plane, darker/lighter shades correspond
to larger/smaller contact angles. In some simulations, we consider p-periodic volume variations
governed by

v(t ) = v̄ + ṽ

arctan 20
arctan

[
20 sin(2πt/p)√

1 + 400 cos2(2πt/p)

]
, (29)

which corresponds to a nearly triangular wave with v̄ − ṽ � v(t ) � v̄ + ṽ (see, e.g., Fig. 7 and
Part I). Throughout this paper, we have fixed λ = 10−3, which is larger compared to the values
considered in Part I, simply because the full problem becomes increasingly stiff as λ → 0, thus
requiring significantly more computational resources to be simulated. Also noteworthy is that, in
most cases, the chemical heterogeneities θ (x) considered do not vary too sharply to avoid issues
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with retracting contact lines. In such cases, the contact line may develop protrusions which become
elongated as the contact line retracts. Such features cannot be adequately resolved by the numerical
scheme adopted and adaptive meshing techniques would be required. We chose not to pursue this
route, since the validity of the analysis undertaken would be rather questionable in such cases.

A. Random substrates

The first example we consider is motivated by the experiments performed by Dietrich et al. who
investigated the evaporation of alcohol droplets in air and reported four evaporation modes, namely,
the constant contact angle and constant contact radius modes, as well as stick-slide and stick-jump
modes, the latter of which is caused by the intermittent pinning of the contact line [3]. The analysis
presented in Sec. III does not account for evaporation because the mass flux is maximized near the
contact line [17–19]. However, one can qualitatively reproduce such a situation by considering a
simple linear mass loss with Eq. (28) for the distribution of the mass transfer. To induce a nontrivial
centroid motion, we prescribe noisy chemical heterogeneities of the form

θ (x) = θ̂ (x) + θ̃ (x), (30)

where θ̂ (x) is a deterministic part giving the dominant structure of the substrate, and θ̃ (x) corre-
sponds to a realization of spatial band-limited white noise. In Part I of this study, similar substrates
were considered for exploring the snapping dynamics observed by Wells et al. [6] (see Fig. 10 in
Part I).

Figure 2 shows a case of a substrate with heterogeneities of the form (30), where θ̂ (x) ≡ 1.5
and θ̃ (x) is represented by a superposition of 75 harmonics with wave numbers up to 3π and
whose amplitudes are normally distributed with zero mean and unit variance, ensuring that θ (x) > 0
everywhere. By tracking the mean values of a(φ, t ), a0, and the apparent contact angle ϑ , ϑ̄ ,
we observe behaviors that are qualitatively consistent with the observations recorded in Fig. 2 of
Ref. [3], noting that we used hmax = a0ϑ̄/2 as a proxy for the maximum height of the droplet,
found by setting r = 0 in the leading term of Eq. (16). Although the corresponding measurements
in experiments are usually taken from photographs of the side of the droplet, recording the mean
values of a and ϑ from nearly circular contact lines as done here gives similar results [see the contact
line profiles in Fig. 2(a)].

As the droplet loses mass, its mean radius exhibits a series of jumps which is also marked with a
temporary increase in hmax and ϑ̄ . Usually in these circumstances the contact line will locally remain
pinned at a lower wettability region, thus causing other parts of the contact line to respond to this
pinning by shifting towards the pinning site as the droplet loses mass [see Figs. 2(a), 2(b) and 2(d)].
Once the contact line manages to overcome a wettability barrier, it exhibits a stick-jump event.
These behaviors corroborate the experimental observations of Dietrich et al. [3] which were also
attributed to spatial variations in surface heterogeneities. Noteworthy also is the excellent agreement
between the predictions offered by the full and hybrid models which are nearly indistinguishable.
The reduced model on the other hand shows some disagreement, but captures the generic features
reasonably well.

One of the key observations of Part I of the present study was that periodic variations in the
droplet mass led to periodic 2D droplet dynamics after the decay of initial transients, which typically
occur within three to four periods. To assess how well this applies in the 3D setting, we use a
substrate with random heterogeneities prescribed according to Eq. (30) with θ̂ (x) = 1 and where
θ̃ (x) is a superposition of ten harmonics with wave numbers up to 2π , whose amplitudes are
normally distributed with zero mean and variance set to 0.3. For such a substrate, the chemical
heterogeneities vary more weakly compared to the substrate used in Fig. 2, giving rise to softer
pinning transitions which almost entirely eliminate stick-slip dynamics. For this choice for θ (x), the
contact line is more circular, thus requiring fewer collocation points in the azimuthal direction to be
accurately resolved and permitting efficient simulations for far larger values of t .
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FIG. 2. Stick–slip dynamics on a randomly varying θ (x) (see text for more details on how the profile is
generated) with v(t ) = π (2 − 0.001t ) and q(x, t ) prescribed according to Eq. (28). (a), (b) show contact line
profiles when t = 10, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, and 1990, comparing the solutions to
the full problem with the hybrid and reduced problems, respectively (darker shades correspond to larger contact
angles). (c) Evolution of the mean radius a0, mean macroscopic angle ϑ̄ , maximum height hmax, and volume
v, each scaled by 1.7, 1.7, 1.5, and 2π , respectively. (d) The evolution of the centroid coordinates, xc (black)
and yc (gray). In all plots, the solid, dashed, and dotted curves correspond to solutions to the full, hybrid, and
reduced problems, respectively.

