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We employ multiple-sinusoid modulated optical tweezers to measure the frequency-
dependent rheological parameters of a linear viscoelastic fluid over five decades of
frequency in a single shot, hitherto not achieved using active microrheology alone. Thus,
we spatially modulate a trapped probe particle embedded in a fluid medium with a
combination of a square wave—which is by definition a superposition of odd sinusoidal
harmonics—and a linear superposition of multiple sinusoids at a wideband frequency
range, with complete control over the amplitude, frequency, and relative phase of the
modulating signals. For the modulating signals, we selectively excite the particle by
larger amplitudes at high frequencies where the particle response is low, thereby enabling
wideband active microrheology with large signal to noise. This mitigates the principal
issue associated with conventional active microrheology—which is low bandwidth—and
also renders our method better in terms of signal to noise, and faster compared to passive
microrheology. We determine the complex viscoelastic parameters of the fluid by extract-
ing the phase response (relative to input excitation) of the probe from the experimentally
recorded time series data of the probe displacement and employing well-known theoretical
correlations thereafter. We test the efficacy of our method by studying a variety of linear
viscoelastic media—polyacrylamide-water solution, worm-like micelles, and polyethylene
oxide—at different concentrations and find good agreement of the measured complex fluid
parameters with the known literature values.
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I. INTRODUCTION

Complex fluids are ubiquitous in nature, and are essential to life itself due to their various diverse
manifestations in biological entities, including the environments of cells themselves. In recent years,
microrheology [1–4] has proven to be an indispensable tool to the study mechanical properties of
complex fluids at microscopic lengthscales [5,6]. The technique generally employs microscopic
probe particles in fluids, and the motion of these probe particles is measured to determine the fluid
properties at different spatiotemporal scales. There are several experimental methods which are
used for microrheological measurements including atomic force microscopy [7,8], optical tweezers
[1,9,10], and free Brownian diffusers [11]. The use of optical tweezers has specifically proven to
be efficacious since they allow controlled manipulation of the probe particles inside a given fluid,
which may be extremely useful in studying the heterogeneity in a biological sample [12], tracking
the local changes in a soft material over time [13], as well as probing the interior of a cell [14].
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Microrheology of complex fluids essentially consists of the determination of the complex shear
modulus G∗(ω)[= G′(ω) + iG′′(ω)], where the real part G′(ω) of the shear modulus describes the
elastic properties (storage), while the imaginary part G′′(ω) describes the fluid damping properties
(loss). Conventionally, microrheology is performed by tracking the Brownian motion of probe
particles due to thermal (passive) motion using photodetectors, diffuse wave spectroscopy, light
scattering or video microscopy [15–19], and using the statistics of the time series of the particles’
displacement to determine the complex shear modulus G∗(ω) and viscosity η∗(ω) in the frequency
domain, or stress σ (τ ) and strain rate ε̇(τ ) for the time domain. Now, though the Brownian signal
has the components of all the frequencies embedded in the time series, the signal power falls as
1
f 2 ( f being the frequency), thus rendering passive mircorheology challenging at high frequency
regimes. As a result, very often, long data sets recorded over very long times are required to
obtain acceptable signal-to-noise ratios at high frequencies. On the other hand, the response of a
trapped probe particle can be enhanced by providing an external perturbation to it. Modulating the
position of the minimum of the trap-potential sinusoidally (equivalent to an oscillating shear) [20]
converts the resultant motion of the particle into a superposition of Brownian and active motion. This
approach leads to a much higher signal at the modulating frequency compared to the passive method,
and is therefore known as active microrheology [21]. The biggest issue with this technique is the
long times required to obtain data over a large bandwidth since, in that case, the frequency of the
perturbation needs to be varied continuously, with G∗(ω) measured for each frequency [22,23]. Any
systematic changes that occur during that time in the trap (induced by laser drifts or fluctuations)
or fluid properties, would introduce errors in the measured values. To address such issues, several
techniques were recently developed. These include flipping the probe particle between two time
shared traps [24], using “chirp waves” by continuously varying the modulation frequency [25],
square waves [26] which contain odd sinusoidal harmonics, or even frequency modulation [27] over
a certain bandwidth. However, none of these single-shot active microrheology techniques are able
to measure G∗(ω) for more than two to three decades of frequency [28] (for examples, 0.01–10
rad/s or 1–1000 rad/s), so that low bandwidth remains a lacuna in single-shot active microrheology
in comparison to the passive technique, where frequency responses have been collected for five
decades in frequency, albeit with long measurement times and by employing a combination of
techniques such as diffuse wave spectroscopy and light scattering from free probe particles [17–19],
or even active and passive microrheology performed in tandem using optical tweezers [24]. Indeed,
the broad frequency spectrum of thermally induced Brownian motion that is exploited in passive
microrheology to garner viscoelasticity measurements over wide frequency ranges prompts the
question whether this can also be achieved in active microrheology in some manner. This is exactly
what we address in this work.

