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Single-fluid-phase porous medium systems are typically modeled at an averaged length
scale termed the macroscale, and Darcy’s law is typically relied upon as an approximation
of the momentum equation under Stokes flow conditions. Standard approaches for model-
ing macroscale single-fluid-phase flow of generalized Newtonian fluids (GNFs) extend the
standard Newtonian model based upon Darcy’s law using an effective viscosity and assum-
ing that the intrinsic permeability is invariant with respect to fluid properties. This approach
results in a need to perform an experiment for a non-Newtonian fluid, the introduction of
effective parameters that are not tied to known microscale physics, and uncertainty regard-
ing the dependencies of the fitted empirical parameter on system properties. We use the
thermodynamically constrained averaging theory (TCAT) to examine the formulation and
closure of a macroscale model for GNF flow that is consistent with microscale conservation
principles and the second law of thermodynamics. A direct connection between microscale
and macroscale quantities is used to formulate an expression for interphase momentum
transfer for GNF flow in porous medium systems. Darcy’s law is shown to approximate
momentum transfer from the fluid phase to the solid phase. Momentum transfer is found
to depend on the viscosity at the solid surface, which is only invariant for Newtonian
flow. TCAT is used to derive a macroscale equation for the hydraulic resistance based
on accessible fluid and solid properties. This hydraulic resistance may be used in the same
way that hydraulic conductivity is typically used to model flow at the macroscale, and it
includes parameters that can be calculated a priori, without the need to carry out microscale
simulations, or experiments, for any GNF. The TCAT approach is validated for four model
isotropic and anisotropic media and five Cross-model fluids. The traditional shift factor and
effective viscosity are related to the newly derived TCAT model, shedding new light on this
common empirical approach. The results from this work form a basis for the modeling of
GNF flow in porous medium systems under Stokes flow, which is predictive given the
rheological properties of the GNF and the resistance observed for Newtonian flow.

DOI: 10.1103/PhysRevFluids.6.123302

I. INTRODUCTION

Non-Newtonian fluids do not follow Newton’s law of viscosity, which is written in scalar form
as

τw = μ̂wγ̇w, (1)

where τw is the shear stress, μ̂w is the dynamic viscosity of the fluid that is independent of γ̇w, γ̇w is
the shear rate, subscripts indicate that this expression is written at the microscale, and w is a phase
index. The viscosity of non-Newtonian fluids may be dependent on the shear rate, time history of
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the shear rate, and may exhibit time-dependence, as well as being impacted by typical temperature
and pressure effects [1–4]. Generalized Newtonian fluids (GNFs) have a dynamic viscosity that
is dependent on the shear rate of the fluid, but shear history and rate effects are assumed to be
unimportant [1,4].

Several different rheological models have been used to describe GNFs, including power-law
models, the Ellis model, the Carreau model, and the Cross model [1–5]. Power-law models are
often used due to their relative simplicity, but they have been found to be ineffective for most fluids
[6–8]. Four parameter models, such as the Cross and Carreau models, have been found to describe
many fluids of interest [1,4,5,9–11]. The Cross model is a common model used to describe GNFs,
and it may be written as

μ̂w(γ̇ ) = μ̂w∞ + μ̂w0 − μ̂w∞
1 + (mγ̇w )n

, (2)

where μ̂w∞ is the infinite shear dynamic viscosity, μ̂w0 is the zero shear limit of dynamic viscosity,
m is a measure of intermolecular attractive forces, and n is a non-Newtonian behavior index [5].
Equation (2) illustrates the nonlinear relationship between the dynamic viscosity and the shear rate
as well as asymptotic behavior reducing to Newtonian flow at both low and high shear rates. It may
be observed, as is typical of GNFs in general, that history effects and dynamic effects are absent
from the formulation [9].

There are many processes that have been modeled as GNFs flowing in porous medium systems,
including biofluidic [12–16], geophysical [17–24], and subsurface processes such as hydraulic
fracturing and enhanced oil recovery [10,25–31]. The complexity of GNF mechanics has led to
a reliance on phenomenological approaches that extend approaches for modeling Newtonian fluid
flow through porous media to GNFs [1,4,11,32–36].

A complication that exists in modeling GNF flow through porous media is the lack of a clear,
first-principles understanding of how to represent the nonlinear rheological behavior in a macroscale
model of fluid flow through a porous medium, which has a complicated pore morphology and
topology and a distribution of shear rates that vary in space and time [37–39]. The shift-factor
approach is often used to describe empirically such flows [10,11,30,40,41]. The shift-factor ap-
proach is applied as follows: (1) an experiment for a Newtonian fluid is performed to determine
the intrinsic permeabilty, κ̂w, which is assumed constant and independent of the fluid properties;
(2) an experiment is performed for a medium of concern for the GNF composition of concern
at a representative Stokes flow rate; (3) an effective viscosity, μw

eff, is computed from the GNF
experiment by assuming that Darcy’s law applies [10,11,30,40–50]; (4) a GNF rheological model is
assumed to apply at not only the microscale but also the macroscale, allowing for the determination
of an effective shear rate, γ̇ w

eff, that corresponds to the observed μw
eff; and (5) the linear empirical

relation

γ̇ w
eff = α̂

qw√
εwκ̂w

(3)

is used to approximate γ̇ w
eff as a linear function of qw, the magnitude of the Darcy velocity, where

εw is the porosity and α̂ is the shift factor. This approach thus extends the experimental results to all
Stokes flow rates without a need to examine other flow rates.

The shift-factor approach has been developed as an empirical approach without theoretical
understanding of the link between the microscale and the macroscale [10,11,45,46,51]. There is
confusion as to what μw

eff represents, with some suggesting that it represents the dynamic viscosity
at the fluid-solid interface [40,42], that it is the average dynamic viscosity throughout the fluid
[3,30,49], that it is a “fictitious” dynamic viscosity [10,41,45], or that it is a “macroscopic” dynamic
viscosity [46]. A desirable, but so far unavailable, alternative to the shift factor approach is a method
that is theoretically based and relates the microscale rheology to the observed macroscale behavior,
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TABLE I. Fluid parameters used in cases (1) through (4).