The outcome is shown in Fig. 3, plotting how the centroid evolves for two different values of
the period of mass fluctuations, namely, p = 200 and p = 600. Remarkably, the droplets are driven
to entirely different locations on the substrate. Moreover, the dynamics when p = 200 does not
appear to have settled to a periodic state within the simulated time. Hence, this result points to the
possibility of quasiperiodic dynamics, induced by the nonlinear coupling of the random features and
the period of inflow/outflow. However, it is expected that larger values of p (e.g., see the case when
p = 600 in Fig. 3) and/or weaker heterogeneities will mitigate this effect, facilitating the transition
to periodic motion as in the 2D case. Lastly, we also need to highlight the importance of including
the correction terms derived from the asymptotic analysis undertaken by performing the same set
of simulations with the hybrid approach, but using only the leading-order term of the asymptotic
theory [14], namely,

∂t c · ν = θ3
∗ − ϑ3

3 ln λ
, (31)

which only captures the O(1/| ln λ|) terms of Eqs. (25), which dominate as λ → 0. As seen in the
plots of Fig. 3, just the leading-order term is insufficient, at least for the sizes of λ considered, since
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FIG. 3. Periodic variations in droplet volume over a substrate comprised of randomized heterogeneous
features (see text for a brief description on how the substrate is generated), where q(x, t ) is prescribed according
to Eq. (28) and v(t ) according to Eq. (29) with v̄ = 2π , ṽ = 1.5π . In panel (a), p = 200; in panel (b), p = 600.
In each panel, the left plot shows the contact line shape at t = 3200 for the full model (solid curves), the hybrid
model using Eqs. (25) (dashed curves), the reduced model using Eqs. (25) (dotted curves), and the hybrid
model using the leading-order Eq. (31) (dash dotted curves), and the path followed by xc(t ); the right plot
shows the corresponding evolution of the centroid coordinates xc(t ) (black curves) and yc(t ) (gray curves).

we observe appreciable departures from the simulations with the full model. At the same time, the
computations with the reduced model, which uses Eq. (15) for ϑ , also highlight that it is equally
important to accurately compute ϑ for improved agreement. Without these additional terms, which
are better captured with the hybrid method applied to Eqs. (25), we see that heterogeneities may
occasionally mistime stick-slip events, thus moving the droplet to a different location.

B. Localized mass transfer

The analysis presented is capable of capturing localized mass transfer provided that q is nonzero
only within the droplet footprint, �(t ). Localized forms of q have also been explored in Part I,
showing that they may reposition the droplet at a different location on the substrate or even induce
topological transitions through breakup. It is thus of interest to explore these effects in the 3D setting
as well, by considering a Gaussian flux distribution of the form

q = v̇(t ) exp
{−S

[
(x − x0)2 + (y − y0)2

]}∫
�(t )

exp
{−S

[
(x − x0)2 + (y − y0)2

]}
dx

, (32)

whose peak is located at (x0, y0) ∈ �(t ) with S � 1 so we have q ≈ 0 when x = c, noting that the
denominator is estimated with numerical quadrature. To make computations with Eq. (1) feasible,
we only consider moderate values of S, chosen as a compromise between the requirement for the
analysis to hold that q vanishes along the contact line, while capturing its dynamics with fewer
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collocation points than those that would have been required to accurately resolve q(x, t ) for much
larger values of S. On the other hand, the implementation efficiency of Eqs. (25) is enhanced if
we formally take the limit S → ∞, so Eq. (32) reduces to q = v̇δ(x − x0)δ(y − y0), where δ(x)
is the Dirac delta function. This is because, in this limit, we avoid having to compute the Fourier
decomposition of q at each time step. In the moving frame, q = v̇δ(x − x0)δ(y − y0) may be cast in
the form

q = v̇(t )δ(r − r0)δ(φ − φ0)

ra(φ, t )2
, (33a)

where

φ0 = tan−1
(y0 − yc

x0 − xc

)
and r0 =

√
(x0 − xc)2 + (y0 − yc)2

a(φ0, t )
, (33b), (33c)

with r0 < 1. Equations (33) give the location of the mass transfer in the (r, φ) computational
coordinate system so the injection point remains unchanged in the physical coordinate system. This
allows us to evaluate the time-dependent integrals ζm(t ) to obtain [see Eq. (C12c)]

ζ0(t ) = r2
0

πa2(φ0, t )ϑ (φ0, t )(1 − r2
0 )

− a0

4v(t )
, (34a)

ζm(t ) = fm(r0)e−imφ0

πa2(φ0, t )ϑ (φ0, t )
− am

v(t )

∫ 1

0
fm(r)r

[
rm − 1 + m + 1

2

(
1 − r2)] dr, m � 1, (34b)

which may be further simplified by using the approximation a2(φ0, t )ϑ (φ0, t ) ≈ 4v(t )/[πa0(t )].
The integral term in Eq. (34b) can be precomputed with numerical quadrature, and the value of
fm(r0) is easily determined with spectrally accurate polynomial interpolation. In the examples that
follow, and whenever comparisons with the governing PDE are made, we use Eq. (32) in Eqs. (1),
but in simulations of Eqs. (25) we use Eqs. (33) and (34), not expecting appreciable differences
especially when the flux is not too close to the contact line. We also assume that the volume varies
according to

v(t ) = v0 + (v∞ − v0) tanh (ηt ), (35)

which monotonically increases from v = v0 at t = 0 to v → v∞ as t → ∞, where η is a generally
small parameter to ensure a slow transition to the final volume in accordance with the assumptions
of the theory.

In Fig. 4, we consider a droplet which is initially centered at the origin, has volume v(0) =
v0 = 2π , and is at equilibrium on a homogeneous substrate with θ (x) ≡ 1, i.e., a(φ, 0) = 2.
Liquid is added into the droplet according to Eq. (35) with v∞ = 3π and η = 1/30 using two
injection points located close to the contact line at (1.8,0) and (0,1.8) and one withdrawal point
at (−1,−1), so q̇ = v̇[δ(x − 1.8)δ(y) + δ(x)δ(y − 1.8) − δ(x + 1)δ(y + 1)]. For solving the PDE,
the delta functions are replaced with the appropriate scaled Gaussians using Eq. (32) with S = 100.
The localized injection points contribute to the development of two protrusions in the contact line
along the positive x and y axes, which are more pronounced during the early stages. Ultimately,
however, the contact line relaxes to a circular shape in the long-time limit, as expected, with the
centroid being displaced slightly along the line y = x.