Here, we develop a new technique of active microrheology where we modulate a trapped col-
loidal probe particle using a “multiple sinusoids superposition method.” Thus, we use a combination
of square wave and a linear superposition of sinusoidal signals of known amplitudes, frequencies,
and relative phases to modulate a single optically trapped probe particle to measure the complex
viscoelastic parameters of a linear viscoelastic fluid in a single shot. We apply the square wave at low
frequencies up to 500 rad/s, and the superposition of sines at higher frequencies beyond 500 rad/s.
Earlier, we reported active microrheology using square wave excitation alone in Ref. [26]. Here,
we develop the sinusoidal excitation technique, where—corresponding to our input excitation—the
response of the particle is also a superposition of all frequencies, and we extract specifically the
phase response at each excitation frequency by using a discrete fast Fourier transform (DFFT)
algorithm on the recorded time series of the particle’s displacement [29]. Since the particle response
falls off at high frequencies (compared to the corner frequency of the trap), we increase the
modulation amplitude correspondingly, so that a substantial response is still available even at high
frequencies. This innovation facilitates large signal-to-noise measurements even at high modulation
frequencies [30], thus enabling wide-band active microrheology. However, we take care to ensure
that the modulation amplitudes are low enough to maintain the linear response of the viscoelastic

123301-2



SINGLE-SHOT WIDEBAND ACTIVE MICRORHEOLOGY …

fluid, so that the excitation at a particular frequency elicits a response only at the same frequency,
which we then carry out for all frequencies of modulation. We extract the complex viscoelastic
parameters using a technique we reported first in our previous work [26], and demonstrate our
technique first on water for basic calibration, and then on a water-polyacrylamide (PAM) solution
at different concentrations of PAM over a frequency range of ∼1.8–13 900 rad/s, and observe
that our measurements match literature values at similar domains of polymer concentration and
frequency [19,31]. This technique thus mitigates a crucial issue of active microrheology—that of
limited bandwidth—for linear viscoelastic fluids, and can also be evaluated for performance inside
biological cells for the measurement of rheological parameters. Also, to the best of our knowledge,
high-frequency rheology has not yet been performed in the case of biological entities. Thus, there is
limited knowledge about the existence of interesting information at those regimes—which maybe a
lacuna given that several cellular processes and neural phenomena happen in the few milliseconds
regime.

II. MICRORHEOLOGICAL ANALYSIS

We model our system around the well-known Langevin equation for a spherical colloidal particle
trapped in a harmonic potential created by a Gaussian beam in our case. We consider the fluid to be
homogeneous around the locality of the particle throughout the experiment and assume that there is
no active flow in our system. We modulate the minimum of the harmonic potential and detect the
position of the particle in a single direction, so that the single variable differential equation in time
for an independent degree of freedom can be written as

m
d2x

dt2
= −

∫ t

−∞
γ (t − t ′)ẋ′dt ′ − k[x(t ) − x0(t )] + ξ (t ). (1)

