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The focus of this study is to investigate primary and secondary bifurcations to weakly
nonlinear flows (weak branch) in convective rotating spheres in a regime where only
strongly nonlinear oscillatory sub- and supercritical flows (strong branch) were previously
found [E. J. Kaplan, N. Schaeffer, J. Vidal, and P. Cardin, Phys. Rev. Lett. 119, 094501
(2017)]. The relevant regime corresponds to low Prandtl and Ekman numbers, indicating
a predominance of Coriolis forces and thermal diffusion in the system. We provide the
bifurcation diagrams for rotating waves (RWs) computed by means of continuation meth-
ods and the corresponding stability analysis of these periodic flows to detect secondary
bifurcations giving rise to quasiperiodic modulated rotating waves (MRWs). Additional
direct numerical simulations (DNS) are performed for the analysis of these quasiperiodic
flows for which Poincaré sections and kinetic energy spectra are presented. The diffusion
timescales are investigated as well. Our study reveals very large initial transients (more
than 30 diffusion time units) for the nonlinear saturation of solutions on the weak branch,
either RWs or MRWs, when DNS are employed. In addition, we demonstrate that MRWs
have multimodal nature involving resonant triads. The modes can be located in the bulk of
the fluid or attached to the outer sphere and exhibit multicellular structures. The different
resonant modes forming the nonlinear quasiperiodic flows can be predicted with the
stability analysis of RWs, close to the Hopf bifurcation point, by analyzing the leading
unstable Floquet eigenmode.

DOI: 10.1103/PhysRevFluids.6.123501

I. INTRODUCTION

Present knowledge of many geophysical and astrophysical phenomena has been acquired with
the support of computer simulations of thermal rotating convection in spherical geometry. This is
especially the case for the geodynamo [1,2], for gas giant atmospheres [3,4], and for the Sun [5,6],
since flow measurements in these environments are extremely difficult. In the specific case of fluid
planetary cores, including the Earth, convective motions are thought to be driven by thermal and
compositional gradients [7] and are responsible for the generation of magnetic fields [8,9]. In this
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context, the dynamics is strongly influenced by rotation which constrains the flow to form convective
columns aligned with the axis of rotation (e.g., Ref. [10]). This quasigeostrophic structure may
prevail even in turbulent regimes [11,12].

Usually, a spherical shell is considered to model the existence of an inner core (as in Ref. [13])
but simulations in a full sphere have been also performed for the modeling of ancient cores
(as in Ref. [14]). One of the simplest models, which has been widely used, is the Boussinesq
approximation of the Navier-Stokes and energy equations in a rotating frame of reference [15]. If a
full sphere is considered, then the governing equations depend on three parameters—the Prandtl
(Pr), Ekman (E), and Rayleigh (Ra) numbers—which account for the physics of the problem.
Concretely, Pr measures the ratio of viscous (momentum) diffusivity to thermal diffusivity, E the
relevance of viscous over Coriolis forces, while in the present study Ra is associated with an internal
heating source.

When the sphere is rapidly rotating (small E) the fluid is at rest up to a certain value of Ra,
and this value and the type of emerging convective flow depends strongly on Pr. For Pr > 0.1 the
onset of convection takes place in the form of quasigeostrophic columns, with spiral morphology,
steadily drifting in the azimuthal direction. These solutions are called rotating waves (RW) in
the context of symmetry theory [16,17]. The spiral modes, predicted by linear studies [18,19] are
nonaxisymmetric (i.e., depend on the azimuthal coordinate) and equatorially symmetric. For smaller
values of Pr the topology of the linear nonaxisymmetric modes is more diverse. The modes can
be equatorially symmetric or antisymmetric. The former are either trapped [20] on the equatorial
region, or multicellular and attached to the outer boundary [21], while the latter are located at high
latitudes [22,23]. In addition, a purely axisymmetric mode can be preferred if Pr is sufficiently small
[24,25].

While the dynamics of nonlinear flows in the regime of large Pr has been investigated for several
decades (e.g., Refs. [2,26–29], among many others) the regime of small Pr has been less studied.
This has, however, started to change during the last decade (e.g., [30–36]) because low Prandtl
numbers are more relevant for planetary and stellar interiors [37]. When Pr is small enough, strong
oscillatory flows with multimodal nature, in which the interaction of certain modes with different
spatial localizations play a relevant role in the dynamics, may appear right after the onset [31,34].
For instance, a flow consisting of convective structures, either attached to the boundary or located in
the interior, has been observed in a recent experiment [38] with liquid gallium (Pr = 0.026) inside a
cylindrical vessel. In these experiments, in agreement with Refs. [31,34], steady convective columns
(i.e., RWs) have not been found to exist at the onset.

For a full rotating sphere, as in the present study, low Pr convection can be sub-critical and
strongly energetic if E is sufficiently small [32]. However, in this regime weakly energetic nonlinear
flows (weak branch of Ref. [32]), which include nonaxisymmetric RWs (steadily drifting flows in
the azimuthal direction), have not been found although they were predicted by the linear theory
[39]. The situation is different in the case of low Pr and stress-free boundaries [40], because
the first convective instability is axisymmetric, i.e., periodic torsional oscillations develop at the
onset. That study revealed a rich dynamical regime including bifurcations to quasiperiodic flows
and solutions in which the amplitude is slowly increasing and rapidly decaying, repeatedly. This
repeated behavior was interpreted in terms of heteroclinic chains connecting unstable states close
to the onset of torsional oscillations. The complex nature of low Pr flows, described by several
thermal-inertial modes with different symmetries, is also demonstrated in Ref. [33], for the case
of liquid gallium. Moreover, triadic resonances involving convective and inertial modes have been
analyzed very recently in Ref. [36] for Pr � 0.01. The above mentioned studies, and the results
presented here, are based on numerical simulations with parameters quite remote from those of
real planets. However, these studies model fundamental features of planetary cores such as rapid
rotation, spherical geometry, or second order viscosity and thermal diffusivity effects, and thus help
to shed light onto flow instabilities occuring in planetary interiors.

In the present study we compute RWs by means of continuation methods [41–43] in a regime
where they have not yet been found. We select the parameters according to Ref. [32] and investigate
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the stability of the RWs demonstrating their existence. These RWs consist of a single multicellular
mode with fixed azimuthal symmetry as described in Ref. [21]. By performing several direct
numerical simulations, we show the difficulty of obtaining RWs at this regime since very long initial
transients are required to saturate the solutions. We investigate further bifurcations to modulated
rotating waves [16,17,44], which are quasiperiodic flows. These MRWs are multimodal, consisting
of several modes with different azimuthal symmetries and timescales, and we demonstrate that
this multimodal character can be indeed predicted from the stability analysis of the RWs. The
unstable eigenfunction (Floquet mode) at the bifurcation reveals the main mode structure of the
multimodal MRWs, which include wall-attached and interior modes as seen in recent numerical and
experimental studies [31,34,38]. Finally, in agreement with Ref. [36], triadic resonances have been
found and interpreted in terms of MRWs as done in Ref. [45] in the case of the magnetized spherical
Couette flow. The outline of the paper is the following: First, the model equations, numerical
methods and parameters, are detailed in Sec. II. The description of the main results obtained for the
RWs is undertaken in Sec. III while the analysis of quasiperiodic flows (MRWs) is left to Sec. IV.
Finally, the paper concludes in Sec. V with a brief summary.

II. THE MODEL

Boussinesq thermal convection in a self-gravitating, internally heated, and rotating spherical
shell, defined by the inner and outer radius ri and ro, is considered as in Ref. [27]. To compare
with the full sphere results of Ref. [32] we set η = ri/ro = 0.01. The effect of considering a
very small inner sphere in the modeling of Boussinesq rotating thermal convection within a full
sphere was considered in Ref. [14] where several codes have been benchmarked. They have found
errors below 0.4% and 4% for the volume-averaged kinetic energy and the main timescale of a
purely hydrodynamic RW close to the onset of convection, which is just the same type of solutions
considered in our study.

The physical properties of the fluid—thermal diffusivity κ , thermal expansion coefficient α, and
dynamic viscosity μ—are constant and the density is assumed to vary linearly with the temperature,
ρ = ρ0[1 − α(T − T0)], just in the gravitational term g = −γ r (γ is constant and r the position
vector). The system rotates with uniform angular velocity � = �k about the vertical axis k.

A. Governing equations and numerical method

The Navier-Stokes and energy equations are derived in the rotating frame of reference and
expressed in terms of velocity (v) field and temperature (�) perturbation of the conductive state.
They are

∇ · v = 0, (1)

∂t v + v · ∇v + 2E−1k × v = −∇p∗ + ∇2v + �r, (2)

Pr (∂t� + v · ∇�) = ∇2� + Ra r · v. (3)

No-slip boundary conditions vr = vθ = vϕ = 0, where (r, θ, ϕ) are the radial, colatitudinal, and
azimuthal coordinates, are considered for the velocity field and the temperature is fixed at the ther-
mally conducting boundaries. The characteristic scales are d = ro − ri for the distance, ν2/γ αd4

for the temperature, and d2/ν for the time. The nondimensional parameters -the aspect ratio (η), the
Rayleigh (Ra), Prandtl (Pr), and Ekman (E) numbers- are defined as

η = ri

ro
, Ra = qγαd6

3cpκ2ν
, E = ν

�d2
, Pr = ν

κ
, (4)

where cp is the specific heat at constant pressure and q is the rate of heat due to internal sources per
unit mass. In these units the conduction state is v = 0 and Tc(r) = T0 − (Ra/2 Pr)r2.
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The toroidal-poloidal formulation [15] expresses a divergence-free velocity field in terms of
toroidal, 
, and poloidal, �, potentials

v = ∇ × (
r) + ∇ × ∇ × (�r), (5)

and a pseudospectral method (see Ref. [46]), in which a Gauss–Lobatto mesh of Nr radial collo-
cation points [47] is used in the radial direction and spherical harmonics are used for the angular
coordinates, is employed. The unknowns of the governing Eqs. (1)–(3) are then


(t, r, θ, ϕ) =
Lmax∑
l=0

l∑
m=−l


m
l (r, t )Y m

l (θ, ϕ), (6)

�(t, r, θ, ϕ) =
Lmax∑
l=0

l∑
m=−l

�m
l (r, t )Y m

l (θ, ϕ), (7)

�(t, r, θ, ϕ) =
Lmax∑
l=0

l∑
m=−l

�m
l (r, t )Y m

l (θ, ϕ), (8)

with 
−m
l = 
m

l , �−m
l = �m

l , 
0
0 = �0

0 = 0 to uniquely determine the two potentials, and
Y m

l (θ, ϕ) = Pm
l (cos θ )eimϕ , where Pm

l is the normalized associated Legendre functions of degree
l and order m up to Lmax.