Parameter Fluid 1 Fluid 2 Fluid 3 Fluid 4 Fluid 5

μ̂0 (Pa s) 1.35×10−1 1.35×100 1.35×10−1 1.35×10−1 1.35×10−1

μ̂∞ (Pa s) 3.04×10−4 3.04×10−4 3.04×10−4 3.04×10−4 3.04×10−4

m (s) 4.48×10−2 4.48×10−2 4.48×100 4.48×10−2 4.48×104

n 6.85×10−1 6.85×10−1 6.85×10−1 3.00×10−1 6.85×10−1

ρw (kg/m3) 1.00×103 1.00×103 1.00×103 1.00×103 1.00×103

does not include ill-defined effective quantities, is predictive in nature by not requiring porous
medium GNF flow experiments, and applies not only to isotropic media but also anisotropic media.

The terminology of length scales is inconsistent in the porous medium physics literature. To
set the terminology used herein, we will rely on two scales, the microscale, or pore scale, and the
macroscale, or porous medium continuum scale. The microscale is a scale at which the laws of
continuum mechanics are applicable and the distribution of all phases is resolved in space and time.
The macroscale is a scale where a point represents a centroid of an averaging region containing all
phases in the vicinity of the point. The macroscale is the scale at which most field applications must
be described because of computational limitations. There have been several successful attempts to
derive the equations of flow by averaging to the macroscale from the microscale [52–57], and even
some attempts when the fluid is non-Newtonian [45,46,58]. However, it is usually the case that
the hydraulic conductivity of the system is what is derived by averaging, and it is assumed that
this hydraulic conductivity may be decomposed into an intrinsic permeability and a fluid viscosity
after averaging. Even in the case where it is acknowledged that a non-Newtonian viscosity may
enter averaging [53], or that the actual permeability may be different than the intrinsic permeability
[45,46], a precise link between microscale and macroscale properties of interest has not been
conclusively established for GNF flow.

The thermodynamically constrained averaging theory (TCAT) is a model building approach
that can be used to derive macroscale models based upon microscale principles [57,59,60]. TCAT
has been used to derive model hierarchies for a wide variety of systems including single-fluid
porous medium systems [59–63], two-fluid porous medium systems [60,64–66], sediment transport
in surface waters [67], and tumor growth [68–70]. Advantages of utilizing the TCAT approach
include the ability to use previously derived results to develop new macroscale models, and that
all macroscale variables are explicitly defined in terms of averaged microscale variables. TCAT
methods have not been used to formulate macroscale models for any type of non-Newtonian fluid
flow in porous medium systems.

The goal of this paper is to develop and evaluate a new macroscale theory for Stokes flow of
GNFs in a single-fluid porous medium that is consistent with microscale conservation and ther-
modynamic principles. The specific objectives of this work are: (1) to adapt an existing macroscale
model hierarchy for single-fluid-phase flow to GNF flow; (2) to derive a macroscale model of Stokes
flow for a commonly encountered class of GNFs; (3) to evaluate and validate the resultant model by
comparison to ideal systems; and (4) to use the new model to advance understanding of traditional
empirical approaches.

II. METHODS

Microscale simulations of GNF flow were carried out to validate the macroscale theory derived
below. Four different media were simulated: a set of slits; a set of spheres arranged in a body-
centered cubic (BCC) arrangement; polydisperse randomly packed spheres; and a body-centered
ellipsoid (BCE) arrangement in which the principal directions of the ellipsoids were aligned with
the unit vectors defining the Cartesian coordinate system. The Cross model rheological parameters
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FIG. 1. Geometries used include: (a) a set of parallel slits; (b) a BCC array of spheres with the blue box
representing the domain; (c) a polydisperse, randomly packed set of spheres; and (d) a BCE array of ellipsoids
with the blue box representing the domain.

of the GNFs used for simulation are listed in Table I. The media are each described below, followed
by the methods used for microscale simulation of the flow.

A representation of the four different media is shown in Fig. 1. Parallel slits were selected as a
case for which an analytical solution exists. The BCC medium was selected as a model isotropic
unit cell. The packed set of spheres represents a stochastic medium with a more complicated pore
morphology and topology than the BCC case. The ellipsoid medium was selected as a model
anisotropic unit cell.

For the parallel slit medium, three slits were arranged as shown in Fig. 1(a) with identical
Dirichlet pressure conditions set at the inlet and outlet face for each slit and medium parameters
given in Table II. The inlet of the medium was the face shown coming out of the page in Fig. 1(a),
while the outlet was opposite of the inlet face.

The sphere centers of the BCC medium were located at the vertices of the cubic domain, with
one sphere center located at the center of the domain, and the radii of all spheres were identical.
The BCC medium was generated with periodic boundaries in all dimensions. Table III provides

TABLE II. Parallel slit domain description.

Parameter Slit 1 Slit 2 Slit 3

Half-height B (m) 5.0×10−4 1.0×10−3 1.5×10−3

Length (m) 1.0×10−2 1.0×10−2 1.0×10−2

Width (m) 4.0×10−3 4.0×10−3 4.0×10−3

Porosity ε 1.0×100 1.0×100 1.0×100
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TABLE III. BCC and cubic packed sphere domain description.

Parameter BCC Packed Spheres

Number of Spheres 2 100
Domain Length (m) 1.00 × 10−3 1.00 × 10−3

Porosity (m3/m3) 5.82 × 10−1 3.94 × 10−1

Mean Radius (m) 3.68 × 10−4 8.29 × 10−5

Log Normal Radius Variance 0.00 × 100 4.00 × 10−1

Number of Background Cells 2003 4003

additional details for the BCC system. Flow through the BCC medium was driven by an imposed
body force on the fluid phase.