Here m is the mass of the spherical polystyrene particle, k is the stiffness of the harmonic
potential, x0(t ) is the instantaneous position of the potential minimum, x(t ) is the position of the
center of the particle, and γ (t ) is the time-dependent friction coefficient of the viscoelastic fluid.
The whole integral term on the right-hand side of the equation calculates the drag force that acts
on the particle, and has contributions from all past times. ξ (t ) represents the Gaussian-distributed
white noise having an autocorrelation given by 〈ξ (t )ξ (t ′)〉 = 2kBT γ (t − t ′). Since the inertia of the
particle is damped out by the fluid (the inertial time constant [32,33] of a few microseconds is much
lower than the time resolution of our experiment), we ignore the inertial term of Eq. (1) and write it
in Fourier domain as

[−iωγ (ω) + k]x(ω) = kx0(ω). (2)

Note that the usable range of the frequency is up to around 100 krad/s, after which the inertia of
the probe becomes significant [34] (see Appendix D). The fluid being viscoelastic in nature has a
complex drag coefficient, so that γ (ω) = γ ′(ω) + iγ ′′(ω), and the phase response of the particle
can be calculated as

tan(φ) = − ωγ ′(ω)

k + ωγ ′′(ω)
. (3)

The negative sign in Eq. (3) demonstrates that the phase response of the probe particle lags the
excitation signal. Now, for two different values of k, say k1 and k2, we can extract two different
values of the phase φ, namely φ1 and φ2, respectively. For the potential minimum being modulated
by ω0, we can then solve γ ′(ω) and γ ′′(ω)

γ ′(ω0) = k1 − k2

ω0
(

1
tan(φ1 ) − 1

tan(φ2 )

) , (4)

γ ′′(ω0) = γ ′(ω0)

tan(φ1)
− k1

ω0
. (5)
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Since, G∗(ω), the complex shear moduli of the linear viscoelastic fluid is related to the drag
coefficient of the fluid as G∗(ω) = −iωγ (ω)/6πa, where a is the radius of the spherical probe, we
can calculate the storage moduli (real part of G), loss moduli (imaginary part of G), and viscosity
of the fluid as

G′(ω0) = ω0γ
′′(ω0)/6πa, (6)

G′′(ω0) = ω0γ
′(ω0)/6πa, (7)

η(ω0) =
√

G′(ω0)2 + G′′(ω0)2

ω0
. (8)

Now, we modulate the potential minimum by a linear superposition of sine waves of known
amplitudes (Ai), angular frequencies (ωi), and relative phases (ψi). So,

x0(t ) =
∑

i

Aisin(ωit + ψi ). (9)

Using a Fourier decomposition on the final time series, each frequency component can be isolated
and the respective phase and amplitude components extracted. The phase response of the particle
(mentioned earlier as φ) would be the difference between the extracted phase φext

i and input phase
ψi, that is φi = φext

i − ψi. For water, we can show that φi = tan−1( f
fc

) where fc is the corner
frequency of the operating trap. fc is given by

fc = k

12π2η0a
,

where η0 is the viscosity of water. By fitting the phase response of the particle in water with varying
frequency, we can find out the corner frequency and stiffness of our trap in water.

From Eq. (2) we also calculate the amplitude response of the particle as

| x(ω) |= kx0(ω)√
(k + ωγ ′′)2 + ω2γ ′2 . (10)

For a simple, memory-less Newtonian fluid such as water, γ ′′ = 0, and Eq. (10) simplifies to

| x(ω) |= kx0(ω)√
k2 + ω2γ ′2 . (11)

Thus, the amplitude response of the particle is at a particular frequency, say ω0, is proportional to
ω−1

0 .

III. MATERIAL AND METHODS

Multisine method

As mentioned earlier, we modulate the mininum of the harmonic trap with a linear superposition
of multiple sine waves of different frequencies, amplitudes, and relative phase. We now describe
our strategies about the choice of these parameters.