The code is parallelized in the spectral (m, l ) as well as the physical (r, θ, ϕ) space using
OpenMP directives. The computation of the nonlinear term relies on the pseudospectral transform
method [48] which requires fast Fourier and Legendre transforms. These are implemented using
the optimized libraries FFTW3 [49] and dgemm [50]. The time integration is based on high
order implicit-explicit backward differentiation formulas IMEX–BDF [46]. The nonlinear terms
are integrated explicitly, to avoid implicit solution of nonlinear systems but the Coriolis term is
considered fully implicit to allow larger time steps during the time integration [46].

B. Computation of rotating waves

Rotating waves (RW) in spherical systems are periodic solutions for which the time and az-
imuthal coordinates are coupled, i.e., their time dependence is described by a steady drift in the
azimuthal direction with uniform rotation frequency. This type of solution is common in spherical
systems since these are invariant by azimuthal rotations [SO(2)] and reflections with respect to the
equatorial plane (Z2). Generally, in SO(2) symmetric systems, nonaxisymmetric RWs, which can
be stable or unstable, bifurcate after the axisymmetric base state becomes unstable (primary Hopf
bifurcation [39,51]).

The computation of RW and the study of their stability helps to understand the origin and
structure of secondary flows, i.e., modulated rotating waves (MRW), which are quasiperiodic and
oscillatory solutions found near the onset of convection (e.g., Refs. [16,17,52]). The symmetry
properties of flows occurring near the onset can thus be understood in terms of bifurcation theory
[51]. The study of periodic and quasiperiodic unstable flows is important since these types of
solutions act as organizing centers for the global dynamics [53]. Moreover, the analysis of unstable
RW provides useful insights into the appearance of turbulent flows [54].

In this section we outline the method to compute RWs which are indeed the simplest time
dependent solutions belonging to the weak branches studied in Ref. [32] and, more generally, in
rotating thermal convection in spherical geometry. Concretely, we use continuation methods (e.g.,
Refs. [41,42,55]) of periodic orbits since RWs are periodic flows. We refer the reader to Ref. [56],
or the comprehensive tutorial [43], for a full description of continuation methods in large-scale
dissipative systems such as the considered in our study. Continuation methods have been already
applied for thermal convection in rotating spherical shells in Refs. [35,44,57], so only few details
are provided here.
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For fixed Pr and E we want to study the dependence of RWs, having m0-fold azimuthal
symmetry and rotating in the azimuthal direction with frequency ω, with respect to the control
parameter p = Ra. Pseudoarclength continuation methods obtain the branch of periodic solutions
x(s) = [u(s), τ (s), p(s)] ∈ Rn+2, where u is the rotating wave, τ = 2π/(m0ω) is the rotation period,
and s is the arclength parameter. We note that the vector u ∈ Rn contains the spherical harmonic
amplitudes, at the radial collocation points, of the scalar potentials and the temperature perturbation.
The dimension of the vector is n = (3L2

max + 6Lmax + 1)(Nr − 1).
The pseudoarclength methods require the condition

h(u, τ, p) ≡ 〈w, x − x0〉 = 0, (9)

where x0 = (u0, τ 0, p0) and w = (wu,wτ ,wp) are the predicted point and the tangent to the curve
of solutions, respectively, obtained by extrapolation of the previous points along the curve. We note
that 〈., .〉 stands for the inner product in Rn+2. To find a single solution x = (u, τ, p) on the branch
we solve the system

H (u, τ, p) =
⎛
⎝u − φ(τ, u, p)

g(u)
h(u, τ, p)

⎞
⎠ = 0, (10)

where φ(τ, u, p) is a solution of Eqs. (1)–(3) at time τ = 2π/(m0ω) and initial condition u for fixed
p. The additional constraint g(u) = 0 is imposed to fix the azimuthal phase of the RW with respect
to the rotating reference frame. See Eq. (9) of Ref. [57] for further details on the definition of g(u).

Newton-Krylov methods are employed to solve the large nonlinear system defined by Eq. (10).
Krylov methods are used since they only require the action of the Jacobian D(u,τ,p)H (u, τ, p) on a
given vector, and not its explicit computation, which due the spatial resolutions used in our study
would be prohibitive. For the evaluation of the Jacobian a time integration of a system obtained from
the Navier-Stokes and energy equations must be performed. We note that periodic rotating waves
can also be obtained efficiently by Newton-Krylov continuation methods but as steady solutions
of the equations written in a reference frame which is rotating with the wave, see, for instance,
Refs. [57–59] for thermal convection or dynamo problems in spherical geometries or Ref. [60] for
the pipe flow.

Floquet theory (e.g., Ref. [61]) is applied to study the stability of RWs so the dominant eigenvalue
of the map δu −→ Duφ(τ, u, p)δu = v(τ ), where v(τ ) is the solution of the first variational equation
(see Refs. [44] and [35] for further details), must be estimated. Arnoldi methods (ARPACK [62]) are
used to compute eigenvalues of larger modulus corresponding to the dominant Floquet multiplier
λ = |λ|eiArgλ. When |λ| > 1 the RW is unstable. The Floquet multiplier with |λ| = 1 and eigen-
function v1 = ∂t u, associated to the invariance under azimuthal rotations, is deflated by redefining
the map δu −→ v(τ ) − 〈v(τ ), v1〉 v1. The azimuthal symmetry, m1, of the leading eigenfunction
should be a factor of the azimuthal symmetry, m0, of the RW. We note that this eigenvalue problem
requires the time integration of an ODE system of dimension 2n over one rotation period, which
is an extensive computational task. Because the periodic orbit is a RW there is a more efficient
alternative to this procedure (see Refs. [57–59,63]) which consists of studying the stability as a
fixed point of a vector field. However, this method requires to apply shift-invert techniques to the
eigenvalue solver. Numerical tests performed in Ref. [57] found the Floquet analysis method more
robust than the steady state method, but less efficient.

C. Parameters for the study of the weak branch

Several combinations of the parameters given in Eq. (4) are considered to explore the appearance
of solutions belonging to the weak branch. This branch bifurcates supercritically from the conduc-
tive state and the flow is localized away from the interior of the sphere and characterized by the
predominance of diffusion rather than advection transport. In contrast, for solutions belonging to
the strong branch advection dominates and there is a strong thermal anomaly and noticeable zonal
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TABLE I. Number of radial collocation points Nr , spherical harmonic truncation parameter Lmax, and
critical Rayleigh numbers Rac, azimuthal wave numbers mc and critical frequencies ωc for the onset of
convection for the three sets of parameters Pi, i = 1, 2, 3, considered. For the set P3 the critical parameters
for the nonpreferred m = 11 eigenfunction are also listed. Values marked with the * symbol are taken from
Ref. [32].

Set Nr Lmax E Pr mc Rac ωcE Rac
∗ ω∗

c E

P1 50 160 3 × 10−6 0.03 12 2.3392 × 107 −0.042852 2.336 × 107 −0.04275
60 156 3 × 10−6 0.03 12 2.3365 × 107 −0.042861 2.336 × 107 −0.04275

P2 50 154 10−6 0.01 11 5.7165 × 107 −0.039801 5.475 × 107 −0.03895
80 154 10−6 0.01 11 5.4949 × 107 −0.039022 5.475 × 107 −0.03895
80 192 10−6 0.01 11 5.4949 × 107 −0.039022 5.475 × 107 −0.03895

P3 80 192 3 × 10−7 0.003 12 1.2609 × 108 −0.042899 1.255 × 108 −0.04287
100 192 3 × 10−7 0.003 12 1.2536 × 108 −0.042913 1.255 × 108 −0.04287
100 192 3 × 10−7 0.003 11 1.2584 × 108 −0.041916

flow near the sphere’s origin. At moderate rotation rates the strong branch is found at usually larger
forcing than that required for the weak branch, but in rapidly rotating spheres at low Pr the strong
branch can be subcritical [32]. The regimes selected in our study are characterized by low Pr and E
in accordance with the study of Ref. [32] in a full sphere. Because our formulation of the problem
is different than that used in Ref. [32], we describe the results in terms of their definition. The
relation between the Rayleigh number of Eq. (4) and the Rayleigh number RaK defined in Ref. [32]
is Ra = 2(1 − η)6RaK. For the sake of simplicity we use Ra = RaK from now on. In addition,
following Ref. [32] the diffusion timescale τκ = d2/κ is used for analyzing the results giving rise
to the dimensionless time tκ = tν/Pr, where tν is the dimensionless viscous time employed in our
numerical code.