As already shown in Part I, the interplay of substrate heterogeneities and the way changes in mass
occur is rather intricate and small changes to either of them may cause a markedly different behavior.
This kind of subtle interplay can be leveraged in applications as a means to control droplet transport,
e.g., for sorting droplets of different sizes (see, e.g., Ref. [25]; also Ref. [26] for a review on droplet
sorting). Another situation of interest is using mass transfer to assist a droplet in escaping nearby
wettability barriers. This is highlighted in Fig. 5, where we consider a droplet confined between
two parallel heterogeneous stripes of lower wettability. Using q as prescribed by Eq. (32) and v by
Eq. (29), we alter the position of the injection point (x0, 0) for x0 � 0 to determine locations which
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FIG. 4. Localized mass transfer on a homogeneous substrate θ (x) = 1, by solving Eqs. (1) (solid curves)
and Eqs. (25) with the hybrid method (dashed curves), when q̇ = v̇[δ(x − 1.8)δ(y) + δ(x)δ(y − 1.8) − δ(x +
1)δ(y + 1)] (location of fluxes are shown with crosses). Volume changes are governed by Eq. (35) with v0 =
2π , v∞ = 3π , and η = 1/30. The initial contact line satisfies a(φ, 0) = 2, so the droplet is at equilibrium for
the starting volume v(0) = 2π . Droplet profiles shown correspond to times t = 0, 2, 8, 16, 32, and 60. The
centroid is displaced from the origin (open circle) along the line y = x to a new position, marked with a solid
circle when t = 60.

allow the droplet to escape the rightmost wettability barrier. When x0 is small, the droplet remains
trapped between the two heterogeneous barriers, see, e.g., Fig. 5(a). This type of behavior has been
reported in related works with droplets of constant mass [27–29]. When x0 becomes sufficiently
large, the droplet may eventually overcome the rightmost heterogeneous stripe [see Fig. 5(b)]. These
two distinct states are highly dependent both on the value of x0 and the wettability contrast, see
Fig. 5(c). In fact, altering the (nondimensional) difference in the local contact angles between the
stripes from 0.5 (g̃ = 0.25) to 0.53 (g̃ = 0.265) causes almost a twofold increase in the minimum
value of x0 required to break the barrier, from about 0.33 to about 0.63. It is also worth noting that the
calculations in Fig. 5(c) were performed with the hybrid model only, where over 100 hybrid-model
simulations required far less time to complete than a single full-model simulation.

A feature which persists with the localized mass transfer cases explored is that changing the
mass near the contact line can move the droplet preferentially in one direction, sometimes against
heterogeneous barriers if these are sufficiently weak or if the mass transfer is sufficiently strong
(see Fig. 5). Therefore, mass variations may be used as a mechanism to overcome the energy
barriers introduced by chemical heterogeneities. To demonstrate this plausibility, a heterogeneity
profile comprising periodically varying heterogeneous features is considered in Fig. 6. By coupling
a localized form of q with periodic mass changes, we observe, as in Part I, that the droplet attempts
to center itself around the inlet/outlet position of the fluid transfer (see also Fig. 7, Part I). However,
the presence of heterogeneities may prevent this from happening if these are sufficiently strong [see
Fig. 6(a)]. Let us also note that, as expected, and in agreement with the observations of Part I, the
dynamics ultimately become periodic in the long-time limit as a result of coupling periodic flow
conditions and heterogeneous features. At times, however, we temporarily observe slight departures

123602-14



DROPLET MOTION ON CHEMICALLY HETEROGENEOUS …

FIG. 5. Changing the localization of the mass transfer from (x0, y0 ) = (0, 0) to (0.75,0) with the het-
erogeneous barriers θ (x) = 1.2 + g̃ {tanh[50(x − 1.5)] − tanh[50(x + 1.5)] − tanh[50(x − 1.75)]}. Plots (a),
(b) show droplet profiles at times t = 0, 5, 10, 20, 30, and 300 for localization at x0 = 0 and x0 = 0.75,
respectively (localization depicted by crosses). The substrate in (a), (b) is shaded according to the choice
of θ where dark/light patches correspond to θ ≈ 1.2 ± 0.25. (c) The time at which the point xc(t ) + a(0, t )
breaks the heterogeneous barrier, tb, against x0, where black and gray curves are for g̃ = 0.25 and g̃ = 0.275,
respectively. In all plots, volume changes are given by Eq. (35) with v0 = π , v∞ = 3π and η = π/50 (PDE
computations in (a), (b) are carried using Eq. (32) with S = 20).

between the hybrid and full models which are usually exacerbated when q is about to switch from
inflow to outflow and vice versa (this issue is more pronounced for the reduced model). In such
cases, the asymptotic model is inapplicable and errors typically accumulate more quickly for smaller
values of p. As mentioned previously, as well as in Part I, the asymptotic analysis applies when
λ � |∂t a| � 1 and, strictly speaking, it is rendered invalid when the fronts are about to switch their
direction of motion. This, however, does not always occur and it strongly depends on the combined
effect of the forcing through q and the surface heterogeneities, θ (x).