1. Choice of amplitudes

We see from Eq. (10) that the amplitude response of the probe particle is inversely proportional
to the modulating frequency ω0. This poses a challenge in obtaining high signal-to-noise at high
frequencies—therefore, we use input modulation amplitudes proportional to the input frequency.
Our aim is thus to obtain a constant response over the entire frequency range of excitation to
facilitate accurate phase and amplitude extraction. However, using only a monotonically linearly
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FIG. 1. The normalized input amplitudes for two different kinds of multisines are plotted on a logarithmic
scale against the input frequencies. We see that the monotonically increasing MSSM is better after ∼250 rad/s
than the multisine that follows square waves.

increasing input amplitude implies that the lower-frequency components will be subjected to very
low excitation, which will be detrimental for phase extraction at these frequencies, especially for
fluids with low concentrations. However, we have earlier shown [26] that a square wave is essentially
an infinite sum of the odd harmonics of sine waves mathematically written as

x0(t ) = 4A

π

∞∑
i=1

sin[2π (2i − 1) f t]

2i − 1
, (12)

where A is the amplitude of the square wave. As we see in Fig. 1, a square wave has large input
amplitude at low frequencies with the amplitude decreasing linearly with the increase in frequency.
Thus, in our method of wide-band microrheology, we use a square wave excitation for estimating
the complex viscoelastic parameters at the lower end of the frequency range, and the increasing
amplitude multisine excitation for the higher end of the frequency. Considering that we actually use
the sinusoidal composition of the square waves for our method, we prefer to name this method of
active microrheology as the “multiple sinusoids superposition method” or MSSM. Our protocol
finally consists of a single programed sequence of pulses used to modulate the probe particle, which
is made up of the following.

(1) Initially, we excite the particle for 100 seconds with a multisine signal in the form of a square
wave, which forms a truncated series of odd sines with their amplitudes reducing with frequency.
The frequencies we use are from 1–500 rad/s roughly.

(2) For the next 100 seconds we provide a second multisine signal where A = constant × ω,
with A and ω representing amplitude and frequency, respectively. The frequencies we use in this
approach are from 500–14 000 rad/s.

2. Choice of individual frequencies

We can, in-principle, superpose any number of frequencies to obtain rheological information
of the fluid at great detail in frequency space. But the superposed signal needs to be normalized
to a certain peak-to-peak amplitude such that when it is applied to the particle, the oscillation
of the particle remains constrained in the harmonic region of the trap, where the linear response
approximation is valid [35]. To choose the values of the frequencies, we choose a series of prime
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FIG. 2. Schematic of our setup. The annotations are as follows: HWP: half wave plate, AOM: acousto
optical modulator, L: convex lens of various focal lengths, PBS: polarizing beam splitter, D: Dichroic mirror,
M: one sided mirror, PD: photodiode, DAQ: data acquisition card (manufactured by National Instruments).

numbers to ensure that the response at one frequency is not mixed up in the next harmonic (though
we are working in the linear region of the VE fluid, where this should not occur in theory). Also
we observed that using prime-numbers minimizes the chances of constructive interference in our
input waveform, thus create stronger signal at each individual frequency after normalization. The
frequency values f i

p are therefore chosen as f i
p < fmax, where p is a prime number and i is a positive

integer. In our case fmax is 2197 Hz (13.8 Krad/s). This frequency is close to an order of magnitude
higher than the corner frequency of our traps at two different powers and it is important to note that
the effects of the trap diminish rapidly at even higher frequencies. Hence, we treat this frequency
as a cutoff (note that the noise intensity goes as power ∼ 1

f 2+ f 2
c

, and thus diminishes by two orders
of magnitude of the mean intensity if the operating frequency is increased by one order). We also
observed that the input phase has no significant effect on the accuracy of the phase extraction. We
therefore attempted experiments using linearly increasing phase difference, zero phase difference,
as well as random phase difference between individual components, but have not observed any
modifications in the nature of the results we obtained.

Finally, we conclude that by combining two different genres of multisines for equal time
intervals, we are able to create a custom waveform of duration over 200 seconds and perform
single-shot wide-band microrheology.