A standard method was used to generate a random distribution of nonoverlapping spheres with
log-normally distributed radii [71]. The log-normal variance was selected to be large enough to
provide a range of radii and hence a more complicated pore morphology and topology than the
BCC medium. Additionally, this medium was generated to investigate a system that has a variety
of significant length scales, with the largest sphere radius being 2.7 × 10−4, and the smallest being
1.7 × 10−5. The packed spheres were generated with fully periodic boundaries. System parameters
for the random sphere pack case are detailed in Table III. Flow through this medium was driven by
an imposed body force, with the boundary conditions in all dimensions being periodic.

A set of identical ellipsoids was arranged to yield a simple, anisotropic unit cell. The ellipsoid
centers of the BCE medium were located at the vertices of the domain with one ellipsoid center
located at the center of the domain. An STL file of the medium was generated using the open-
source 3D parametric modeler FreeCAD [72]. The BCE medium was generated with fully periodic
boundaries. The implicit equation of an ellipsoid is

x2

a2
+ y2

b2
+ z2

c2
= 1, (4)

where a, b, and c are scaling factors for the principal semiaxes of the ellipsoid that were aligned with
the Cartesian coordinate system. Details for the BCE system are given in Table IV. Flow through
the BCE medium was driven by an imposed body force on the fluid phase.

The flow rate through the parallel slits was calculated for each individual slit using an analytical
solution derived for Cross model fluids [9]. The microscale shear rate and the dynamic viscosity
were calculated within each slit using the Cross model and the known shear stress [1,9].

Microscale simulations for GNF flow through the BCC, packed sphere, and BCE cases were
performed using the simpleFOAM solution package within OpenFOAM [73,74], while microscale
averaging to the macroscale was carried out using Paraview [75]. SimpleFOAM solves the incom-
pressible mass and momentum balance equations

∇ · vw = 0, (5)

∇ · (vwvw ) − ∇ · τw = −∇pw + S, (6)

TABLE IV. BCE system description.

Parameter x y z

Domain Length (m) 1.00 × 10−3 1.00 × 10−3 1.50 × 10−3

Scaling Factors (a, b, c) (m) 5.00 × 10−4 2.50 × 10−4 4.00 × 10−4

Number of Background Cells 200 200 300
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where vw is velocity, τw is the viscous stress tensor, pw is the microscale fluid pressure, and S is a
momentum source term. The viscous stress tensor for an incompressible GNF is

τw = 2μ̂wdw, (7)

where dw is the rate of strain tensor defined as

dw = 1
2 [∇vw + (∇vw )T] . (8)

The shear rate is calculated by

γ̇w =
√

2dw:dw . (9)

Flow was driven by imposing a body force S. For body-force driven flow all boundaries were
periodic.

Microscale meshing of each of the systems was carried out using built in utilities in OpenFOAM
[74]. The BCC, packed spheres, and BCE cases were all meshed using near-solid refinement, which
has been found to be useful in other porous medium studies [76]. In all cases, the size of the
mesh was selected such that computational error would be insignificant compared to the orders
of magnitude of changes exhibited for the resistance to flow exhibited by GNFs flowing through
the media considered over the range of velocities examined. Simulations were run using meshes of
increasing refinement to determine an adequate mesh size, with successive meshes doubling in size
in each dimension. Adequate refinement was determined when the relative difference between the
flow resistance in successive levels of refinement was less than 1%. This implies that the numerical
results for flow resistance are accurate to on the order of a couple percent in a relative error sense.
The number of background cells used to mesh each system is listed in Tables III and IV.

III. THEORY

A. Framework

TCAT has been used to formulate a macroscale model hierarchy for single-fluid-phase flow
through a porous medium [59,60]. This general model hierarchy can be used to formulate closed
models of varying sophistication for a wide range of systems, including nonisothermal systems,
systems with complex solid behavior, both Stokes and turbulent flows, and both Newtonian and
GNF flows. While the framework is in place for the development of such models, work to date has
considered only relatively simple systems consisting of Stokes flow of Newtonian fluids through
systems with simple solid properties.

The framework consists of a simplified entropy inequality (SEI) that relates the sum of fluxes
and forces for dissipative processes to the entropy production rate of the system, and a full set of
macroscale conservation of mass, momentum, and energy equations. The formulation also includes
precise descriptions of all macroscale variables in terms of averages of microscale variables,
including expressions for the inter-entity exchange of conserved quantities. This explicit connection
between the microscale and the macroscale provides a means to evaluate model approximations and
to use averaged microscale simulation, or experimental, results to evaluate and validate a TCAT
model. TCAT models are guided by closure approximations that are consistent with the second law
of thermodynamics.

We use this framework to formulate a model for GNF flow of a single fluid through porous
media. We will apply the following secondary restrictions to the general SEI [60]: (1) the system
is isothermal; (2) the chemical composition of each entity is constant in space and time; (3) mass
transfer does not occur between phases; (4) the interface between the fluid and solid is massless;
(5) the interfacial tension between phases is constant; (6) flow is in the Stokes regime such that
inertial terms in the momentum equation are insignificant; (7) the solid phase is incompressible,
immobile, and has a constant orientation in space and time; (8) the porosity and specific interfacial
area between the phases are constant in space and time; (9) the fluids are GNFs; and (10) the fluid
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density is constant throughout the system at the microscale and macroscale. These conditions can
be used to deduce a specific model instance from an available general model hierarchy [59,60].
The use of TCAT is a departure from extant phenomenological approaches that posit model forms
directly at the macroscale [45,46]. In the sections that follow, we define the averaging process used,
the conservation equations to be closed, the entropy inequality used to ensure consistency with the
second law of thermodynamics, and the closure relations used to produce a closed model.

B. Averaging

Because the TCAT model includes averaged microscale quantities computed in different ways,
some definitions are needed for clarity. For some quantity f that is averaged over the domain �β ,
normalized by an integral over the domain �γ , and weighted by W , the averaging operator is defined
as [60,77]

〈 f 〉�β,�γ ,W =
∫
�β

W f dr∫
�γ

W dr
. (10)

Various instances of Eq. (10) occur routinely, making it convenient to define a set of commonly
occurring averaged forms. One common average is

f β
α = 〈 fα〉�β,�β

, (11)

where the subscript on f denotes the microscale entity (phase, or interface), the superscript denotes
the entity over which averaging is performed, which is typically of one dimension lower than �α ,
and the absence of W implies a unit value.