Following Ref. [32] three different pairs Pi = (Pri, Ei ), i = 1, 2, 3, are considered. They are P1 =
(0.03, 3 × 10−6), P2 = (0.01, 10−6), and P3 = (0.003, 3 × 10−7). The critical Rayleigh numbers,
azimuthal wave numbers and critical frequencies for the onset of convection for the three different
sets are listed in Table I. The frequencies are normalized by ωcE = ωdim

c /�, where ωdim
c = ωcν/d2

is the dimensional frequency. In this table the number of radial collocation points (Nr) and spherical
harmonic truncation parameter (Lmax) used for the computations are listed as well. For the sets P1

and P2 the critical mode flow patterns can be described [18] as a set of columns, with a single
convective cell, which are parallel to the axial direction, spiral in the azimuthal direction, and are
located in the interior of the shell. However, the columns become multicellular and attached to the
outer sphere in the case of the set P3. The onset of multicellular modes has been already studied in
Ref. [21] for the case of a thick rotating spherical shell.

The motivation for the choice of these three sets is described in the following. The DNS of
Ref. [32] showed the existence of the weak branch for the sets P1 and P2, i.e., where the onset
of convection is in the form of spiraling modes, but the weak branch was not found for the set
P3, where the onset of convection is multicellular and equatorially attached. In the present study
we show that RWs, solutions belonging to the weak branch, can also be found for the set P3 if
continuation methods are employed. Considering the sets P1 and P2 allows us to check our results
and to investigate why it is difficult to obtain the weak branch by means of DNS for the set P3. The
focus of the present study is then on the set P3 since the weak branch for this set has not yet been
described. By performing additional DNS we also study quasiperiodic flows, bifurcating from RWs,
that also belong to the weak branch regime.

We note that both, Pr and E roughly decrease by a factor of 3 from P1 to P2, and from P2 to
P3, so there is an increase of computational complexity from P1 to P3. As is clear from Table I
the critical frequencies ωc increase since the product ωcE remains very similar for all the cases.
In addition, as the Prandtl and Ekman numbers are decreased the marginal stability curves for the
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onset of convection corresponding to a single azimuthal wave number approach each other (e.g.,
Refs. [21,24]) meaning that multitudes of radial and colatitudinal structures are unstable just after
the onset.

The global quantity analyzed, in correspondence with Ref. [32], is the Peclet number Pe =
roU/κ , which in terms of the dimensionless volume-averaged kinetic energy K becomes Pe =
(1 − η)−1 Pr (2K )1/2. According to Ref. [32] the Peclet number helps to identify if a solution
belongs to the weak branch or not depending on whether Pe < 10 or not. This threshold separates
flows dominated by diffusion (weak branch) to flows dominated by advection (strong branch). The
frequencies of the RWs, ωE, or the volume-averaged kinetic energy Km, computed by considering
only the azimuthal wave number m in the spherical harmonics expansion of the toroidal and poloidal
potentials [Eqs. (6) and (7)], are also considered as global data. Regarding local data, the time series
of the temperature perturbation, picked up at some points inside the fluid, and the time series of the
real part of the poloidal amplitudes of Eq. (7) of different modes (m, l ) in the middle of the sphere,
are considered.

III. ROTATING WAVES

By means of the continuation method described in Sec. II B the bifurcation diagrams for RWs
corresponding to the three sets, P1 = (Pr, E) = (0.03, 3 × 10−6), P2 = (Pr, E) = (0.01, 10−6), and
P3 = (Pr, E) = (0.003, 3 × 10−7), are obtained. For each set Pi the azimuthal symmetry of the RWs
correspond to that at the onset of convection given in Table I. Concretely, m0 = 12 for P1, m0 = 11
for P2, and m0 = 12 for P3. Figure 1 displays the Peclet number Pe and the normalized rotation
frequencies ωE versus the parameter R̃a = Ra/Rac − 1, which measures the departure from the
onset. Stable (respectively, unstable) RWs are denoted by solid (respectively, dashed) lines.

Figure 1(a) is the same as Fig. 1 of Ref. [32] but note that in Ref. [32] two additional sets, one
at E = 10−5 and the other at E = 10−7, were displayed. To compare both figures one must take into
account that slight deviations of the value of Rac imply important deviations in Pe for values of R̃a
close to 10−2. For instance, if for the set P2 we use Rac = 5.475 × 107, given in Ref. [32], instead
of our computed Rac = 5.4949 × 107, given in Table I, then we would obtain a value of Pe ≈ 0.7
(in agreement with Ref. [32]) instead of Pe ≈ 1 marked in Fig. 1(a). Note that for the set P1 our
results agree with those of Ref. [32] since the critical Rayleigh numbers for this set have the same
three first significant figures (see Table I).

In contrast to Ref. [32], we have found stable the branch of RWs with azimuthal symmetry
m0 = 12 (weak branch) bifurcating from the onset in the case of the set P3. Certainly, these solutions
can be found up to a critical value of the Rayleigh number marking the interval of stability of the
branch. This interval is comparable to those of the weak branches bifurcating from the onset for the
sets P1 and P2. Aside the branch of RWs with azimuthal symmetry m0 = 12, we have computed a
branch of RWs with azimuthal symmetry m0 = 11. This branch is born unstable as it corresponds to
the second preferred eigenfunction at the onset of convection but becomes stable very close to the
onset. As it will be shown in the next sections, to assess the stability of these RWs, or to compute
them using DNS, is a computationally challenging task.

Figure 1(a) evidences that all the branches follow the
√

Ra − Rac scaling, since there’s a Hopf
bifurcation breaking the axisymmetry of the basic state [39]. This scaling is only valid close to the
bifurcation point. Notice how the scaling is valid in a larger interval as we go from set P1 to the set P3

indicating that the validity of the scaling depends on the other parameters (Pr, E). In addition, very
close to the onset the branches become more steep. This is only clear for the branch with m0 = 11
corresponding to the set P3 but also occurs for the other branches. Notice that for larger values of R̃a
the Peclet number departs from the predicted scaling and in the case of the set P1 two saddle-node
bifurcations occur (the folds of the curve).

In Fig. 1(b) the dependence of the rotation frequencies on the Rayleigh number is analyzed
by displaying ωE versus R̃a. We recall that the rotation frequency (ω) of a RW with azimuthal
symmetry m0 is related to the critical frequency at the onset (ωc) by ω = −ωc/m0. This is clear
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FIG. 1. Bifurcation diagrams of rotating waves for the 3 sets of parameters: P1 with (Pr, E) = (0.03, 3 ×
10−6), P2 with (Pr, E) = (0.01, 10−6), and P3 with (Pr, E) = (0.003, 3 × 10−7). For the set P3 two differ-
ent branches with m0 = 11 (violet) and with m0 = 12 (magenta) are shown. (a) Péclet number Pe versus
R̃a = Ra/Rac − 1. The dashed line indicates the

√
Ra − Rac scaling predicted in Ref. [39]. (b) Scaled rotating

frequency ωE versus R̃a. Solid/dashed lines mark stable/unstable rotating waves.

when comparing the values of Fig. 1(b) at R̃a = 10−3 with Table I. Note that the frequencies ω

remain nearly constant among the three different sets up to R̃a = 2 × 10−2. From this point the
frequency decreases significantly in the case of P1. In addition, the frequencies of the branches
bifurcating from the onset are almost equal for the three sets.

The flow and temperature patterns for a stable RW with azimuthal symmetry m0 = 12 corre-
sponding to the case P3 at Ra = 1.2634 × 108 (R̃a = 7.9 × 10−3) are investigated in Fig. 2 and
correspond to the patterns of a multicellular mode described in Ref. [21]. The first row displays,
from left to right, the contour plots of the temperature perturbation on the equatorial plane and on a
meridional section. On the second row, the contour plots for the vertical vorticity ω̂z (normalized by
the planetary vorticity ω̂z = ωzE/2) on an equatorial plane, and the contour plots for the azimuthal
velocity vϕ on a meridional section, are shown. The meridional sections cut relative maxima of the
fields. All the fields shown in Fig. 2 were already shown in Figs. 2 and S2 of Ref. [32], but for a
solution corresponding to the case P2 at R̃a = 10−2 for which the flow patterns are very similar.
The flow is strongly geostrophic displaying convective columns aligned with the rotation axis (see
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FIG. 2. Rotating wave with m0 = 12, in the case of the set P3 (E = 3 × 10−7, Pr = 0.003) and Ra =
1.2634 × 108 (R̃a = 7.9 × 10−3). Top row: Contour plots for the temperature perturbation � on an equatorial
and meridional section. Bottom row: Contour plots for the vertical vorticity ω̂z on an equatorial section and for
the azimuthal velocity vϕ on a meridional section.

meridional sections). In addition, azimuthal velocity and vertical vorticity tend to be attached to
the outer sphere and multicelullar spiral arms are clearly seen on the equatorial section for the
temperature perturbation. Additional contour plots in the case of a tricelullar mode can be found in
Fig. 4 of Ref. [21].

The main effect of increasing the Rayleigh number is to slightly displace the hot fluid cells
(i.e., the maximum of temperature perturbation) toward the outer sphere, in the cylindrical radial
direction (see the first row of Fig. 3), whereas the flow regions with maximum kinetic energy are

FIG. 3. Rotating waves with m0 = 12, in the case of the set P3 (E = 3 × 10−7, Pr = 0.003). Contour plots
for the temperature perturbation � (top row) and for the kinetic energy density K (bottom row) on an equatorial
section. The Rayleigh numbers are Ra = 1.3030 × 108 (a, f), Ra = 1.4511 × 108 (b, g), Ra = 1.5932 × 108

(c, h), Ra = 1.9650 × 108 (d, i), and Ra = 2.5067 × 108 (e, j). This corresponds to R̃a = 3.9 × 10−2, R̃a =
1.6 × 10−1, R̃a = 2.7 × 10−1, R̃a = 5.7 × 10−1, and R̃a = 100.
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TABLE II. Number of radial collocation points Nr , spherical harmonic truncation parameter Lmax, Ekman
E, Prandtl Pr, and Rayleigh Ra numbers, volume-averaged kinetic energy K , rotating frequency ω, and
modulus of the dominant Floquet multiplier |λ|, for rotating waves with azimuthal symmetry m0. The value
R̃a = Ra/Rac − 1, where Rac is the critical Rayleigh number for the onset of convection, can be used to locate
the rotating wave on the bifurcation diagram of Fig. 1(a).