IV. EXPERIMENTAL DESIGN

We develop our optical tweezers setup (Fig. 2) around an inverted microscope (Olympus IX71)
with an oil immersion objective lens (Olympus 100×, 1.3 numerical aperture) and a semiconductor
laser (Lasever, 500 mW max power) of wavelength 1064 nm, which is tightly focused on the sample.
We modulate the beam by using the first-order diffracted beam off an acousto-optic modulator
(AOM), (Brimrose) placed at a plane conjugate to the focal plane of the objective lens. The modula-
tion amplitude is small enough such that the power in the first-order diffracted beam is modified very
minimally (around 1%) as the beam is scanned. We employ a second stationary and copropagating
laser beam of wavelength 780 nm and very low power (less than 5% of the trapping laser power,
such that the detection laser does not influence the motion of trapped particle in any way) to track
the probe particle’s position (detection laser), which we determine from the back-scattered light
that is incident on a balanced detection system [36]. The balanced-detection-system together with
a data acquisition card record the probe displacement data into a computer. We prepare a sample
chamber of dimension around 20 mm × 10 mm × 0.16 mm by attaching a cover slip to a glass slide
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by a double-sided tape, which contains our model viscoelastic fluid. The model fluid samples are
prepared by mixing polyacrylamide (PAM, flexible polyelectrolytes, Mw = (5–6) × 106 gm/mol,
Sigma-Aldrich) into water along with mono-dispersed spherical polystyrene probe particles of radii
1.5 μm in very low volume fraction (≈0.1%) which we use as probes. We also prepare the sample
just before performing our experiments so that there are no ageing issues associated with PAM.
We use PAM solution at five different concentrations in water: 0.01% w/w, 0.05% w/w, 0.1%
w/w, 0.5% w/w, and 1% w/w. We also carried out experiments on a wormlike micellar surfactant
using cetyltrimethylammonium bromide (CTAB) of concentration of 20 mM and sodium salicylate
(NaSal) of concentration of 9 mM in an aqueous solution, and an aqueous solution of polyethylene
oxide with a molecular weight of 4 × 106 dissolved in water at a concentration of 0.05% w/w.

For each viscoelastic sample, first, we trap a single probe particle around 30 μm away from
the nearest wall to get rid of any surface effects [37] and record its Brownian motion with sampling
frequency 5 kHz over 20 s to measure the stiffness of the trap. Then, we modulate the trap center by a
square signal of very small peak-to-peak amplitude (130 nm, which is only 0.086 times the particle
diameter)—so that the particle always remains in the linear region of the trap. The fundamental
frequency of the square waves are set to 0.3 Hz (or 1.8 rad/s) for all the cases. To perform the
experiments using the multisine excitation, we follow the same protocol, only this time we use 100
seconds of observation for the multisine signal keeping the sampling frequency fixed at 5 kHz.
To achieve a high degree of precision we maintained the experimental setup unaltered during the
experiment. The rheological parameters can depend on the trap stiffness, probe size, and age of
the sample—for which we used freshly prepared solutions of PAM everytime we performed an
experiment.

V. RESULTS AND DISCUSSIONS

Equilibrium statistics allows us to measure the stiffness of the optical trap using Maxwell’s
equipartition theorem. This is free from the rheological influence of the sample used [5,38].
According to this theorem, the trap stiffness is given by k = kBT/〈(x − 〈x〉)2〉. Since the histogram
of the positions follows a Gaussian distribution, we find out 〈(x − 〈x〉)2〉 by fitting the data. That
gives us an accurate measure of k, for all the viscoelastic samples we used in our experiment. Before
using the equipartition method to find out the trap stiffnesses at two different powers, we need to find
out the sensitivity of our position detection system. Note that position calibration is independent of
the sample rheology. We used the viscous drag method in water to find out the corner frequency at
two different powers and calibrations of our setup. We use this method to calibrate our optical trap
from the voltage (as obtained in our detector) to particle displacement. We use the fact that the phase
lag of the particle response in water can be accurately fitted with tan−1( f

fc
), which gives us the value

of fc—the corner frequency. For two different powers of the trapping laser we calculate the corner
frequency as 116.6 ± 7.4 Hz and 231.1 ± 20.0 Hz for low and high trapping powers, respectively.
From this, we find out the trap stiffness from k = 12π2η0a fc, which leads to trap stiffnesses of
17.61 ± 1.12 μN/m and 34.87 ± 3.02 μN/m, respectively in water.