C. Small-scale features

In this final example, we consider a substrate formed with randomly distributed heterogeneous
features by using

ϑ (x) = 1 +
800∑
j=1

θ̃
(√

(x − x̄ j )2 + (y − ȳ j )2
)
, θ̃ (x) = 1

2
[tanh (200x + 10) − tanh (200x − 10)],

(36)
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FIG. 6. Transition to periodic dynamics for the substrate with θ (x) = 1 − 0.15{cos[2π (x + y)] +
cos[2π (x − y)]}. Contact line shapes for the full, hybrid, and reduced models at times t = 650 (marked with
A) and t = 750 (marked with B) when (a) (x0, y0 ) = (0.75, 0.25) and (b) (x0, y0 ) = (0, 0); the source/sink
locations are marked with an ×. The contact line shapes A and B correspond to the shapes at the
maximum/minimum volumes after the droplet settles to a periodic state. Panel (c) shows the evolution of the
coordinates of the centroid xc(t ) (top plot) and yc(t ) (bottom plot) when (x0, y0) = (0.75, 0.25) (black curves)
and (x0, y0 ) = (0, 0) (gray curves). For both cases, the volume varies according to Eq. (29) with v̄ = 2π ,
ṽ = π , and p = 200; for the PDE solution Eq. (32) is used with S = 20; for the reduced and hybrid models
Eqs. (33) have been used.

which prescribes 800 localized circular patches of lower wettability (ϑ ≈ 2) with approximate
radius 0.05 units and positions (x̄ j, ȳ j ) chosen randomly to lie in the square (−3, 3) × (−3, 3),
so the features are at least 0.15 dimensionless units apart. A similar calculation has been performed
in Ref. [12] for the case of constant mass to examine stick-slip behaviors with advancing contact
lines. Here, we are interested in the dynamic phenomena that arise from cycling the volume through
periodic mass changes. To properly resolve contact line variations occurring at shorter scales would
require a very large number of collocation points in the azimuthal direction, which makes solving
the full model inefficient with our current implementation and the hybrid model rather challenging
due to the solution of large dense matrix-vector equations at each time step. Hence, we chose to
perform this simulation with the reduced model only, although strictly speaking we no longer have
a0 � ∂φa as required by the asymptotic analysis undertaken. However, since the reduced model
works generally well for other cases considered, we can use it to gather a qualitative outlook on the
dynamics that arise and to demonstrate that the model is able to capture the generic features that
arise in experimental settings rather well.

The result of the computation is shown in Fig. 7, where dynamically cycling the droplet volume
with q(x, t ) = v̇(t )δ(x) gives rise to a number of features present in previous examples. First, it
is easy to see from Figs. 7(a) and 7(b) that pinning/depinning events emerge throughout both
stages where fluid is injected and withdrawn. The constant-radius and angle modes also appear
as a consequence of the pinning events which suggests, as in Part I, that such behaviors may arise
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FIG. 7. Volume cycling over a substrate with randomly placed small patches of lower wettability using the
reduced model (see text for details on how the substrate is generated). The volume varies according to Eq. (29)
with parameters v̄ = 2π , ṽ = 1.25π , and p = 200, together with q(x, t ) = v̇(t )δ(x). Droplet profiles during
(a) fluid injection when 350 � t � 450; (b) fluid withdrawal when 450 � t � 550. For both cases, profiles are
drawn every five time units. (c)–(e) show, respectively, the evolution of the the mean radius, a0, mean apparent
contact angle, ϑ̄ , and the volume, v, scaled by π .

in experimental settings due to substrate features whose effects are more difficult to quantify [see
Figs. 7(c) and 7(d)]. Interestingly, the dynamics presented here are qualitatively very similar to
Fig. 10 in Ref. [2] by Lam et al., where the authors experimentally analyze cycling the droplet’s
volume through a needle at its base. Like the results here, Lam et al. showed that the constant-radius
mode is rather brief [evidenced, e.g., by the clustering of contact line profiles in Fig. 7(b) when
t ≈ 450] and occurs shortly after the flow conditions switch, giving predominately the constant-
angle mode. Also noteworthy is that the stick-slip and pinning behaviors are reminiscent of the
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results in Refs. [30,31] by Cubaud et al., although no direct comparisons can be made because
larger droplets are considered where gravitational effects become appreciable, which, in the present
case, are neglected in favor of analytical tractability.

V. CONCLUDING REMARKS

The motion of a liquid drop on a solid surface is a process that is rather easy to conceptualise, with
numerous applications across science and engineering. However, the underlying physical processes
are inherently complex, rendering their study highly nontrivial. Although the long-wave limit yields
a single evolution equation for the droplet thickness, its numerical solution remains considerably
challenging, particularly as λ → 0. The asymptotic analysis undertaken in this two-part study is
able to mitigate this challenge by developing nonstiff lower-dimensional models for the evolution
of the contact line in 2D and 3D settings.

In this part, we tackled the 3D geometry, building upon the work in Ref. [12] to include
the additional terms required to capture droplets of variable mass as prescribed through some
spatiotemporal flux function. To simplify the analysis based on the observations of Part I, the
assumption that the mass transfer vanishes along the contact line was applied so explicit equations
could be obtained for the Fourier coefficients of the contact line, see Eqs. (25). In these equations,
like their analogous 2D counterpart [see Eqs. (17), Part I], the contributions of the rate of change of
the droplet volume on the contact line shape were accounted for by incorporating time-dependent
integral terms involving the mass transfer. To assess the validity of the theory presented here and
to explore some interesting physical phenomena associated with droplet spreading, we discussed a
number of representative cases that contrast our theory with simulations to the governing system,
Eq. (1). In all cases considered, we observed excellent agreement between the outcomes of the
analysis and the numerical solutions of the full equations, noting that the most optimal agreement
is obtained with the hybrid model, particularly in cases when the contact line is more strongly
deformed by heterogeneities.