Nr Lmax E Pr Ra R̃a K ω |λ| m0

60 156 3 × 10−6 0.03 2.38589 × 107 2.0 × 10−2 1.0981 × 103 1.1314 × 103 0.98915 12
70 192 3 × 10−6 0.03 2.38589 × 107 2.0 × 10−2 1.1036 × 103 1.1312 × 103 0.98923 12
80 154 10−6 0.01 5.53968 × 107 8.2 × 10−3 7.4015 × 103 3.4380 × 103 0.97097 11
100 198 10−6 0.01 5.53968 × 107 8.2 × 10−3 7.5082 × 103 3.4375 × 103 0.97033 11
100 192 3 × 10−7 0.003 1.27467 × 108 1.7 × 10−2 4.2477 × 104 1.1603 × 104 1.00214 12
120 192 3 × 10−7 0.003 1.27467 × 108 1.7 × 10−2 4.2723 × 104 1.1603 × 104 1.00218 12

progressively moved inwards, toward the inner sphere, although they still remain located close to
the outer sphere (see the second row of Fig. 3). In addition, for R̃a > 2. × 10−1 (three rightmost
plots), fluid motions start to develop near the middle of the shell developing a ring of vortices which
displays a characteristic polygonal structure.

A. Stability of rotating waves

By means of the method described in Sec. II B the stability of RWs for each set of parameters is
analyzed. We have found that for all the three sets the RWs become unstable due to Hopf bifurcations
giving rise to modulated rotating waves (MRW). This scenario, which has been already described
in Refs. [44,57] for thermal convection in rotating spherical shells, is typical in SO(2) symmetric
systems [16,17,51].

Specifically, the Hopf bifurcations occur at Ra = 2.3903 × 107 (R̃a = 2.2 × 10−2) for the
set P1 = (Pr, E) = (0.03, 3 × 10−6), at Ra = 5.5823 × 107 (R̃a = 1.6 × 10−2) for the set P2 =
(Pr, E) = (0.01, 10−6). For the set P3 = (Pr, E) = (0.003, 3 × 10−7), RWs with m0 = 12 become
unstable at Ra = 1.2731 × 108 (R̃a = 1.6 × 10−2) and RWs with m0 = 11 become unstable at
Ra = 1.2952 × 108 (R̃a = 2.9 × 10−2). The values of Ra marking the bifurcation point have been
obtained by linear interpolation between the last stable and the first unstable available RWs, which
have the pairs (Ra1, |λ1|) and (Ra2, |λ2|), with |λ1| < 1 and |λ2| > 1, where λi is the dominant
Floquet multiplier. The values (Rai, |λi|), with |λi| closest to unity, the volume-averaged kinetic
energy K , and the rotation frequency ω of the RWs, are listed in Table II for the three sets of
parameters and different resolutions to look for spatial discretization errors. We have found that the
radial resolution is critical to correctly assess the stability of the waves. In the case of the set P3 all
the RWs have been found unstable if Nr = 80 is employed.

Figure 4(a) displays the six leading Floquet multipliers for two unstable RWs corresponding
to the sets P1 (squares) and P3 (circles) at Ra = 2.43043 × 107 (R̃a = 4 × 10−2) and at Ra =
1.27467 × 108 (R̃a = 1.7 × 10−2), respectively. For both cases any leading Floquet multiplier has
its corresponding complex conjugate and for the set P3 the leading Floquet multipliers are arranged
near the unit circle. This is specially true for Rayleigh numbers close to the critical Rayleigh
number determining the onset of unstable RWs, either for the branch of RWs with azimuthal
symmetry m0 = 12 or for the branch of RWs with azimuthal symmetry m0 = 11, see Fig. 4(b).
In this figure, the solution at Ra3 = 1.3030 × 108 (R̃a3 = 3.9 × 10−2), corresponding to the branch
with azimuthal symmetry m0 = 12 and the set P3, has the Floquet multipliers more clustered near
the unit circle than the solution at a similar R̃a = 4 × 10−2 (Ra = 2.43043 × 107) for the set P1

[shown in Fig. 4(a)]. This means that |λ| ≡ |λ(R̃a)| is steeper in the case of the set P1 and quite flat
for the set P3, at least near the onset of convection (R̃a < 0.1). For this reason, the stability analysis
for the RWs shown in Fig 4(b) is computationally challenging because of the convergence of the
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FIG. 4. (a) Real and imaginary part of the leading Floquet multipliers λ corresponding to the first un-
stable RWs with azimuthal symmetry m0 = 12 for the set P1 = (Pr, E) = (0.03, 3 × 10−6) (squares, orange
online) and for the set P3 = (Pr, E) = (0.003, 3 × 10−7) (circles, blue online). The Rayleigh numbers are
Ra = 2.43043 × 107 (R̃a = 4 × 10−2) and Ra = 1.27467 × 108 (R̃a = 1.7 × 10−2), respectively. (b) Lead-
ing Floquet multipliers for the last stable (triangles down, red online) and first (circles, blue online) and
second unstable (triangles up, dark-green online) RWs with azimuthal symmetry m0 = 12 for the set P3 at
Ra1 = 1.26344 × 108, Ra2 = 1.27467 × 108, and Ra3 = 1.3030 × 108, respectively. The first unstable RW
with azimuthal symmetry m0 = 11 at Ra11

3 = 1.3011 × 108 is also shown (diamonds, green online). The
conjugate Floquet multipliers are not shown in panel (b) and the solid line marks the unit circle.

eigenvalue solver [64]. Before starting the Arnoldi iteration procedure [62], more than 400 power
method iterations have been performed to the initial guess to filter out the components associated to
nonleading Floquet multipliers.

Figure 5 displays the leading Floquet multipliers for several Rayleigh numbers up to R̃a = 1.6 ×
10−1 which are still located near the unit circle. This means that any perturbation applied to the
RWs grows very slowly and gives rise to very long transients if DNS are employed. This will be
illustrated later in Sec. IV. The study of the symmetry of the unstable eigenfunctions, when coupled
with the symmetry of the RWs, allows to infer the spatial structure of MRWs which bifurcate from
the branch of RWs (e.g., Refs. [44,57]). This is because close to the bifurcation point a MRW
denoted by u2 can be approximated by u2 ≈ u0 + εu1, where u0 is the parent RW, u1 is the leading
Floquet mode, and ε is a small value. As the azimuthal symmetry of the RWs is m0 = 12 only
Floquet eigenfunctions with azimuthal symmetry m1 ∈ {1, 2, 3, 4, 6, 12} are possible (m1 should
be a factor of m0) since the RWs and their eigenfunctions are coupled in the variational equations
(e.g., Ref. [65]). In addition, at the bifurcation point, the azimuthal symmetry, m2, of the MRW
should be equal to m1. The azimuthal symmetry m1 and most energetic wave number mmax of the
corresponding eigenfunctions are labeled on each multiplier shown in Fig. 5. The figure shows that
all the eigenvalues have azimuthal symmetry which is not m1 = 12, meaning that the bifurcations
broke the azimuthal symmetry giving rise to the excitation of low azimuthal wave numbers m1 ∈
{1, 2, 3, 4}. Figure 5 also helps to visualize the increase of the real and imaginary parts of a given
Floquet multiplier (described by the azimuthal symmetry and mmax) with the Rayleigh number.

The patterns of the temperature perturbation, axial vorticity, azimuthal velocity, and kinetic
energy for the leading eigenfunction of a RW with azimuthal symmetry m0 = 11 corresponding
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FIG. 5. Leading Floquet multipliers for unstable RWs with azimuthal symmetry m0 = 12 and the set
P3 (E = 3 × 10−7, Pr = 0.003) at Ra3 = 1.3030 × 108 (triangles, dark-green online), at Ra4 = 1.3228 × 108

(circles, orange online), Ra5 = 1.3919 × 108 (asterisk, violet online), and Ra6 = 1.4511 × 108 (pentagon,
yellow online). The labels indicate the azimuthal symmetry m1 of the eigenfunction and its most energetic
wave number mmax. The conjugate Floquet multipliers are not shown and the solid line marks the unit circle.

to the case P3 at Ra = 1.3011 × 108 (R̃a = 3.8 × 10−2) are displayed in Fig. 6. The corresponding
Floquet multiplier is shown in Fig. 4(b) (diamond at the bottom) and it is located just outside the
unit circle, i.e., a Hopf bifurcation has occurred. The azimuthal symmetry of the eigenfunction is
m1 = 1 and the most energetic wave number is mmax = 10 so the m0 = 11 azimuthal symmetry of
the parent RW is broken and MRWs with azimuthal symmetry m1 = 1 develop. These MRWs are
studied later on Sec. IV. As described for the RWs, the eigenfunction’s velocity field is aligned in the
axial direction and attached to the outer sphere. There are 10 hot (cold) cells with larger magnitude
for the temperature perturbation since mmax = 10 but they have slightly different shapes due to
the m1 = 1 azimuthal symmetry. The latter symmetry is best displayed in the equatorial section
of the kinetic energy contour plots where the spiraling arms form an oval structure in the interior
of the sphere. The interior structures of this eigenfunction will be further studied in Sec. IV A and
compared with the topology of nonlinear flows (MRWs) near the bifurcation point.