However, it should be noted that our method is built on a phase extraction algorithm—we do
not use the amplitude component due to the associated signal-to-noise issues during extraction,
especially for low concentrations of the viscoelastic (PAM) component [26]. Nonetheless, we
perform the spatial calibration to determine the trap stiffness and to ensure that our trap modulation
leads to particle displacements that lie within the linear response of the trap. We also check that the
corner frequency changes linearly with power so that we know that the trapping potentials we use
are indeed harmonic.

It is important to note that, for extraction of the phase response from the data, trap calibration
is not required. Indeed, our procedure for phase extraction is entirely based on the discrete fast
Fourier transform method. We take the Fourier transform of the entire time series data of length N
and in accordance with the Nyquist criterion, dispose off half the data—so that we are left with a
complex time series of N/2 points. The ratio of the imaginary to real components of each number
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in the Fourier-transformed time series gives the tangent of the phase value. Our task is essentially
to find the phase corresponding to the excitation frequency we are interested in. In a similar vein,
the amplitude response can be calculated as the modulus of each number. The time for the analysis
to run is highly dependent on the time taken to compute to Fourier transform because the rest of
the operations such as calculating rheological parameters from extracted phases have linear time
complexity. As a result, the time complexity of our entire method follows that of a fast Fourier
transform as ∼O(N logN ). Also, the high frequency limit of our experiment is set by the corner
frequency of our trap, which presently, at the highest laser power we can couple into the trap, is
around 232 Hz. Increasing both trap stiffness and sampling frequency will thus facilitate the increase
of the high frequency limit of this technique to whatever level is desirable.

All the individual components of the multisine wave affect the probe particle independently.
We initially verified that we could extract individual components using the DFT algorithm for a
multisine wave, and also matched our results with experiments using single sine waves of different
frequencies. Most importantly, we ensured that there was no crosstalk, i.e., no leaking of the re-
sponse at one frequency into another, which implied that the displacement due to a particular force at
a particular frequency was linearly related to the response of the system. Thus, for the displacement
xo(t ) by the input perturbation xi(t ), we have xo(t ) = ∫

dt ′χ (t ; t ′)xi(t ′). Our system—comprising of
the trapped particle in a viscoelastic fluid gives—a linear response χ under small perturbations of
the particle. This response function is invariant under time translation, χ (t ; t ′) = χ (t − t ′), so that
performing a Fourier transform of xo(t ), we obtain

xo(ω) =
∫

dt ′
∫

dteiωtχoi(t − t ′)xi(t
′) = χoi(ω)xi(ω). (13)

This essentially is the general form of a linear response which we also see in Eq. (10) for our
special case, and this implies that the perturbation is “local” in the frequency domain. In other
words, the output response of the particle is linearly independent at different frequencies for the
small displacements (of the order of tens of nanometers) we drive in our technique. To verify that
quantitatively, we determine the velocity of the particle xi(t ) using Euler’s differential method.
We use this extracted velocity to compute the Weissenberg number, and observe that in all our
experiments, we have Wi 	 1. This indicates that we are indeed eliciting linear response from the
particle as a result of the effects on it from the viscoelastic fluid [10,39,40] (see Appendix B). We
would like to emphasize that this estimation is crucial—especially for soft materials having low
yield strain—in which case a trade-off between the linearity and magnitude of response required
to perform a reliable measurement may lead to a change in the frequency range over which the
viscoelastic properties can be measured, especially at the higher end.