An intrinsic average is defined as

f α = 〈 fα〉�α,�α
, (12)

and a density-weighted average is defined as

f α = 〈 fα〉�α,�α,ρα
, (13)

where ρα is a mass density.
During averaging, some variables arise that do not fit one of the above special forms. Such

macroscale averages are denoted with a double overbar and each occurrence is explicitly defined. A
specific entity measure is such a quantity, and it is defined as

εα = 〈1〉�α,�, (14)

where � is an averaging region that contains all entities.

C. Conservation equations

Mechanistic models of flow through porous media rely upon a set of conservation equations,
and a set of closure relations to render the equations solvable. The relevant conservation equations
include a conservation of mass equation for the fluid phase, which can be written after dropping the
mass exchange term as specified in the secondary restrictions as [[60], Eq. (6.73)]

∂ (εwρw )

∂t
+ ∇ · (εwρwvw ) = 0, (15)

and similarly a restricted conservation of momentum equation for the fluid phase is [[60], Eq. (6.92)]

∂ (εwρwvw )

∂t
+ ∇ · (εwρwvwvw ) − ∇ · (εwtw ) − εwρwgw −

s→w

T = 0, (16)
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where t is time, ρw is the macroscale fluid density, vw is the density-weighted macroscale velocity,

tw is the stress tensor, gw is the gravitational acceleration vector oriented positive in the negative z

direction,
s→w

T is the rate of momentum density transfer from the solid phase to the fluid phase, s
denotes the solid phase, and superscripts denote averaged macroscale variables.

D. Simplified entropy inequality and closure relations

Producing a solvable model requires a set of closure approximations for tw and
s→w

T , which can
be deduced using an available simplified entropy inequality (SEI) [[60], Eq. (9.62)]. The standard
TCAT approach for deriving an SEI is to derive a form for a general class of model to enable the
use of this expression for any subset of the class of model considered; other approaches are possible
[78]. Because general SEI expressions for the entropy production rate density are long, complicated
equations, a useful strategy is to consider simple subsets of the most general case. Such a restricted
SEI can be derived by applying the secondary restrictions noted in §III A to the general SEI yielding

1

θ
(εwtw + εw pwI):dw + 1

θ
[εw∇pw − εwρw∇(μw + ψw ) − εwρwgw +

w→s
T ] · vw =  � 0, (17)

where θ is the temperature, I is the identity tensor, pw is the macroscale fluid pressure, dw is the
macroscale rate of strain tensor defined as

dw = 1
2 [∇vw + (∇vw )T], (18)

μw is the chemical potential, ψw is the gravitational potential, and  is the entropy production rate
density of the system.

Equation (17) is in flux-force form, and it provides permissibility constraints for closure relations.
The specific form of closure relations is not unique, but any valid condition must not violate Eq. (17).
All members of the set of fluxes are unique and all members of the set of forces are also unique.
These properties allow fluxes to be considered one at a time. Closure relations may be posited
as either conjugate flux-force or cross-coupled flux-forces in form [60]. The usual approach is
to generate the simplest possible form of the closure relations that yields a useful model for the
application of concern.

The flux in the first term on the left-hand side of Eq. (17) involves the stress tensor and the fluid
pressure, and the conjugate force is the rate of strain tensor. Both the flux and the force vanish at least
at equilibrium. One possible closure relation consistent with the entropy inequality is a zero-order
closure, such that

tw = −pwI . (19)

This closure approximation is a statement that the flow is inviscid at the macroscale. This is
reasonable if momentum transfer between the fluid and solid phase dominates over the interaction
of the fluid with a boundary of the system. Given the typically large interfacial area between the
fluid and solid phase compared to the interfacial area between the fluid and the boundary of most
domains of interest, this closure approximation is not only simple but also well founded [60].

The second term on the left-hand side of Eq. (17) describes the entropy production due to the flow
of the fluid through the medium, and its interaction with the solid phase. A simple closure relation
consistent with the second law of thermodynamics and a known production of entropy resulting
from flow is a first-order conjugate flux-force closure of the form

εw∇pw − εwρw∇(μw + ψw ) − εwρwgw +
w→s
T = R̂

w · vw, (20)

where R̂
w

is a second-rank positive definite resistance tensor, where quantities with hats denote
material parameters. This form ensures that any flow generates entropy. The axiom of objectivity
in continuum mechanics requires all velocities to be relative velocities, but in this case the relative
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velocity is assumed to be the solid-phase velocity, which is zero in the reference coordinate system
as a result of the secondary restrictions.

Equation (20) contains a chemical potential, gravitational potential, and momentum transfer that
must be manipulated to produce a solvable model. Each of these terms will need to be calculated
from more readily available quantities. Additionally, Eq. (20) does not include viscosity, so it is not
yet apparent how the viscous effects of GNFs will impact the resistance.

The chemical potential may be calculated using the macroscale Gibbs-Duhem equation for a
steady-state, isothermal system [[60], Eq. (7.33)]:

−εw∇pw + εwρw∇μw − 〈∇(pw − pw )〉�w,� + 〈ρw∇(μw − μw )〉�w,� = 0, (21)

which as a result of secondary restrictions (8) and (10) may be written as

−εw∇pw + εwρw∇μw = 0, (22)

and the gravitational potential may be calculated by averaging [[60], Eq. (2.50)], using the gradient
theorem from [[60], Eq. (B.13)], which gives

εwρw∇ψw = −εwρwgw − εws〈ρwψwnw〉�ws,�ws . (23)

The momentum transfer is defined in-terms of averaged microscale quantities by [[60], Eq.
(6.83)]

w→s
T = −〈[tw + ρw(vw − vws

w )(vws − vw )] · nw〉�ws,�, (24)

where nw is the outward normal of the w phase, secondary restrictions (4), (5), (7), and (8) have
lead to a jump condition for momentum transfer from the fluid to the solid phase, and ws indicates
the fluid-solid interface. The velocity product term is related to mass transfer, which does not occur
in this system, allowing Eq. (24) to be written as

w→s
T = −〈tw · nw〉�ws,� . (25)

The microscale stress tensor for an isotropic, incompressible GNF is [60]

tw = −pwI + 2μ̂wdw . (26)

Substituting Eq. (26) into Eq. (25) gives

w→s
T = εws〈pwnw〉�ws,�ws − εws〈2μ̂wdw · nw〉�ws,�ws . (27)

Substituting Eqs. (22), (23), and (27) into Eq. (20) and rearranging yields

εws〈ρwψwnw〉�ws,�ws + εws〈pwnw〉�ws,�ws − εws〈2μ̂wdw · nw〉�ws,�ws = R̂
w · vw, (28)

which shows the role of dynamic viscosity in the calculation of resistance, and may be used to
introduce the GNF rheological model.