Figure 7 displays the topology of the eigenfunctions corresponding to some Floquet multipliers
(shown in Fig. 5) with different azimuthal symmetries at different Rayleigh numbers. The temper-
ature and velocity patterns are multicellular and look very similar to those analyzed in Fig. 6. By
increasing Ra the main difference is that the temperature cells as well as kinetic energy vortices
tend to move to the interior of the fluid as was the case for RWs (see Fig. 3). Similarly to the case
of the leading eigenfunction at Ra = 1.3011 × 108 the spiralling arms for the leading eigenfunction
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FIG. 6. Leading eigenfunction of a RW with m0 = 11, in the case of the set P3 (E = 3 × 10−7, Pr = 0.003),
and Ra = 1.3011 × 108. Top row: Contour plots for the temperature perturbation � on an equatorial and
meridional sections. Middle row: Contour plots for the vertical vorticity ω̂z on an equatorial section and for the
azimuthal velocity vϕ on a meridional section. Bottom row: Contour plots for the kinetic energy density K on
an equatorial and meridional sections. The azimuthal symmetry and most energetic wave number are m1 = 1
and mmax = 10, respectively.

at Ra = 1.3030 × 108 (leftmost plot of the kinetic energy density, Fig. 7) form a regular pattern, a
square in this case, in the interior of the sphere.

IV. TIME EVOLUTIONS FOR E = 3 × 10−7 AND Pr = 0.003

The aim of this section is to investigate oscillatory flows for the set P3 obtained for Ra larger
than that required for the stability of RWs. The analysis is conducted by performing DNS with
selected initial conditions, at different Ra, along the branch of RWs already studied in Sec. III. For
each initial condition a random perturbation (of order 10−6) to all spherical harmonic amplitudes is
added and the system is integrated around 100 diffusion time units, which is more than one order of
magnitude larger than the typical final times of the DNS presented in Ref. [32]. This is particularly
challenging since the dimension of the system is of order 107 (Nr = 100 and Lmax = 192 are used)
and a time step of 1.7 × 10−5 diffusion time units is employed.
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FIG. 7. Leading eigenfunctions of rotating waves with m0 = 12, in the case of the set P3 (E = 3 × 10−7,
Pr = 0.003). Contour plots for the temperature perturbation � (top row) and for the kinetic energy density K
(bottom row) on an equatorial section. The Rayleigh numbers are Ra = 1.3030 × 108 (a, f), Ra = 1.3228 ×
108 (b, g), Ra = 1.3919 × 108 (c, h), and Ra = 1.4511 × 108 (d, e, i, j). For the latter Ra, panels (d, i) and (e, j)
correspond to the first and third leading eigenfunctions, respectively. Their respective azimuthal symmetry and
most energetic wave number are m1 = 2 and mmax = 10, m1 = 3 and mmax = 9, m1 = 4 and mmax = 8, m1 = 2
and mmax = 10, and m1 = 1 and mmax = 7.

Figure 8 illustrates the procedure by displaying the volume-averaged kinetic energy Km for each
azimuthal wave number m ∈ {1, 10, 11, 12, 13, 14} versus time in diffusion units (also in rotation
units) for the DNS corresponding to different Ra. In each panel the norm ||u||, of the vector
containing the amplitudes of the scalar potentials and the temperature perturbation, and the norm
||u||nd—when only the azimuthal wave numbers which are not multiples of m0 = 12 [or m0 = 11
for panel (b)] are considered—are plotted as well. The initial condition corresponds to a stable
RW with azimuthal symmetry m0 = 12 in Fig. 8(a), and to a stable RW with azimuthal symmetry
m0 = 11 in Fig. 8(b), and thus the added random perturbation (affecting all the spherical harmonics
of the RWs) is damped but on a very large timescale, see the curve of ||u||nd containing the norm of
vector containing the spherical harmonic amplitudes of the azimuthal wave numbers which are not
multiple of m0. In agreement with the results presented in Sec. III A the azimuthal wave numbers for
which Km decreases more slowly correspond to the azimuthal symmetry m1 and the most energetic
wave number mmax of the leading eigenfunction, because the associated eigenvalues are very close
to the unit circle [see Fig. 4(b)]. The slowly damped modes are m = 1 and m = 11 for the RW
with azimuthal symmetry m0 = 12 [Fig. 8(a)] and m = 1 and m = 10 [Fig. 8(b)] for the RW with
azimuthal symmetry m0 = 11. Notice that in Fig. 8(a) the mode m = 13 is slowly damped as well
because of the coupling of the azimuthal symmetry of the RW m0 = 12 and the azimuthal symmetry
of the eigenfunction m1 = 1. The same occurs in Fig. 8(b) for the mode m = 12.

For the same arguments as described above (i.e., the eigenvalues of the eigenfunctions are
clustered around the unit circle) the perturbations added to unstable RWs grow very slowly and the
stable attractor is reached on a very large timescale. This is displayed in Figs. 8(c)–8(f) where at least
30 diffusion times (or 5 × 104 planetary rotations) are needed to saturate the flow. In all the cases
after a sharp increase of the unstable modes (after around 2–10 diffusion times) a strongly oscillatory
transient lasts more than 30 diffusion times. The final attractor is a MRW, i.e., a quasiperiodic flow
with two incommensurable frequencies, which has a certain spatio-temporal symmetry. Notice that
for MRW the value of ||u||nd is almost equal to ||u|| since the spherical harmonics amplitudes
corresponding to the azimuthal wave numbers m = 12k, k ∈ Z are significantly smaller when
compared with other azimuthal wave numbers (for instance m = 10). The systematic computation
of MRW has been performed in Ref. [44] for the same problem as described here but for spherical
shells. These types of oscillatory flows are still in the weak branch regime since their Peclet numbers
are of order one. This is illustrated in Fig. 9(a) where the time series of the Peclet number Pe are
displayed for the same solutions as analyzed in Fig. 8. Figure 9(b) corresponds to the bifurcation
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FIG. 8. Time integration with initial conditions obtained by adding a random perturbation to the RWs for
the set P3 (E = 3 × 10−7, Pr = 0.003). Norm of the amplitudes of the potential scalars and the temperature
perturbation ||u||, and the norm ||und|| for only m �= 12k, k ∈ Z [in panels (a, c, d, e, f)] and m �= 11k, k ∈ Z
[in panel (b)], versus diffusion time (also rotation time on top horizontal axis). The volume averaged kinetic
energies for each wave number m = 1, 10, 11, 12, 13, 14 are displayed as well. The Rayleigh numbers are
(a) Ra = 1.2634 × 108, (b) Ra = 1.2747 × 108, (c) Ra = 1.3030 × 108, (d) Ra = 1.3228 × 108, (e) Ra =
1.3919 × 108, and (f) Ra = 1.4511 × 108.

diagrams of the time-averaged Pe for these MRWs including also the branches of RWs already
displayed in Fig. 1.

To demonstrate the quasiperiodic nature of MRWs, Poincaré sections, extracted from the time
series of temperature perturbation, are displayed in Fig. 10 for the same solutions as analyzed in
Fig. 8 [points in Fig. 9(b)]. The Poincaré section of a RW (periodic flow) is a point, whereas it
corresponds to a closed curve in the case of MRWs (quasiperiodic flow). Increasing the Rayleigh
number up to Ra = 1.3919 × 108 results in larger oscillations of the temperature perturbation since
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FIG. 9. (a) Peclet number versus diffusion time (also rotation time on top horizontal axis), in the case of the
set P3 (E = 3 × 10−7, Pr = 0.003) for the same solutions as shown in Fig. 8. The Rayleigh numbers, increasing
from bottom to top, are Ra = 1.2634 × 108, Ra = 1.2747 × 108, Ra = 1.3030 × 108, Ra = 1.3228 × 108,
Ra = 1.3919 × 108, and Ra = 1.4511 × 108. (b) Bifurcation diagrams of the time averaged Peclet number
corresponding to the branches of RWs with azimuthal symmetry m0 = 12 and m0 = 11 and of MRWs with
azimuthal symmetry m2 = 1. The points correspond to the curves shown in panel (a).

the curves enclose a larger area. Notice that for Ra = 1.4511 × 108 the curve spreads over a smaller
interval in the vertical axis than in the case of Ra = 1.3919 × 108 so the oscillations of temperature
close to the outer boundary become smaller.

To further investigate the nature of the temperature fluctuations, the time series of � are displayed
in Figs. 11(a) and 11(b) at two different points close to the equatorial plane (see Fig. 11 caption),
one in the middle of the sphere [Fig. 11(a)] and the other close to the inner boundary [Fig. 11(b)].
The time series are for the MRW at Ra = 1.4511 × 108 corresponding to Fig. 8(f). In Figs. 11(a)
and 11(b) the long initial transients (around 50 diffusion times) required to saturate this solution (see
discussion of Fig. 8) are clearly visible. Figures 11(c) and 11(d) display a detail of Fig. 11(a) (i.e., �
in the middle of the sphere) in two different time intervals, one during the transient phase (interval
I1), and the other during the saturated phase (interval I2) of the solution. Figures 11(e) and 11(f) are
as Figs. 11(c) and 11(d) but display the details of Fig. 11(b) (i.e., � close to the center of the sphere).
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FIG. 10. (a) Poincaré section defined by 0 = �(r, ϕ, θ ) with (r, ϕ, θ ) = (0.51, 0, 5π/8). The temperatures
�1 = �(0.16, 0, 5π/8) and �2 = �(0.86, 0, 5π/8) are displayed on the horizontal and vertical axis, respec-
tively. We recall that η = 0.01 implies ri = 0.0101 and ro = 1.0101 and that solutions belong to the set P3

(E = 3 × 10−7, Pr = 0.003). The Rayleigh numbers of each section increase from right to left in the figures
(see the arrow). They are Ra = 1.2634 × 108, Ra = 1.2747 × 108, Ra = 1.3030 × 108, Ra = 1.3228 × 108,
Ra = 1.3919 × 108, and Ra = 1.4511 × 108, corresponding to panels (a–f), respectively, of Fig. 8.

The comparison between the different panels summarizes several facts. First, the oscillations have
different main timescales depending on whether � is measured in the middle of the shell (small
and large scales, clearly quasiperiodic) or close to the center of the sphere (mainly large scales and
periodic). Second, the long transients (interval I1) exhibit intermittent-like structures. Finally, for
the long transients an intermediate timescale is additionally present for � picked up close to the
center of the sphere.