The competition between mass transfer and chemical heterogeneity was examined by considering
a number of cases motivated by experiments using two specific forms for the mass flux, namely,
Eqs. (28) and (32), and its limiting form, Eqs. (33). However, other forms of q could have been used
as well, which, when combined with the chemical heterogeneities result in a rich dynamical system.
Appropriately tuning q and θ allows us to control droplet transport and confinement. For example,
this may be achieved by introducing wettability barriers and chemical gradients in conjunction with
other forms for q or with localized fluxes which are positioned sufficiently close to the contact line
as a means to push or pull the droplet in the desired direction. The influence of these competing
mechanisms deserves a more detailed investigation, which is beyond the scope of the present
paper. Let us also note that no quantitative comparison with experiments was sought, since, as
far as we are aware, no study in the literature reports the time evolution of the contact line, at
least within the regime of applicability of our theory. However, we were able to demonstrate that
features commonly observed in experimental settings naturally arose through simulations, including
stick-slide/stick-jump events and the constant-radius and constant-angle modes. Notably, qualitative
comparison between the experimental studies of Dietrich et al. who considered evaporating droplets
(see Fig. 2) [3], and Lam et al. who considered liquid injection/withdrawal with a needle (see Fig. 7)
[2], were demonstrated. These comparisons were performed with substrates decorated with random
heterogeneities. Thus, the observed behaviors emerge due to substrate heterogeneities, whose effects
are generally more difficult to assess both in experiments and in direct numerical simulations. Just
like the 2D results, we noted that the dynamics is quite sensitive to the parameters controlling the
mass transfer and chemical heterogeneity, showing how the subsequent behaviors can be drastically
changed by slightly altering them. Nevertheless, Eqs. (25) were able to capture these behaviors and
were in excellent agreement with the solution to the governing PDE. Hence, the effort invested in
developing the two-term asymptotic expansion of the solution is rewarded with a more favorable
agreement compared to solutions obtained using the leading-order equation, with little additional

123602-18



DROPLET MOTION ON CHEMICALLY HETEROGENEOUS …

computational overhead, see, e.g., Fig. 3 and compare Eqs. (24) and (31). Although the discussion
focused on the inverse linear slip model, it should be emphasized that exactly the same equations
apply for the Navier slip model, and other contact line models may be invoked through a relatively
straightforward rescaling of λ to map to its corresponding microscopic lengthscale [20,22].

Throughout this two-part study, the assumption that the mass transfer vanishes at the contact line
was applied so changes in mass occurred through the bulk of the droplet. This assumption was not
deemed to be too restrictive for our purposes and, indeed, it did not appear to impact the features of
the phenomenology we wished to uncover. However, it is inappropriate for investigating mass loss
through evaporation, since, in that case, the mass flux is maximized close to the contact line. The
asymptotics of such cases require a specialized treatment of the microscale [18,19], a subject to be
explored in more detail in a forthcoming investigation.
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APPENDIX A: LOCAL EXPANSION OF THE GOVERNING PDE

The equation for the evolution of the 2D contact line c(x, t ), Eq. (1d), is formally derived by
following similar considerations which were presented in related works [12,16,32], namely, by
taking a local expansion of the governing PDE,

∂t h + ∇ · [hQ] = q, (A1)

near x = c. Here we let Q = (h2 + λ2)∇∇2h, noting that Q would change should a different slip
model be used or if additional complexities, such as substrate topography, be included. The leading
term of the series expansion near the contact line is

h = (x − c) · ∇h|x=c + . . . , (A2)

where dots denote omitted higher-order corrections, which vanish as x → c. Using this expansion,
we can deduce that

∂t h|x=c = −∂t c · ∇h|x=c + . . . , (A3)

which, when combined with an expanded form of Eq. (A1) about x = c, yields

−∂t c · ∇h|x=c + Q|x=c · ∇h|x=c + . . . = q|x=c. (A4)

This implies that

[(Q − ∂t c) · ∇h]|x=c = q|x=c, (A5)

which is the corresponding moving boundary condition. This expression can be further simplified
using

∇h|x=c = (∇h · ν)|x=cν + (∇h · τ)|x=cτ, (A6)

where τ is the unit tangent vector to the contact line (see Fig. 1). Since h = 0 on c, (∇h · τ)|x=c = 0
so

∇h|x=c = (∇h · ν)|x=cν = −θ |x=cν. (A7)

Therefore, using Eq. (A7) in Eq. (A5), and evaluating Q at x = c gives the moving boundary
condition, Eq. (1d).
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APPENDIX B: THE CORRECTION TERM OF THE LEADING-ORDER OUTER SOLUTION

Here we outline the derivation of the correction to the leading-order outer solution. Starting from
Eq. (20), write

∇2h1 = 1

aϑ2
(p0 + δp1 + . . .), (B1)

where

p0 = L0(h1,0) + L1(h1,1)eiφ, (B2)

p1 =
M∑

m=1

{
Lm(h̃1,m) + m2 bm

b0
Km(h1,0) + m2 − 1

2

[
bm+1

b0
Km+1(h∗

1,1) + bm−1

b0
Km−1(h1,1)

]}
eimφ.

(B3)

To cast the equations above in a compact form, we have introduced the operators Km and Lm as

Km(·) = 1

r2
{∂r[r(·)] − 2m(·)}, Lm(·) = 1

r
∂r[r∂r (·)] − m2

r2
(·), (B4a), (B4b)

with (·) denoting their operands. We then deduce the following linear PDEs by using Eq. (B1) in
Eq. (19a) and collecting O(1) and O(δ) terms as follows:

F (p0) = (
1 − 2r2

)
u0 − ru1eiφ + v′

(
q0 + q1eiφ − b0(1 − r2)

2v

)
, (B5)

F (p1) + 3F̃ (p0)

+
M∑

m=2

bm

b0

[
h3

0,0

(
m2(3 − 2m)p0 + im2∂φ p0

r2
+ m2∂r p0 − 2mi ∂r∂φ p0

r

)
− mi ∂φ p0 ∂rh3

0,0

r

]
eimφ

= −
M∑

m=1

[
umrm + (m − 1)bm−1u1r

2b0
− (m + 1)bm+1(2rm − r)u∗

1

2b0

− (m + 3)rm − 2(m + 1)r2 + m − 1

b0
bmu0

]
eimφ

+ v′
M∑

m=2

[
qm − bm

2rm + m − 1 − r2(1 + m)