E. Darcy’s Law

It has been shown that Darcy’s law may be written as [59,60,79,80]

qw = − K̂
w

g
· ∇(μw + ψw ), (29)

where K̂
w

is a symmetric, second-rank, positive semidefinite hydraulic conductivity tensor, and g
is the gravitational acceleration constant. We wish to connect Eq. (29) to results derived using the
above TCAT analysis in the Newtonian fluid limit.
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Applying secondary restriction (6) to Eq. (16) and substituting Eq. (19) for the stress tensor yields

−∇(εw pw ) + εwρwgw =
w→s
T , (30)

which may be combined with Eq. (20) giving

−∇(εw pw ) + εw∇pw − εwρw∇(μw + ψw ) = R̂
w · vw. (31)

substituting Eqs. (22) and (23) into Eq. (31) and applying secondary restriction (8) yields

−εw∇pw + εwρwgw + εws〈ρwψwnw〉�ws,�ws = R̂
w · vw. (32)

Multiplying through by εw, recalling that

qw = εwvw (33)

yields

qw = −εw
2
(R̂

w
)−1 ·

(
∇pw − ρwgw − εws

εw
〈ρwψwnw〉�ws,�ws

)
. (34)

At equilibrium, it follows that

0 = ∇pw − ρwgw − εws

εw
〈ρwψwnw〉�ws,�ws . (35)

It has previously been proven that at equilibrium for a similar system that [[81], Eq. (45)]

0 = ∇pw − ρwgw + εws

εw
〈(pw − pw )nw〉�ws,�ws , (36)

which as a result of secondary restriction (8) reduces to

0 = ∇pw − ρwgw + εws

εw
〈pwnw〉�ws,�ws . (37)

Equations (35) and (37) may be equated to yield a condition that holds at equilibrium

〈(ρwψw + pw )nw〉�ws,�ws = 0. (38)

The relationship between Darcy’s law and the above averaged TCAT formulation can be observed
by equating the RHS of Eqs. (29) and (34):

K̂
w

g
· ∇(μw + ψw ) = εw

2
(R̂

w
)−1 ·

(
∇pw − ρwgw − εws

εw
〈ρwψwnw〉�ws,�ws

)
. (39)

Hydraulic conductivity may be written for Newtonian fluids in terms of intrinsic permeability and
viscosity as

K̂
w = k̂

w
ρwg

μ̂w
, (40)

where k̂
w

is the intrinsic permeability [82,83]. Plugging the above, Eqs. (22) and (23) into Eq. (39)
gives

k̂
w

μ̂w
= εw

2
(R̂

w
)−1. (41)

With Eq. (41), it is possible to convert between the resistance derived using TCAT and intrinsic
permeability for the Newtonian limit.
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FIG. 2. Parallel slit flow: (a) magnitudes of relevant terms in Eq. (28); and (b) comparison of normalized
terms.

Equation (29) formulates Darcy’s law in terms of gravitational and chemical potential, which is
more precise than the traditional mathematical representations of Darcy’s law, which are written in
terms of hydraulic head [82]. Equation (41) may be used to relate Darcy’s law, within the TCAT
framework, to hydraulic resistance. Hydraulic resistance is a linear scaling factor that relates the
force-per-volume applied by the fluid to the solid phase to the fluid-phase velocity, as may be
observed from Eq. (28).

IV. GENERALIZED NEWTONIAN FLUID RESISTANCE

For the Newtonian fluid case with conditions specified in the secondary restrictions, R̂
w

is
constant and independent of flow conditions. This condition is not the case for GNF’s, even for
the constant porosity, Stokes flow case considered herein. The focus in the literature on shift-factor
approaches indicates that a function for resistance exists that depends upon the rheological form
of the GNF [10,11,30,40,41]; however, these empirical approaches have not been connected to the
microscale physics of flow through a porous medium. The purpose of this section is to investigate
GNF flow through two different porous media using a microscale computational approach and use
the insights gained from these computational experiments to develop a general closure approxima-
tion for macroscale models in the Stokes flow limit. More specifically, flow of Fluid 3 summarized
in Table I was simulated through the parallel slits and the BCC media described in Sec. II. This fluid
was selected because the entirety of Cross model behavior occurs before transition effects away
from Stokes flow become significant. Flow in the parallel slits case was purely pressure driven,
while in the BCC case flow was purely body-force driven.

A. Resistance data

The parallel slits geometry was selected because an analytical solution for Cross model flow
is available, and because the first two terms in Eq. (28) are negligible for this case. Using Ein-
stein notation and defining the viscous stress tensor as τwi j = 2μ̂wdwi j , the analytical results for
〈τwi jnw j〉�ws,�ws

, μ̂ws
w , γ̇ ws

w , R̂w
ii , and R̂w

i jv
w
j are shown in Fig. 2(a) for a set of flow simulations. In

Fig. 2(b) 〈τwi jnw j〉�ws,�ws
is plotted as a function of R̂w

i jv
w
j , with a linear trendline incorporated

into the figure. It is apparent from Fig. 2(a) that μ̂ws
w is of a similar shape as R̂w

ii and that γ̇ ws
w is
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FIG. 3. BCC flow: (a) magnitudes of relevant terms in Eq. (28); and (b) comparison of normalized terms.

log-linearly related to qw
i for this case. Figure 2(b) shows that 〈τwi jnw j〉�ws,�ws

is a linear function
of R̂w

ii v
w
i .