The mode structure of the long initial transients and the saturated MRW at Ra = 1.4511 × 108 is
significantly different. This is demonstrated in Fig. 12 displaying the time averaged kinetic energy
spectra versus the azimuthal wave number m over the interval I1 [Fig. 12(a)] and over the time
interval I2 [Fig. 12(b)]. The figure also displays (with error bars) the amplitude of the kinetic energy
oscillations. The transients are characterized by strong time oscillations of all the modes. In addition
the flow is bimodal, in the sense that the azimuthal wave numbers m = 8 and m = 10 have maximum
energy. Also, low wave numbers m < 6 have a similar and noticeable (larger than 102) magnitude.
In contrast, the kinetic energy spectra of the saturated MRW have a single maximum (at m = 9) and
the time dependence of Km is only noticeable for the modes at the relative minima of the spectrum.
In addition, only the low wave number m = 1 has magnitude larger than 102. The other MRWs
analyzed in the previous figures have similar kinetic energy spectra as shown in Fig. 12(c). In this
figure RWs have nonzero kinetic energy only in the wave numbers of the form km0, k ∈ Z (m0 is
the azimuthal symmetry of the RW) whereas MRWs, all of them with azimuthal symmetry m2 = 1,
have nonzero kinetic energy in all the modes. As the Rayleigh number is increased mmax decreases
(from m = 12 at the smallest Ra down to m = 9 at the largest Ra). Moreover, the relative difference
between dominant modes (relative maxima) and nondominant modes (relative minima) decreases.
Notice that for the low wave numbers (specially m = 5) the kinetic energy Km sharply increases
with Ra. Scalloped spectra like those of Figs. 12(b) and 12(c), already studied for the case of the
spherical Couette flow in Ref. [66], are a consequence of a periodic spatial structure modulated by
an envelope as is shown in the following paragraph.

The flow and temperature spatial structures during the transient as well as the saturated phase
for the DNS at Ra = 1.4511 × 108 can be visualized in Figs. 13 and 14, respectively. In both cases
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FIG. 11. (a) Temperature �3 = �(r, ϕ, θ ), with (r, ϕ, θ ) = (0.51, 0, 5π/8), versus diffusion time.
(b) Same as panel (a) but for the temperature �1 = �(0.16, 0, 5π/8). The Rayleigh number is Ra = 1.4511 ×
108 corresponding to panel (f) of Fig. 8. The solution belongs to the set P3 (E = 3 × 10−7, Pr = 0.003). The
time averages of the kinetic energy spectra of Figs. 12(a) and 12(b) are taken over the time intervals I1 and I2,
respectively. Panels (c) and (e) correspond to details of panel (a) in the intervals I1 and I2, respectively. Panels
(d) and (f) correspond to details of panel (b) in the intervals I1 and I2, respectively.

the flow is strongly geostrophic; the temperature perturbation exhibit multicellular patterns, and the
maximum azimuthal velocity is located close to the outer sphere as described for the RWs in Sec. III.
In contrast to RWs, the shapshots presented in Figs. 13 and 14 have a clear asymmetry (a modulation
by an envelope as described in Ref. [66]) between temperature cells because of the excitation of
low wave numbers (see Fig. 12) predicted by the stability analysis conducted in Sec. III A. The
main difference between the contour plots of the transient flow and the saturated phase (Figs. 13
and 14, respectively) is that, for the former, the azimuthal asymmetry of the m = 10 structure is
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FIG. 12. Time and volume averaged kinetic energy spectra Km versus the azimuthal wave number m. In
panels (a) and (b) the Rayleigh number is Ra = 1.4511 × 108 and the time average is taken over the interval
I1 and I2, respectively, which are shown in Fig. 11. In panel (c) several Rayleigh numbers are shown which
increase from right to left in the figure (see the arrow). They are Ra = 1.2634 × 108, Ra = 1.2747 × 108, Ra =
1.3030 × 108, Ra = 1.3228 × 108, Ra = 1.3919 × 108, and Ra = 1.4511 × 108, corresponding to panels (a–
f), respectively, of Fig. 8. All these solutions belong to the set P3 (E = 3 × 10−7, Pr = 0.003). For each m,
the maximum and minimum values of Km over the time interval are shown with error bars. The ime average,
maximum and minimum values are taken over the last 5 diffusion time units of each time series.

more irregular (i.e., modulated by several low wave numbers) whereas for the latter the azimuthal
modulation is mainly due to m = 1. A further description of the flow and temperature patterns for a
MRW, in terms of its different mode components, will be provided in the next section, Sec. IV A.
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FIG. 13. Solution bifurcating from rotating waves with m0 = 12, in the case of the set P3 (E = 3 ×
10−7, Pr = 0.003) at Ra = 1.4511 × 108. The snapshot is taken in the transient phase, at the end of the time
interval I1 shown in Fig. 11(a). Top row: Contour plots for the temperature perturbation � on an equatorial and
meridional section. Bottom row: Contour plots for the vertical vorticity ω̂z on an equatorial section and for the
azimuthal velocity vϕ on a meridional section.

A. Triadic resonances

In this section we add further evidence to the recent study of Ref. [45] in which triadic resonances
occurring in spherical systems have been interpreted in terms of MRWs. Triadic resonances in the
spherical Couette problem have been comprehensively studied in Ref. [67] and are characterized
by the existence of azimuthal wave numbers mi, mj , and mk with main time dependencies provided
by the frequencies ωi, ω j , and ωk , respectively, for which the relations mi = mj ± mk and ωi =
ω j ± ωk hold. Triadic resonances as described in Ref. [67] have been also analyzed in Ref. [36]
for the same problem as studied here but for E � 10−6. As will be shown in the following, multiple
resonances between several modes can be identified from the DNS of the MRWs previously studied.
The resonant modes are excited by the Hopf bifurcations giving rise to MRWs (see Ref. [45]).

Following the same procedure as in Ref. [45] the time series of the real part of the poloidal
amplitudes of Eq. (7), ��m

l (ro/2) for several m ∈ {1, ..., 20} and l ∈ {1, ..., 40}, are considered to
investigate the timescales of the flow and triadic resonances among the different modes (m, l ). We
have considered two different MRWs at Ra = 1.3030 × 108 and at Ra = 1.3919 × 108. The first
MRW is very close to the bifurcation point from the branch of RWs with m0 = 11 [see the left point
on the m2 = 1 branch of Fig. 9(b)], whereas the second MRW is far away [second rightmost point
on the m2 = 1 branch of Fig. 9(b)].

An accurate frequency analysis, based on Laskar’s algorithm [68], has been applied to each of
the time series to determine the fundamental frequencies. We note that for a time series of a large
scale magnetohydrodynamic periodic flow Laskar’s algorithm detects the main frequency up to a
relative error of order 10−5 (see discussion in Sec. 3.1 of Ref. [69]). Because the flow is equatorially
symmetric (see meridional sections of Fig. 14) we have considered the modes with (m, l ) = (m, m)
which are equatorially symmetric for the poloidal potential. Other equatorially symmetric modes,
such as (m, m + 2), are not considered since their time dependence is analogous to that of the
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FIG. 14. As Fig. 13 but with the snapshot taken in the saturated phase, at the end of the time interval I2

shown in Fig. 11(a).

mode (m, m) (see Ref. [45]). The frequencies, normalized by the global rotation of the sphere �,
are ωm/� = 2π fmE, where fm is the main peak in the dimensionless frequency spectrum. They
are plotted in Fig. 15(a) for each mode (m, l ) = (m, m) and 1 � m � 20. Figure 15(b) displays the
frequencies ω2

m/� obtained from the second largest peak in the frequency spectrum (so ω2
m is not

the square of ωm).
As in Ref. [45], the leading frequencies of the modes (i, i) and ( j, j) verify ωi < ω j if i < j,

so the frequencies are ordered following the azimuthal wave number ordering. A characteristic
feature seen in Fig. 15(a) is that there exists a particular distribution of the frequencies, in the
sense that there are separated blocks of clustered frequencies. The three blocks of Fig. 15(a)
are ωm/� < 0.006, 0.032 < ωm/� < 0.048, and ωm/� > 0.072, which are associated to slow,
moderate, and fast modes that correspond to small, moderate and large azimuthal wave numbers.
For the MRW at Ra = 1.3030 × 108 these are m � 5, 6 � m � 16, and m � 17, respectively.
In contrast, the secondary frequencies shown in Fig. 15(b) are not ordered with respect to the
wave number but still retain the block structure. As it will be shown later in this section these
secondary frequencies provide additional resonances among the modes. Notice that only the modes
m ∈ {3, 4, 5, 6, 13, 14, 15, 16, 17, 18} have a secondary peak in the frequency spectrum and thus are
quasiperiodic. These modes are those located contiguously at the boundaries of the block regions,
see for instance the modes m = 4, 5, 6 in the case of the MRW at Ra = 1.3030 × 108 in Fig. 15(a).
The other modes m ∈ {1, 2, 7, 8, 9, 10, 11, 19, 20} are purely periodic and lie in the interior of the
block regions.

Figure 15 can be easily compared with Table I of Ref. [36]. In that study, for E = 10−6 and Pr =
0.001, the resonance conditions involving the azimuthal wave numbers mi = 4, mj = 1 and mk = 3,
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FIG. 15. Frequency analysis for two solutions at Ra = 1.3030 × 108 (squares) and at Ra = 1.3919 × 108

(circles), in the case of the set P3 (E = 3 × 10−7, Pr = 0.003). (a) Leading frequencies, fm, and amplitudes,
Am, of the time series of poloidal component, ��m

m(rd ), of the different modes (m, m), 1 � m � 20. (b) as in
panel (a) but for the second leading frequencies f 2

m.

were found. The associated frequencies were ωi/� = 0.25, ω j/� = 0.16, and ωk/� = 0.09 which
are roughly one order of magnitude larger than those presented in Fig. 15 for the low azimuthal
wave numbers m < 5. This is not surprising since our Ekman number (E = 3 × 10−7) is smaller.