2v

]
eimφ, (B6)

where

F (·) = 1

r
∂r
[
rh3

0,0∂r (·)] + h3
0,0

r2
∂2
φ (·), F̃ (·) = 1

r
∂r
[
rh̃0h2

0,0∂r (·)] + h2
0,0

r2
∂φ

[
h̃0∂φ (·)] (B7)

and h̃0 = h0/aϑ − h0,0 corresponds to the azimuthal components of h0 scaled by aϑ , see Eq. (16).
Collecting φ-dependent terms in this set of equations allows us to obtain the required boundary
value problems for each of h1,0, h1,1, h̃1,m, m � 1. Specifically, for the axisymmetric and centroid
corrections we get, respectively,

F0[L0(h1,0)] + (
2r2 − 1

)
u0 − v′

[
q0 − b0(1 − r2)

2v

]
= 0, (B8a)

F1[L1(h1,1)] + ru1 − v′q1 = 0, (B8b)
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whereas the corrections h̃1,m for m � 1 satisfy

Fm
[
Lm(h̃1,m)

] + T1,m + T2,m + T3,m + T4,m + T5,m = 0, (B8c)

where

T1,m = χmumrm + (m − 1)bm−1ru1

2b0
− (m + 1)bm+1(2rm − r)u∗

1

2b0
(B9)

are terms coming from the ∂t h term of Eq. (1) and do not vanish as r → 1−,

T2,m = −v′
[
χmqm − bm

v
(h0,0 + h0,m)

]
(B10)

captures the leading contributions from the mass flux terms,

T3,m = bm

b0

{
3F̃m,0(L0) + m2Fm[Km(h1,0)] + m2Am(L0) − [

(m + 3)rm − 2(m + 1)r2 + m − 1
]
u0
}

(B11)
corresponds to corrections to the azimuthal disturbances induced by axisymmetric spreading, and

T4,m = bm−1

2b0

{
3χmF̃m−1,m(L1) + (

m2 − 1
)
Fm[Km−1(h1,1)] + (m − 1)[mAm−1(L1) + Bm−1(L1)]

}
,

(B12)

T5,m = bm+1

2b0

{
3F̃m+1,−m(L∗

1 ) + (
m2 − 1

)
Fm[Km+1(h∗

1,1)] + (m + 1)[mAm+1(L∗
1 ) − Bm+1(L∗

1 )]
}

(B13)

capture corrections due to the centroid motion. Here, we have used χm = 1 if m > 1 and χ1 = 0,
with

Fm(·) = 1

r
∂r
[
rh3

0,0∂r (·)] − m2h3
0,0

r2
(·), (B14a)

F̃m,k (·) = 1

r
∂r
[
rh2

0,0h0,m∂r (·)] − kh2
0,0h0,m

r2
(·), (B14b)

Am(·) = h3
0,0

[
Km(·) + 2

r2
(·)

]
, (B14c)

Bm(·) = 1

r
∂r
[
h3

0,0(·)] + (m − 3)h3
0,0(·)

r2
, (B14d)

and Lk (r) = Lk (h1,k ). What is of interest here is not the actual solutions to Eqs. (B8) but their
asymptotics as r → 1−, which can be obtained by following the general methodology outlined in
Appendix C.

APPENDIX C: ASYMPTOTICS OF ∂νh

Each of the problems in Eqs. (B8) is a PDE for some function ψ (r, τ ) of the form

Fm[Lmψ] + Am(r, τ ) = 0, (C1)

where the operators Lm and Fm only involve functions and derivatives with respect to r, see
Eqs. (B4b) and (B14b). For each of these problems, Am(1, τ ) �= 0 so Lmψ ∼ Am(1, τ )/(1 − r) as
r → 1− and

−∂rψ ∼ Am(1, τ ) ln(1 − r) + Bm(τ ), as r → 1−. (C2)
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This two-term asymptotic expansion requires determining Bm(τ ), which can be accomplished by
following a similar approach as in Part I. Specifically, for each m � 0, we multiply Eq. (C1) by
r fm(r) for some function fm(r) to be determined, and integrate over r from 0 to 1 − ε, 0 < ε � 1.
We assume that fm(r) has (at worst) a simple pole at r = 1 and that r fm(r) < ∞ as r → 0 so the
boundary terms arising from repeated integrations by parts vanish and we find∫ 1−ε

0
rLm(ψ )Fm( fm) dr = −

∫ 1−ε

0
rAm(r, τ ) fm(r) dr. (C3)

Then, by making suitable choices for fm(r), we can isolate the required Bm(τ ) terms needed for the
asymptotics in Eq. (C2), and, consequently, the asymptotics of Eqs. (B8).

1. The case when m > 0

When m > 0, if we require that

Fm( fm) + rm = 0, (C4)

we may perform additional integrations by parts in Eq. (C3) to simplify its left-hand side so, by
substituting the asymptotics of ∂rψ , Eq. (C2), we get

Am(1, τ ) ln ε + Bm(τ ) + O(ε ln ε) = −
∫ 1−ε

0
rAm(r, τ ) fm(r) dr. (C5)

We then replace ln ε in Eq. (C5) by

ln ε = −
∫ 1−ε

0

1

1 − r
dr, (C6)

make some term rearrangement, and take the limit ε → 0 to obtain Bm(τ ) in integral form, namely,

Bm(τ ) =
∫ 1

0

(
Am(1, τ )

1 − r
− rAm(r, τ ) fm(r)

)
dr. (C7)