To experimentally validate our algorithms for phase and amplitude extraction, we perform
experiments in water, and observe that while G′(ω) is almost zero for the entire range of modulation
frequencies, G′′(ω) follows the trend expected for water theoretically. This is shown in Fig. 4(b). We
now move on to the PAM-water mixtures, and determine the amplitude and phase responses of the
trapped probe, which we then compare to determine the parameter that would be the most efficacious
to use to measure the complex viscoelasticity of our samples. Now, the amplitude response of the
particle is defined as xo(ω)

kxi (ω) , where xi(ω) and xo(ω) are the Fourier components of the input signal
provided to the probe particle and the output signal from the particle as measured using photodiodes
(both transformed in distance units, respectively). This amplitude response can be theoretically
calculated as shown in Eq. (10), but we do not employ it to extract the rheological parameters
of the fluid as mentioned earlier. However, we note that, for lower concentration samples, the
amplitude response is also higher (see Appendix A), as a result of which we are able to extract
the entire broadband range of rheological parameters for the 0.01% w/w and 0.5% w/w PAM in
water samples with our MSSM technique only (without the aid of square wave modulation). For
lower concentration samples, signal-to-noise issues prevent us from obtaining reliable values for
G′(ω) and G′′(ω).
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FIG. 3. Phase response of the trapped probe particle embedded in the 0.01% w/w sample to the multisine
perturbations plotted over the entire frequency range in a semi-logarithmic graph. The two different curves are
obtained for different sets of measurements using two different powers of the trapping laser.

We now analyze the phase response of the probe more carefully. In Fig. 3, we observe that
the phase values for higher trap stiffness is less than the phase values for the lower stiffness.
This is understandable since the phase response is inversely proportional to the corner frequency
[tan−1( f

fc
)]. We extract the phase, as shown for one sample in Fig. 3, for two different powers for

each concentration. Using the measured phases and using Eqs. (4) to (8), we calculate the storage
and loss moduli for each sample. These are plotted in Fig. 4. It is clear that with the increase in
frequency of the probe particle—which means an increase in its velocity through the fluid—both
the storage and loss moduli of PAM increase. This is because (as the probe oscillates at higher
frequencies) it deforms the polymeric mesh progressively, and also significantly enough for the
polymeric mesh to affect the motion of the particle, and thus alter its response to the drive. For low
drive frequencies, the mesh is able to relax so that the particle does not see its effect. Similarly, it
is easy to understand that, with the increase in concentration of PAM in water, the overall density
of the mesh would increase, so that it would be able to impart more elastic energy to the probe, as
we observe in Fig. 4(a). In the same manner, the loss also increases since dissipation is higher now,
and we also observe in Fig. 4(b), that all the measured values of G′′ lie above the theoretical value
of G′′ in water as expected (for water, a purely viscous fluid, G′′(ω) = ηω and G′(ω) ∼ 0, since
there is no polymeric constituent for storage). The effective viscosity is therefore higher than that of
water and only approaches that value asymptotically at high frequencies, as is clear from Fig. 5. For
each of the concentrations we performed multiple measurements, and averaged over five data sets
to ensure that our results are reliable. In Figs. 4(a) and 4(b) only the mean is plotted in the graph,
though to avoid unnecessary congestion. However, in Fig. 5, both the mean and the standard error in
the measured values of the viscosity are plotted. In addition, as expected from the theory, the shear
moduli follows the Kramers-Kroenig relations, which is demonstrated by the fact that G′ and G′′
scale as ω2 and ω, respectively, at low frequencies where G′′ > G′. We explicitly show this in Fig. 4
[17].

An interesting observation in Fig. 4(a) is that G′ saturates beyond a particular frequency. Such
saturation as a function of frequency has been observed for entangled polymers in several other
cases [1,5,24,41–43]. We believe that this marks a transition from the polymer from the terminal
region to the rubbery plateau region as is described succinctly in Ref. [41]. Alternatively, it has also
been understood as the saturation of G′ beyond the frequency corresponding to the polymer time
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FIG. 4. The (a) storage moduli and (b) loss moduli for five different concentrations of PAM in water, (1%
w/w, 0.5% w/w, 0.1% w/w, 0.05% w/w, and 0.01% w/w) extracted using our technique and plotted against
angular frequency. We also plotted the loss moduli of water using our method along with theoretical values.
As expected, we see a gradual increase in both of them with increasing frequency. Trendlines to confirm that
G′ and G′′ scale as ω2 and ω, respectively, at low frequencies where G′′ > G′ are also plotted in grey in each
figure.