The resonance conditions found for the azimuthal wave numbers m � 14, corresponding to
the two MRWs at Ra = 1.3030 × 108 and at Ra = 1.3919 × 108, are listed in Tables III and IV,
respectively. The conditions, relating the largest peaks in the frequency spectrum fm, are of two
types. The first type corresponds to relations involving only low wave numbers m � 5 whereas
the second type involves one low wave number and two moderate 6 � m � 16 wave numbers (see
Table III). In contrast, the relations for the second largest peak in the spectrum ( f 2

m) can involve
three moderate wave numbers (i.e., f13 = f 2

6 + f7) since for the second peak the azimuthal wave
number ordering is broken. For instance the modes m ∈ {4, 5} have fm in the small range but f 2

m
in the moderate range while the reverse occurs for m = 6 (see Fig. 15). The quasiperiodic modes
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TABLE III. Relations between the main frequencies fm of the different modes (m, l ) = (m, m) for the 2T
MRW with m2 = 1 azimuthal symmetry at Ra = 1.3030 × 108. For the modes with m ∈ {4, 5, 6} the spectrum
has two peaks fm and f 2

m. These relations are satisfied up to ( fmi − fm j − fmk )/ fmi < ε f with ε f = 10−4.

m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

f3 = f1 + f2 f4 = f1 + f3 f5 = f1 + f4 f6 = f1 + f 2
5 f7 = f1 + f6 f8 = f1 + f7

= 2 f2 = f2 + f3 = f2 + f 2
4 = f2 + f 2

5 = f2 + f6

f 2
5 = f1 + f 2

4 f 2
6 = f1 + f5 = f3 + f 2

4 = f3 + f 2
5

= f2 + f4

= 2 f3

m = 9 m = 10 m = 11 m = 12 m = 13 m = 14
f9 = f1 + f8 f10 = f1 + f9 f11 = f1 + f10 f12 = f1 + f11 f13 = f1 + f12 f14 = f1 + f13

= f2 + f7 = f2 + f8 = f2 + f9 = f2 + f10 = f2 + f11 = f2 + f12

= f3 + f6 = f3 + f7 = f3 + f8 = f3 + f9 = f3 + f10 = f3 + f11

= f4 + f 2
5 = f4 + f6 = f4 + f7 = f4 + f8 = f4 + f9 = f4 + f10

= f 2
4 + f5 = f 2

4 + f 2
6 = f5 + f6 = f5 + f7 = f5 + f8 = f5 + f9

= f 2
5 + f 2

6 = f 2
6 + f7 = f 2

6 + f8

m ∈ {4, 5} are then dual in the sense that according to their first peak fm they may be classified
as slow and according to their second peak f 2

m the may be classified as moderate. The reverse
occurs for m = 6 and similarly for the moderate and fast modes. The situation for the MRW
at Ra = 1.3919 × 108 is similar. In this case the kinetic energy of the nondominant azimuthal
wave numbers is larger [see Fig. 12(c)] so more triadic resonant conditions due to nonlinear
interactions are obtained (compare Table III with Table IV). At Ra = 1.3919 × 108 there are more
dual quasiperiodic modes m ∈ {3, 4, 5, 6, 13, 14, 15, 16, 17} and the modes corresponding to small,
moderate, and large frequencies are now m � 4, 5 � m � 14, and m � 15.

TABLE IV. Relations between the main frequencies fm of the different modes (m, l ) = (m, m) for the 2T
MRW with m2 = 1 azimuthal symmetry at Ra = 1.3919 × 108. For the modes with m ∈ {3, 4, 5, 6, 13, 14}
the spectrum has two peaks fm and f 2

m. These relations are satisfied up to ( fmi − fm j − fmk )/ fmi < ε f with
ε f = 10−4.

m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

f3 = f1 + f2 f4 = f1 + f3 f5 = f1 + f 2
4 f6 = f1 + f5 f7 = f1 + f6 f8 = f1 + f7

= 2 f2 = f2 + f 2
3 = f2 + f 2

4 = f2 + f5 = f2 + f6

f 2
4 = f1 + f 2

3 f 2
5 = f1 + f4 f 2

6 = f1 + f 2
5 = f3 + f 2

4 = f3 + f5

= f2 + f3 = f2 + f4 = f 2
3 + f4 = f 2

3 + f 2
5

= 2 f3

m = 9 m = 10 m = 11 m = 12 m = 13 m = 14
f9 = f1 + f8 f10 = f1 + f9 f11 = f1 + f10 f12 = f1 + f11 f13 = f1 + f12 f14 = f1 + f13

= f2 + f7 = f2 + f8 = f2 + f9 = f2 + f10 = f2 + f11 = f2 + f12

= f3 + f6 = f3 + f7 = f3 + f8 = f3 + f9 = f3 + f10 = f3 + f11

= f 2
3 + f 2

6 = f4 + f6 = f4 + f7 = f4 + f8 = f4 + f9 = f4 + f10

= f4 + f5 = f 2
4 + f 2

6 = f 2
5 + f6 = f 2

5 + f7 = f 2
5 + f8 = f 2

5 + f9

= f 2
4 + f 2

5 = f5 + f 2
6 = f 2

6 + f7 = f 2
6 + f8

f 2
13 = f 2

3 + f10 f 2
14 = f 2

3 + f11

= f 2
4 + f9 = f 2

4 + f10

= f5 + f8 = f5 + f9

= f6 + f7 = f6 + f8

= 2 f7
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FIG. 16. Modulated rotating wave with azimuthal symmetry m2 = 1 in the case of the set P3 (E = 3 ×
10−7, Pr = 0.003) at Ra = 1.3030 × 108. The contour plots of the temperature perturbation � on an equatorial
(a, f, k) and a meridional (b, g, l) section, and of the radial velocity vr (c, h, m), azimuthal velocity vϕ (d, i, n),
and vertical vorticity ŵz (e, j, o), normalized by the planetary vorticity ŵz = wzE/2, on equatorial sections, are
displayed from left to right in each row. From top to bottom only the m = 1 (a–e), m = 10 (f–j), and m = 21
(k–o), respectively, azimuthal wave numbers, rather than all m’s, are considered for the contour plots.

Figure 16 displays the flow patterns, on a snapshot, corresponding to selected azimuthal modes
with frequencies on each of the blocks of Fig. 15(a). Specifically, we select the azimuthal wave
numbers m = 1, m = 10, and m = 21 which correspond to slow, moderate, and fast purely periodic
modes. The contour plots of the temperature perturbation (on equatorial and meridional sections),
of the radial and azimuthal velocity (on an equatorial section), and of the vertical vorticity (on
an equatorial section), are shown from left to right in each row (see figure caption). We note that
only a single mode for each type (slow, moderate, or fast) is selected in Fig. 16 since the modes
for each type have similar flow structure. Slow modes have vortices of � and vr located close to
the origin of the sphere, with spiralling arms toward the outer boundary. In contrast, the situation
for the flow structures is reversed. They are mainly attached to the outer sphere with spiralling
arms toward the interior of the sphere (see vϕ and ŵz equatorial sections). For the moderate modes
the vortices of � and vr are now located at a radial distance around ro/2 so the spiralling arms
toward the outer boundary are smaller. The flow structures are still mainly attached to the outer
sphere but the spiralling arms now extend up to a radial distance around ro/2. In contrast to this, the
spiralling structures almost disappear in the case of the fast modes which have the vortices of � and
vr located close to the outer boundary. The maximum flow velocities are not attached to the outer
sphere, although remain very close to it (see equatorial section of vϕ).

The same contour plots as Fig. 16 are displayed in Fig. 17 corresponding to same azimuthal wave
number decomposition of the Floquet eigenfunction of the RW with m0 = 11 azimuthal symmetry at
Ra = 1.3011 × 108 (already analyzed in Sec. III A and displayed in Fig. 6). The patterns are almost
the same and make evident the relation between the resonant modes and the Floquet eigenfunctions.
The eigenfunction, at Ra = 1.3011 × 108 close to the bifurcation point giving rise the MRW of
Fig. 16, has dominant modes m = 1, 10, 12, 21, 23, .., i.e., m = 1 and m = 11k ± 1, k ∈ Z and the
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FIG. 17. Leading eigenfunction, with azimuthal symmetry m1 = 1, of a rotating wave with m0 = 11, in
the case of the set P3 (E = 3 × 10−7, Pr = 0.003) at Ra = 1.3011 × 108. The contour plots of the temperature
perturbation � on an equatorial (a, f, k) and a meridional (b, g, l) section, and of the radial velocity vr (c,
h, m), azimuthal velocity vϕ (d, i, n), and vertical vorticity ŵz (e, j, o), normalized by the planetary vorticity
ŵz = wzE/2, on equatorial sections, are displayed from left to right in each row. From top to bottom only the
m = 1 (a–e), m = 10 (f–j), and m = 21 (k–o), respectively, azimuthal wave numbers, rather than all m’s, are
considered for the contour plots.

other modes have nearly zero velocity. When this spatial structure is coupled with the m0 = 11
azimuthal symmetry of the unstable RW the main modes are m = 1, m = 11k, and m = 11k ± 1,
k ∈ Z as exhibited by the MRW in Fig. 15(a) (also Fig. 12). It is interesting to note then that resonant
modes arise due to the Hopf bifurcation giving rise to the MRW and that the Floquet eigenfunctions
reveal the main structure of the resonant slow, moderate, and fast modes.