Therefore, for given fm(r) satisfying Eq. (C4) with fm(0) = 0 and fm ∼ 1/(1 − r) as r → 1, Bm(τ )
may be evaluated numerically for m > 0. The solution to Eq. (C4) subject to these conditions is

fm(r) = 4rm

(m + 4)(1 − r2)2

[
gm(r2)

gm(1)
− 1

]
, m � 1, (C8)

where gm(r) is the Gauss hypergeometric function

gm(r) = 2F1

(
m − 1 − √

m2 + 9

2
,

m − 1 + √
m2 + 9

2
; m + 1; r

)
. (C9)

Therefore, using the corresponding Am(r, τ ) for the two-term expansions of ∂rh1,1 and ∂r h̃1,m, we
find

−∂rh1,1 ∼ u1 ln(1 − r) + u1β1 + v′ζ1 (C10)

−∂r h̃1,m ∼
(

χmum + m − 1

2b0
bm−1u1 − m + 1

2b0
bm+1u∗

1

)
ln(1 − r) + χmβmum + v′ζm

+ m − 1

2b0
γmbm−1u1 − m + 1

2b0
(2βm − γm)bm+1u∗

1 − β̃m, m � 1, (C11)
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where we define

βm =
∫ 1

0

(
1

1 − r
− fm(r)rm+1

)
dr, (C12a)

γm =
∫ 1

0

(
1

1 − r
− fm(r)r2

)
dr, (C12b)

ζm =
∫ 1

0
fm(r)r

{
qm − bm

v

[
rm − 1 + m + 1

2

(
1 − r2

)]}
dr, (C12c)

β̃m =
∫ 1

0
fm(r)r(T3,m + T4,m + T5,m) dr. (C12d)

Formally, this methodology allows us to extract the asymptotics of Eqs. (B8b) and (B8c).
Although this does not pose major difficulties with Eq. (B8b), the integral term β̃m arising from
the asymptotics of Eq. (B8c) is considerably involved and requires the full solutions for h1,0(r, τ )
and h1,1(r, τ ) everywhere in the domain 0 � r � 1. In Ref. [12], where we have ζm ≡ 0 (no mass
flux), the β̃m were also omitted and only the βm and γm were accounted for, which come from terms
in Eqs. (B8a) and (B8b) that do not vanish as r → 1−. This omission did not affect the generally
excellent agreement observed between the full numerical solution and the asymptotics. Although
this point was not discussed in detail in Ref. [12], insights about why doing so may be justified are
offered at the end of Sec. III.

2. The case when m = 0

The case when m = 0 follows in a similar manner, but we must also ensure that ψ = h1,0 satisfies∫ 1
0 rh1,0 dr = 0, as required from the Fourier series expansion of Eq. (19b). Given the freedom we

can afford in choosing what F0( f0) equals in Eq. (C3), it turns out that by letting F0( f0) = 1 − 2r2,
we can explicitly enforce this integral condition in the subsequent integrations by parts applied to
Eq. (C3) to yield the corresponding Eq. (C5). In this case, solving F0( f0) = 1 − 2r2 with the same
conditions satisfied by fm(r), namely, that r f0 < ∞ as r → 0 and f0(r) has at worst a simple pole
at r = 1, gives

f0(r) = 2r2

1 − r2
, (C13)

so we may deduce B0(τ ) from Eq. (C3) as

B0(τ ) =
∫ 1

0

1

1 − r

(
A0(1, τ ) − 2r3A0(r, τ )

1 + r

)
dr. (C14)

Hence, using A0(r, τ ) = (2r2 − 1) − v′[q0 − b0(1 − r2)/(2v)] gives

−∂rh1,0 = u0 ln(1 − r) + β0u0 + v′ζ0 as r → 1−, (C15)

where

β0 = 2 + ln 2 and ζ0 = − b0

4v
+ 2

∫ 1

0

r3q0

1 − r2
dr. (C16)

APPENDIX D: ASYMPTOTICS OF THE INTEGRAL TERM Bm(τ )

Here we focus on the integrals for Bm(τ ) when ψ = h̃1,m, see Eqs. (C12), which are found to
monotonically increase with m. These integrals cannot be computed analytically, but insights may
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be gained from their large-m asymptotics. Through a simple change of variable, Eqs. (C12a) and
(C12b) may be equivalently written as

βm = ln 2 +
∫ 1

0

[
1

1 − r
− 2rm

(1 − r)(m + 4)

(
gm(r)

gm(1)
− 1

)]
dr, (D1)

γm = ln 2 +
∫ 1

0

[
1

1 − r
− 2r (m+1)/2

(1 − r)(m + 4)

(
gm(r)

gm(1)
− 1

)]
dr, (D2)

whereas the integrals ζm and β̃m, Eqs. (C12c) and (C12d), respectively, may be cast in the form

Im =
∫ 1

0

2rm/2G(
√

r)

(1 − r)(m + 4)

(
gm(r)

gm(1)
− 1

)
dr (D3)

for some appropriately given G(r). Just as the integrands in Eqs. (C12c) and (C12d), G(r) is assumed
to have a simple root at r = 1. By taking the limit as m → ∞, the values of these integrals are
dominated by the contributions near r = 1 due to the presence of rm and rm/2 terms. Also important
is the fact that gm(r) also exhibits a boundary layer near r = 1 as m → ∞. To see this, consider the
ordinary differential equation satisfied by gm(r), namely,

ε̄r(1 − r)∂2
r gm + (1 − r + ε̄)∂rgm +

(
1

2
+ 2ε̄

)
gm = 0, (D4)

where ε̄ = 1/m � 1. Introducing the rescaling

ξ = 1 − r

2ε̄
= m

2
(1 − r) (D5)

allows us to probe into the inner region of Eq. (D4) whose leading-order solution, which is
compatible with the outer solution, gm ∼ √

1 − r, is

gm = ĝmξeξ K1(ξ ), (D6)

where K1(ξ ) is the modified Bessel function of the second kind and order unity. The constant ĝm

needs to be determined by matching, but in our case this constant is immaterial since the integrands
contain divisions by gm(1) and we know that limξ→0 ξeξ K1(ξ ) = 1.