The BCC system geometry was selected because it is a relatively simple geometry for which
the first two terms in Eq. (28) are significant. The same quantities plotted in Fig. 2(a) are shown
for the BCC case in Fig. 3(a) as a function of vw

i with gw
i , 〈ρwψwnwi〉�ws,�ws

and 〈pwnwi〉�ws,�ws

also included. Figure 3(b) shows 〈τwi jnw j〉�ws,�ws
as a function of R̂w

i jv
w
j with a linear trendline, as

in the slit case. The data for the BCC case shows similar characteristics to the slits case. The data
presented here will inform our model formulation in the next section.

B. Resistance analysis

Based on the data presented above for a Cross model fluid, we posit that log R̂w
ii will depend upon

log qw
i , and that Newtonian behavior will be observed in both the limit of relatively small and large

qw, albeit with different μ̂w in each limit that corresponds to μ̂0 and μ̂∞, respectively. The upper
limit on qw

i must still be within the Stokes regime, although this limit may not exist for some Cross
model parameter choices. We are concerned with the case in which the upper limit does exist. The
resistance limits will be defined as R̂

w

0 and R̂
w

∞, where the subscripts 0 and ∞ correspond to the
lower and upper dynamic viscosity limit conditions, respectively. The Newtonian resistance limits
may be connected to Darcy’s law using Eq. (39).

It is clear that a transition must exist in R̂
w

between the two Newtonian limits. Based on Figs. 2(b)
and 3(b), we posit that this transition is of a similar form to the Cross model, which can be written as

R̂w
ii = R̂w

∞ii + R̂w
0ii − R̂w

∞ii

1 + (
Miqw

i

)n , (42)

where Mi is a constant that is related to m in the Cross model.
It can be observed from Figs. 2(b) and 3(b) that the inflection point of the log of the resistance

occurs at a similar flow rate as the inflection point of the log of 〈2μ̂wdw · nw〉�ws,�ws
, a value that

may be calculated by a macroscale analogy to the microscale Cross model. Because the nonlinear
scaling between asymptotic limits in both Eqs. (2) and (42) occurs because of the denominators, we
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can equate these two terms for the inflection point in log μ̂w and the inflection point in log R̂w
ii giving

Mi = mγ̇I

qw
Ii

, (43)

where γ̇I is the inflection point shear rate, which may be calculated directly from the Cross
model, and qw

Ii is the ith component of the inflection point Darcy velocity. If qw
Ii can be computed

analytically, then it is clear that R̂w
ii can be deduced with only knowledge of the Newtonian behavior

and the Cross model parameters without the need to carry out simulations or experiments for any
GNF fluid.

To calculate qw
I , a few assumptions must be made. First, it will be assumed that at qw

I ,

|〈2μ̂w(dwi jnw j )〉�ws,�ws | ≈ μ̂I γ̇I , (44)

where

μ̂I =
√

μ̂0μ̂∞. (45)

Similarly to the inflection point viscosity, the inflect point resistance components are

R̂w
Iii =

√
R̂w∞iiR̂w

0 ii. (46)

It is shown in Figs. 2(b) and 3(b) that

−〈2μ̂wdw · nw〉�ws,�ws = L̂
w · R̂

w · vw, (47)

where L̂
w

is some length scale. Figures 2(b) and 3(b) shows that L̂
w

is insensitive to velocity,
indicating that this scaling tensor may be calculated for a medium when a Newtonian fluid flows
through it and tabulated for that medium similarly to the intrinsic permeability and resistance. The
above assumption implies that a similar linear relationship could also be posed for the sum of the
first two terms in Eq. (28); however, linear relationships for each of those individual terms can be
shown to only arise in specific circumstances.

Using Eq. (47), as well as the assumption present in Eq. (44), to calculate qw
I gives the

components

qw
i = εw

√
μ̂0μ̂∞γ̇I

L̂w
ii

√
R̂w

0 iiR̂w∞ii

. (48)

Substituting the above into Eq. (43) gives

Mi =
mL̂w

ii

√
R̂w

0 iiR̂w∞ii

εw
√

μ̂0μ̂∞
. (49)

With the above calculations, all parameters needed to predict GNF can be computed from a
Newtonian flow experiment and the Cross model rheological parameters by calculating:

(i) the velocity and pressure field for a known driving force made up of ∇pw and/or gw,
(ii) averaged values for 〈ρwψwnw〉�ws,�ws

and 〈pwnw〉�ws,�ws
,

(iii) scaling factor, L̂, using Eq. (47),
(iv) R̂

w
for the Newtonian flow using Eq. (32),

(v) R̂
w

0 and R̂
w

∞ using the Newtonian R̂
w

and scaling by viscosity, and
(vi) Mi using Eq. (49) with L̂ calculated above, and R̂

w

I from Eq. (46).
With the parameters determined a priori, the resistance for GNF fluids can be computed without

the need to carry out any additional experiments.
In a case where only macroscale data is available, such as in laboratory experiments, the

direct computation of averaged microscale quantities would not be accessible. Two approaches are
possible for this case. First, flow data for one GNF could be used to determine qIi corresponding to
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R̂w
Iii and L̂

w
could be computed using Eqs. (44) and (47). While this would require experimental data

from flow of one GNF, this L̂
w

may be tabulated and used to predict flow of other GNFs, similarly
to how the intrinsic permeability is used to predict flow of Newtonian fluids. Second, GNF flow data
would not be required if L̂

w
was known. Since this length scale is related to the pore morphology

and topology, estimations of this tensor could be derived based upon measures of the pore structure,
such as the Sauter mean diameter, the statistics of the grain size distribution, the porosity, the specific
interfacial area of the solid phase, and perhaps other accessible measures. Because these length scale
correction terms are higher order terms, it is expected that a reasonable approximation of L̂

w
would

be sufficient.