To further investigate the flow topology of slow and moderate modes Fig. 18 displays the
equatorial sections of �, vr , and vϕ for the azimuthal wave numbers m = 2, 3, 4, 5, and m = 6.
The former correspond to slow modes while the latter is a moderate mode. The main characteristic
of this figure is that in the case of slow modes the spiraling arms form a polygonal structure to bound
the interior of the sphere (this is best seen on the sections of vϕ). For the slow mode with m = 2 the
pattern is a square, for m = 3 is an hexagon, etc. We note that the m = 2, 3, 4, 5, 6 modes of Fig. 18
are negligible in the azimuthal wave number decomposition of the leading eigenfunction and thus
are excited due to nonlinear interactions among the modes of the RW (m = 11k, k ∈ Z) and those
of the eigenfunctions (m = 1, m = 11k ± 1, k ∈ Z). As the wave number is increased (from m = 2
up to m = 5) the vortices of � and vr of the slow modes tend to be located farther away from the
interior and the spiraling arms of vr and vϕ contain more cells. The patterns of the moderate mode,
m = 6, are changed significantly (compare with the slow mode m = 5), especially for the case of �

and vr .
The azimuthal and latitudinal topology of the flow close to the outer sphere is displayed in the

contour plots of the kinetic energy K on a spherical surface of Fig. 19 (top row). In this figure the
slow (m = 1, 2, 3), moderate (m = 10), and fast (m = 21) modes are displayed from left to right. In
the case of slow modes the convective motions are restricted to a relatively narrow belt surrounding
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FIG. 18. Modulated rotating wave with azimuthal symmetry m2 = 1 at in the case of the set P3 (E = 3 ×
10−7, Pr = 0.003) at Ra = 1.3030 × 108. The contour plots of the temperature perturbation � (a–e), of the
radial velocity vr (f–j), and of the azimuthal velocity vϕ (k–o) on an equatorial section are displayed from top
to bottom rows. The m = 2, ..., 6 azimuthal components of the solution are displayed in panels (a, f, k), (b, g,
l), (c, h, m), (d, i, n), and (e, j, o), respectively.

the equator whereas for the moderate modes the convective vortices spiral in the azimuthal as well as
latitudinal directions. For both types of modes the maximum value of K is at the equator. In contrast,
for the fast modes motions are almost forbidden at the equator but develop just above and below.
The corresponding colatitudinal sections at the equator and at colatitude θ = 75◦ are displayed on
the middle and bottom row, respectively. The equatorial sections now clearly show that in the case
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FIG. 19. Modulated rotating wave with azimuthal symmetry m2 = 1 in the case of the set P3 (E = 3 ×
10−7, Pr = 0.003) at Ra = 1.3030 × 108. The contour plots for kinetic energy K on a spherical section at
r ≈ 0.99ro (a–e), on an equatorial section (f– j), and on a colatitudinal section at θ = 75◦ (k–o). The m =
1, 2, 3, 10, 21 azimuthal components of the solution are displayed in panels (a, f, k), (b, g, l), (c, h, m), (d, i, n),
and (e, j, o), respectively.
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of the slow modes the motions are mainly attached to the outer boundary. However the bimodal
nature of the flow, exhibiting interior polygonal structures of second order (notice the weak interior
vortices for m = 1 and m = 3 at the equatorial plane) can be identified if the colatitudinal section
does not intercept with the main vortices, for instance at θ = 75◦ (see bottom row of Fig. 19).

V. CONCLUSIONS

We have performed a numerical study of thermal convection in an internally heated rotating
sphere with very low Prandtl and Ekman numbers, appropriate for the study of planetary fluid
cores. Concretely, three sets of parameters are considered P1 = (Pr, E) = (0.03, 3 × 10−6), P2 =
(Pr, E) = (0.01, 10−6), and P3 = (Pr, E) = (0.003, 3 × 10−7) which have already been studied in
Ref. [32]. The focus of our investigation is on weakly nonlinear flows (weak branch of Ref. [32]) oc-
curring near the onset of convection, i.e., at weakly supercritical conditions R̃a = Ra/Rac − 1 � 1.
By means of continuation methods [41–43] we have computed branches of rotating waves (RWs),
whose time dependence is described by a steady drift in the azimuthal direction, bifurcating directly
from the base state. The stability analysis of RWs has evidenced that they are stable for all the
models Pi. Additional direct numerical simulations (DNS) allow us to study secondary quasiperiodic
flows (modulated rotating waves, MRWs) by analyzing Poincaré sections, kinetic energy spectra,
and the time series of the flow and its individual modes.

The bifurcation diagrams of the Peclet number Pe of the RWs follow the
√

Ra − Rac law for
R̃a < 3 × 10−2 since a Hopf bifurcation breaks the axisymmetry of the conduction state [39]. In
this interval the rotation frequencies ω of the RWs remain nearly constant. For larger values of R̃a
the bifurcation diagrams become more complicated and can exhibit saddle-node points (as found for
the model P1). In contrast to Ref. [32], we have been able to compute the weak branch for the model
P3 = (Pr, E) = (0.003, 3 × 10−7). The use of continuation methods helped us in this task since
with DNS very long initial transients, about 30 diffusion or 5 × 104 rotation time units, are required
before the nonlinear saturation of the solution. While steadily drifting solutions have neither been
found in liquid gallium experiments nor numerical simulations of Refs. [31,34,38], we demonstrate
that they can be found even with smaller Pr and E. The existence of very long initial transients may
make it unfeasible to detect them using experiments and require massive numerical simulations very
close to the onset.

Our results show that for the lowest E and Pr considered (the set P3) the RWs are of multicellular
type as described in Refs. [21,36] with azimuthal symmetry m0 = 12 or m0 = 11. A two-layer
structure with some vortices of the kinetic energy (K) located close to the outer sphere and others
located in the bulk of the fluid, displaying a polygonal pattern, is formed at the largest supercritical
conditions studied, R̃a = 1. The present systematic computation of multicellular RWs complements
the previous studies of Ref. [57], considering a small inner core and at E = 10−4 and Pr = 0.1, and
Ref. [35], in the case of a very thin shell (η = 0.9) at E = 10−4 and Pr = 0.003. The study of
Ref. [57] corresponds to the systematic computation of RWs of spiralling type (e.g., Ref. [18]),
and that of Ref. [35] corresponds to RWs of polar type (described in Ref. [23]). In agreement with
Refs. [35,57] RWs become unstable as a result of a supercritical Hopf bifurcation. We have found
that for the set P3 the analysis of stability of RWs is numerically challenging. This is because the
eigenvalues are clustered near the unit circle, which degrades the convergence of eigenvalue solver,
and means that multiple bifurcations take place near the onset (as in Ref. [35]). The analysis of the
structure and symmetry m1 of the eigenfunctions (Floquet modes) allows us to predict MRWs with
azimuthal symmetry m2 = 1.

The DNS presented here, starting from an unstable RW initial condition, exhibit strongly
oscillatory and very long initial transients, about 30 diffusion or 5 × 104 rotation time units,
before a weakly oscillatory quasiperiodic flow (MRW) is statistically saturated. This is because
the perturbations grow very slowly in the unstable directions, given by Floquet modes, which
are predicted by the stability analysis of RWs. Close to the bifurcation point the azimuthal wave
number structure is inherited from the leading Floquet mode. The azimuthal wave number and
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time dependence of the long initial transients and the saturated solution is significantly different.
Initial transients are characterized by strong time dependence and a large energy component of
low azimuthal wave numbers m < 6, whereas the kinetic energy spectra of the saturated solution
are nearly constant in time and have significant peaks only for a reduced set of modes, including
m = 1. In addition, the time series of the temperature perturbation, at several points inside the
sphere, reveal two very different timescales, slow and fast, associated to the interior (r < ro/5) or
the exterior (r > ro/2) of the sphere, respectively. The former is characteristic of low wave numbers
(e.g., m = 1) whereas the latter is characteristic of moderate and large wave numbers (e.g., m = 11).

As in Ref. [36] our DNS exhibit triadic resonances among different equatorially symmetric
modes characterized by the spherical harmonic degree l and order m, and in agreement with
Ref. [45] the solutions are MRWs. A characteristic block pattern with low, moderate, and large
resonant wave numbers described by small, moderate, and large frequencies, respectively, is found
in the frequency spectra. For the MRW closest to the bifurcation point these modes are m � 5,
6 � m � 16, and m � 17. The modes having largest peaks in the frequency spectrum are the
nonvanishing components of the Floquet mode, m = 1 and m = 11k ± 1, k ∈ Z, which includes
the m = 11 mode of the parent RW.

The flow and temperature perturbation contour plots of the individual modes m = 1, 10, 21 form-
ing the leading Floquet eigenfunction are almost the same as the contour plots of the m = 1, 10, 21
modes forming the resonant flow (MRW). For the slow modes (such as m = 1) convective motions
mainly occur close to the outer sphere (wall modes), on a narrow band around the equator. However,
weak regular and polygonal structures (oval, square, hexagon) develop in the bulk of the fluid
(interior modes) so the flow topology is of bimodal nature. The flow patterns of the m = 10 moderate
mode, although still attached to the outer sphere (wall modes) and with a maximum amplitude
vortex at the equator, spiral to high latitudes and to the bulk of the fluid. In contrast, for the large
mode m = 21 the single vortex splits in two which are located symmetrically above and below
the equator, a little away from the outer boundary but without going deep into the interior. Either
moderate (m = 10) or large (m = 21) modes have single mode structure since in this case there is
no interior differentiated pattern.

While the patterns of RWs can be described by a single mode predicted by the linear stability
analysis of the onset of convection, the patterns of MRWs can be multimodal and can be predicted
by the stability analysis of RWs (periodic flows) and the computation of the leading Floquet modes.
According to Ref. [36] (see Introduction) the mechanism giving rise to the multimodal nature, i.e., to
flows from which dominant modes with different spatial localization can be identified ([31,34,38]),
in the case of rotating convection at low Pr still remains a puzzle. Our study demonstrates that
in this regime multimodal convection is generated by a Hopf bifurcaton of RWs (weak branch).
Moreover, we have found that the specific spatial structure of the different spatially localized modes
is determined by the stability analysis (Floquet modes) of the RWs.
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