Based on the above arguments, the dominant contributions to Eqs. (D1)–(D3) as m → ∞ come
from their integrands near r = 1. Hence, we change the variable of integration to ξ as given by
Eq. (D5) and make the substitution gm(ξ )/gm(1) = ξeξ K1(ξ ), so we may deduce the large-m
asymptotics of Eqs. (D1)–(D3) as

βm ∼ ln 2 +
∫ m/2

0

1

ξ

[
1 − e−2ξ

ξ

(
ξeξ K1(ξ ) − 1

)]
dξ, (D7)

γm ∼ ln 2 +
∫ m/2

0

1

ξ

[
1 − e−ξ

ξ

(
ξeξ K1(ξ ) − 1

)]
dξ, (D8)

Im ∼
∫ m/2

0

e−ξ G
(√

1 − 2
m ξ

)
ξ 2

(
ξeξ K1(ξ ) − 1

)
dξ, (D9)

where we used the fact that limm→∞(1 − 2
m ξ )m/2 = e−ξ . With the help of computer algebra soft-

ware, it may be shown that

βm ∼ ln m + 3 ln 2 − 1 + γ , γm ∼ ln m + π

2
− 1 + γ , (D10)

where γ is the Euler–Mascheroni constant. The leading-term asymptotics of Im as m → ∞ may be
obtained from the asymptotics of G as m → ∞ and computing the resulting integral with the upper
limit of integration in Eq. (D9) set to infinity.
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FIG. 8. The computed parameters for βm, γm, β̃0
m, and β̃±

m (solid curves). Their large-m asymptotics
are shown as dashed lines [see Eq. (D11)], namely, βm ∼ ln m + 3 ln 2 − 1 + γ , γm ∼ ln m + π/2 − 1 +
γ , −β0

m ∼ 3 ln m + 3γ + π − 4 ln 2 − 8 + 2κ , and −β̃±
m ∼ 3 ln m + π − ln 2 − 3β1 + 3γ + 3κ − 2. The dis-

crete values of these parameters are joined for clarity.

To determine the values of β̃m at each time step, we require the solution of h1,0(r, τ ) and h1,1(r, τ ),
given by Eqs. (B8a) and (B8b). Since these depend on v′, the computational efficiency of the sought
asymptotic model would have been severely compromised if we were to compute h1,0 and h1,1

at each time step. Instead, we have opted to use the h1,0 and h1,1 as computed with v′ ≡ 0, but
incorporate into the final result of β̃m the large-m asymptotics corresponding to O(v′bm) terms,
which may be deduced as

β̃m ∼ m

[
3
v′

v

(
ζ0bm + ζ1bm−1 + ζ ∗

1 bm+1

2

)
− u0bm

b0
(3 ln m + 3γ + π − 4 ln 2 − 8 + 2κ )

−u1bm−1 + u∗
1bm+1

2
(3 ln m + π − ln 2 − 3β1 + 3γ + 3κ − 2)

]
, (D11)

with

κ =
∫ ∞

0

(ξ K1(ξ ) − e−ξ )(1 − e−ξ )

ξ 2
dξ ≈ 0.5086. (D12)

In other words, we write β̃m, m � 1, in the form

β̃m = mβ̃0
mu0

bm

b0
+ (m + 1)β̃+

m u∗
1

bm+1

2b0
+ (m − 1)β̃−

m u1
bm−1

2b0

+ 3
v′

v

[
mζ0bm + ζ1(m − 1)bm−1 + (m + 1)ζ ∗

1 bm+1

2

]
, (D13)

where the last term only corresponds to the large-m asymptotics of the O(v′) terms, whereas the
parameters β̃0

m and β̃±
m are determined by setting v′ = 0 in each of the following:

β̃0
m

mbmu0

b0
=

∫ 1

0
r fmT3,m dr, (D14a)

β̃−
m

(m − 1)u1bm−1

2b0
=

∫ 1

0
r fmT4,m dr, (D14b)

and β̃+
m

(m + 1)u∗
1bm+1

2b0
=

∫ 1

0
r fmT5,m dr. (D14c)
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For the last term in Eq. (D13), we have used a form which is asymptotically consistent with
Eq. (D11) but better matches the structure of other terms in Eq. (25). Although the inclusion of
such terms may be arguably be perceived to be ad hoc, their presence was not seen to appreciably
impact the dynamics (see also Sec. III B). Hence one may alternatively choose to discard them
altogether so mass flux contributions only come from the key T2,m term and the corresponding v′ζm

term which results from it, see Eq. (C11).
As noted above, T3,m, T4,m, and T5,m in Eqs. (D14) are computed using the solutions h1,0 and h1,1

of Eqs. (B8a) and (B8b) when v′ ≡ 0, knowing also that T3,1 = T4,1 = T4,2 = 0. In this manner, the
way β̃0

m and β̃±
m are defined in Eqs. (D14) makes them only dependent on m (when v′ = 0). Thus,

their evaluation is carried out once using Gauss–Legendre quadrature, storing and retrieving their
values whenever needed in simulations. The integrand of β̃0

m requires knowledge of h1,0, which can
be written in terms of Spence’s dilogarithm function, whereas those of β̃±

m require h1,1, which is
computed using a spectrally accurate method. A sufficiently large number of quadrature points was
used to capture the logarithmic divergence of the integrands to compute the parameters to accuracy
of at least four decimal places following the general principles detailed in Ref. [12]. Similarly, for
the time-dependent ζm(t ), Eq. (C12c), the same quadrature rule is used at each time step, where for
efficiency in their evaluation we have precomputed the fm(r) and reused them at each time step. The
result of the computation of βm, γm, β̃0

m, and β̃±
m is shown in Fig. 8 alongside with their asymptotics

derived from Eqs. (D10) and (D11).
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