C. TCAT GNF approximation summary

The resistance tensor, which is regularly used in macroscale modeling, was shown to be related to
the average shear stress of the fluid at the ws-interface using TCAT. A method to use the macroscale
formulation was then used to show how to derive an a priori resistance function for Cross model
fluids.

Several assumptions have been made during the development of this theory that are in addition
to the secondary restrictions described in Sec. III A, and which may be summarized:

(i) γ̇w ≈ 2|dw · nw|, as in Eq. (44);
(ii) R̂w

ii is a function of qw
i with a similar form to whichever GNF model is of interest, as in

Eq. (42);
(iii) the log of R̂w

ii has an inflection point that occurs at the same flow rate as the log of μ̂w;
(iv) the pressure and gravitational potential acting on the ws-interface, from Eq. (28), is linearly

proportional to the average shear-stress at the ws-interface, as in Eq. (47); and
(v) the anisotropic case may be approximated using R̂w

ii and qw
i .

Each of these assumptions may be investigated either individually or collectively using mi-
croscale simulations. Results and analysis from the application of the derived formulation to a
variety of test cases is considered in the following section.

V. MODEL EVALUATION AND VALIDATION

The validation of the theory derived here was performed using five different GNFs (Table I) and
four different media: (1) three parallel slits; (2) flow through a periodic BCC unit cell of spheres;
(3) flow in a system of polydisperse packed spheres; and (4) flow through a periodic BCE unit
cell (Tables II–IV). OpenFOAM simulations of GNF flow through each domain were carried out as
described in Sec. II, with microscale data being averaged using Paraview and averaging utilities built
into OpenFOAM. Flow rates were selected such that flow was within the Stokes regime. R̂

w
was

calculated using Eq. (28) with the averaged microscale data output from simulations. R̂
w

and L̂ were
calculated for a Newtonian fluid case using Eqs. (28) and (47), respectively. A predicted R̂

w
was

calculated using Eq. (42) with the a priori parameters described above, including in Eq. (49). The
predicted R̂

w
was then compared to the values observed from numerical simulation. It was assumed

that an average relative error in Rii between predicted and observed values of �2% would validate
the a priori approach, as this would be within the expected numerical error for the simulations. The
parameters calculated for each medium are included in Table V.

It is common practice to treat a porous medium either as a bundle of capillary tubes, or in some
cases as a set of parallel slits [1,9,10,82]. This is generally done because analytical solutions can
often be derived for these simple geometries, and because such systems represent simple instances
of a porous medium system. For the parallel slit medium, the pressure and potential normal averaged
terms can be neglected, providing a simple test case. This system is ideal for comparison to the a
priori model because it explicitly excludes transition or turbulent flow behavior and the solution is
analytically computed, thus any error between the predicted and observed behavior must be due to
model approximations.
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TABLE V. Parameters calculated from simulation of Newtonian flow through each domain with a dynamic
viscosity of μ̂w = 0.001 Pa s, and a density ρw = 1000 kg/m3.

Parameter Parallel Slits BCC Packed Spheres BCE

R̂
w

11 (Pa s/m2) 2 × 103 1.17×105 1.25×106 1.07 × 105

R̂
w

22 (Pa s/m2) 1.17×105 1.25×106 4.65 × 104

R̂
w

33 (Pa s/m2) 1.17×105 1.25×106 5.57 × 104

L̂11 (m) 1 × 10−3 1.89×10−4 3.61×10−5 1.70 × 10−4

L̂22 (m) 1.89×10−4 3.61×10−5 3.07 × 10−4

L̂33 (m) 1.89×10−4 3.61×10−5 3.19 × 10−4

εws (m2/m3) 1 × 103 3.41×103 1.80×104 2.43 × 103

The results of the a priori resistance relationship compared to observed results for the parallel
slits case are shown in Fig. 4(a). The average error of the predicted resistance relative to the observed
resistance was generally less than 1%, with the largest average error being 1.25% for Fluid 2.

The second case investigated was a periodically arranged BCC unit cell arrangement of a set
of spheres. Potential normal averages were expected to be nonnegligible for this case. L̂ was
calculated during each simulation to check the validity of the assumption that it was a constant
that is a characteristic of the medium. Calculation of the a priori parameters used required one
single Newtonian simulation to characterize the medium.

A comparison of the predicted and observed R̂w for the BCC medium is shown in Fig. 4(b). The
observed error was similar to that observed with the parallel slit case and consistently less than 1%.
L̂ was found to vary less than 1% with the biggest changes noted in the regions immediately before
and after the inflection point in the resistance for each fluid. The observed error in the predicted R̂

w

was similar to the numerical error in this quantity found from a grid refinement study.
A packed set of spheres was investigated to further evaluate the GNF resistance model for a more

complicated flow system than afforded by the parallel slit and BCC cases considered. Fluids 3 and 5
were simulated so that the full range of GNF behavior could be observed without significant inertial
effects. A polydisperse sphere packing was selected to investigate whether the single length scale
assumption presented in Eq. (47) still holds. While this system is not large enough to be considered
a representative elementary volume for randomly packed spheres [84], the theory should still apply.
L̂ was checked for each simulation and again was found to change less than 1%. The TCAT model is
compared to the observed resistance in Fig. 4(c). The average error was less than 2%, again within
the expected numerical error.

Ellipsoids with principal directions aligned with the directions of flow were selected so that the
resistance model could be evaluated for an anisotropic medium, which has received scant attention
for GNF flow using any approach [85–87]. Fluids 3 and 4 were simulated flowing in each of the
principal directions of the medium. Simulation of a Newtonian fluid flowing in each principal
direction was undertaken to calculate the Newtonian permeability and L̂. The results for the two
fluids may be seen in Figs. 4(d) and 4(e). The average relative error between the predicted and
observed resistances for each fluid in each dimension did not exceed 1%. Simulations of flow that
was unaligned with the principal directions of the coordinate system were undertaken by adjusting
the body force components driving flow; these results were predicted from the aligned flow analysis
with an average error that was less than 1%.

VI. DISCUSSION

The results show that the TCAT approximation to describe GNF flow through porous media
derived in Sec. III accurately models a variety of systems and GNFs. Two other approaches typically
used to model GNFs at the macroscale are idealized pore-scale models [4,30,40,46,88–92] and
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FIG. 4. Simulation results for: (a) a set of parallel slits; (b) BCC array of spheres; (c) randomly packed
sphere domain; (d) BCE array of ellipsoids for Fluid 3; and (e) BCE array of ellipsoids for Fluid 4.

the shift-factor approach coupled with Darcy’s law [10,11,30,40,41,86,93–95]. The purpose of this
section is to compare the TCAT method developed in this work with these traditional methods.

Bundle of capillary tubes and pore-network models both use idealized pore-scale geometries to
directly calculate flow [4,30,40,46,88–92], and often center on modifying the Ergun [41,46,47,92] or
Carman-Kozeny [50] equations phenomenologically to approximate GNF flow behavior. The bundle
of capillary tubes approach does not include a precise representation of the true interconnection
among pores and the actual pore structure of natural porous medium systems [4,82,83,96,97].
Pore-network models approximate the interconnection among pores, but this method still uses
an idealized approximation of real media, making it sub-optimal when modeling a typical porous
medium system [98–100]. Despite the limitations associated with idealization of the pore structure,
both the bundle of capillary tubes and pore-network models can approximate pore-scale GNF flow
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using analytical microscale solutions that can be integrated to the macroscale. For GNFs, idealized
pore-scale models are used to calculate shift factors [30,40,46,88,91,92]. Because shift factors are
still the goal of such simulations, the primary focus here will be to compare the resistance model
derived with the traditional shift-factor approach.

The shift factor, sometimes called the shape factor [30,40,46], is an empirical factor typically
implemented to approximate the GNF flow for isotropic systems [10,11,30,40,41], with limited
anisotropic applications appearing in the literature [86,93–95]. The traditional approach is to use
the shift factor to calculate an effective viscosity, which is used in Darcy’s law in place of a constant
Newtonian viscosity [10,11,30,40,41,86,93–95].

The TCAT approach advanced in this work connects microscale physics with macroscale rep-
resentations and advances an improved approach for modeling macroscale systems. The insight
gained from the TCAT formulation can be used to analyze the shift-factor approach. Using Eq. (41)
for the isotropic case, and replacing the viscosity with the effective viscosity, gives

k̂w

μ̂w
eff

= εw
2
(R̂w )−1. (50)

Rearranging Eq. (50), using Eqs. (2) and (42), and assuming that the microscale Cross model may
be written in terms of effective parameters at the macroscale gives

k̂w

εw
2

[
R̂w

∞ + R̂w
0 − R̂w

∞
1 + (M̂qw )n

]
= μ̂w

∞ + μ̂w
0 − μ̂w

∞
1 + (mγ̇ w

eff )
n
. (51)

Calculating R̂w
∞ and R̂w

0 using Eq. (41) and rearranging yields

M̂qw = mγ̇ w
eff. (52)

Substituting Eqs. (3) and (49) into Eq. (52), calculating the Newtonian limit resistances as above,
and rearranging reveals the relationship between the shift factor and the characteristic length L̂w,

α̂ = L̂w

√
εw

3

k̂w
. (53)

Equation (53) links the traditional shift factor approach to the resistance model derived here,
and may be used to determine how μ̂w

eff relates to averaged microscale quantities. This is done by
returning to Eq. (50) and calculating the resistance using Eq. (47), which in scalar form gives

k̂w

μ̂w
eff

= εw
2 L̂wvw

| − 〈2μ̂wdw · nw〉�ws,�ws |
. (54)

Converting vw to qw, calculating qw from Eq. (3), and rearranging yields

k̂w|−〈2μ̂wdw · nw〉�ws,�ws | = 1

α̂
εwL̂w

√
εw k̂wμ̂w

effγ̇
w
eff. (55)

Substituting Eq. (53) into Eq. (55) and simplifying results in

|−〈2μ̂wdw · nw〉�ws,�ws | = μ̂w
effγ̇

w
eff, (56)

which links the effective variables used in the shift-factor approach to averaged microscale
quantities.

The TCAT approach has been used to derive an approach for modeling GNF flow through
anisotropic porous media at the macroscale that can be based on only the rheological characteriza-
tion of a Cross-model fluid, the permeability of the medium for a Newtonian fluid, and an estimate
of L̂

w
. Furthermore, we have used these results to shed new light on the shift-factor approach by

relating α̂ to the new TCAT formulation and shown the averaged microscale expression that is
approximated implicitly by effective macroscale parameters.
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VII. CONCLUSIONS

A new theory that directly links the dynamic viscosity for a Cross model fluid to the hydraulic
resistance was proposed for Stokes, single-phase fluid flow in porous medium systems. The theory
showed that the average viscosity at the fluid-solid interface is a primary parameter that impacts
Stokes flow at the macroscale. The theory developed also shows that two additional forces that act
on the fluid-solid interface, which are typically neglected, may be significant when predicting the
hydraulic resistance during GNF flow. These two forces are the average normal pressure, and the
average normal gravitational potential that are acting on the fluid-solid interface.

The insights gained from averaging within the TCAT framework were used when investigating
flow of a GNF through multiple media. It was found that the viscous forces acting on the fluid-solid
interface are linearly proportional to the fluid velocity, and that this constant of proportionality can
be calculated from flow data for one fluid. The relationship between resistance and flow rate was
found to be similar to the relationship between viscosity and shear rate for Cross model fluids, and
a functional form was derived. The equations relating dynamic viscosity to resistance were used to
derive parameters for the GNF resistance approximation that may be calculated a priori using only
a Newtonian flow characterization and the rheology of the GNF.

The newly proposed model was related to the popular shift factor approach, and it was shown how
effective viscosity and shear rate may be related to averaged microscale quantities. The proposed
model is an improvement on the shift factor approach for modeling GNF flow because it does not
require flow experiments through porous media for GNF fluids, all assumptions have been clearly
identified, and it applies to both isotropic and anisotropic cases. The resistance calculated from
the proposed model was typically within 1% of the observed value on average, consistent with the
numerical error of the simulations.
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