constant [42,43]. The time constant increases for increasing concentrations; as a result of which the
saturation frequency also lowers correspondingly. We also observed that the saturation effect for the
highest concentration (1% W/W) was not visible at the modulation amplitude we used for other
concentrations, i.e., around 130 nm. Reducing the amplitude to 70 nm, however, led to saturation
of G′ as is visible in red solid line with star-shaped data points in Fig. 4(a). This is because the
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FIG. 5. Viscosity for five different concentrations of PAM in water, (1% w/w, 0.5% w/w, 0.1% w/w,
0.05% w/w, and 0.01% w/w) extracted using our technique and plotted against angular frequency; standard
error, obtained after averaging over five data sets, is shown as the error bar. We observe a gradual decrease in
the effective viscosity of the sample with increasing frequency of oscillations, and after a cutoff frequency it
reaches an asymptotic value.

condition of Wi 	 1 required for the linear viscoelastic regime is not enforced strongly enough
for the modulation amplitude of 130 nm (see more details and a plot of G′ for two modulation
amplitudes in the Appendix C).

It is also interesting to quantitatively compare the signal-to-noise ratio for a square wave and the
multisine excitations, as we demonstrate in Figs. 6(a) to 6(c). To generate the data shown in this
figure, we actually excite the probe by a square wave excitation, and a multisine wave till 13 982
rad/s. The signal to noise is defined as the amplitude of the detected response above the thermal
noise level, as obtained from the power spectral density. We define it in decibel units as

S/N = 10 log10

(
Power of signal

Power of noise

)
.

Thus, we consider the noise power spectrum of the Brownian motion and determine the amplitude
of the response peak we obtain at a particular excitation frequency, and its strength with respect
to the noise floor defined by the pure thermal motion. We determine the signal-to-noise values for
both square and multisine wave excitation and compare them in Fig. 6(a). Figures 6(b) and 6(c)
show the peaks in the power spectrum of the square and multisine, respectively, for the case 0.1%
w/w PAM in water as an example. We observe that at angular frequencies less than ∼500 rad/s, the
square wave gives a higher signal-to-noise ratio for the particle response, however, beyond that
the multisine wave gives continuously increasing signal-to-noise ratio. This motivates us to use a
square wave excitation till 500 rad/s, and a multisine excitation beyond that frequency. Another
issue we consider is the continuity in phase retrieval between the square wave excitation and
multisine excitation. Even here we observe that there is indeed a smooth continuity between the
extracted phase by square wave and that by the multisine approach. This is borne out from the fact
that the extracted complex rheological parameters change smoothly, as is clear from Fig. 4, where
the data for frequencies less than 500 rad/s are from a square wave excitation, while that for higher
frequencies is via the multisine excitation. Finally in Fig 7, we compare the viscoleastic parameters
that we extracted from that measured in the literature in Fig. 5 of Tassieri et al. (Ref. [5]). We plot
the mean values of G′ and G′′ from multiple measurements and provide the standard error obtained
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FIG. 6. (a) Signal-to-noise ratio over the entire frequency range, where (b) is the power spectrum density
(psd) from square wave modulation (SM), which shows the amplitude response to be significantly high up to
500 rad/s and (c) is the psd from MSSM depicting the amplitude response to be significantly high after 500
rad/s. All the graphs are plotted for the dataset 0.1% w/w PAM in water, just taken as an example.

after averaging over five data sets. It is important to note that the size of the probe particle used
in Ref. [5] is 5 μm, which is greater in size than the 3 μm particles we use. Although the trend
matches with the reported literature value, the systematic deviation is probably due to the difference
in particle size, which may suggest that PAM has multiple different lengthscales and is a multiscale
mesh [44].

The first crossover between the two shear moduli gives the time constant of the fluid, from the
inverse of the crossover frequency (which is ≈5 ms in our case for 1% w/w PAM in water). The
presence of multiple crossovers of the shear moduli may suggest that PAM has multiple polymeric
time constants emerging from different lengthscales (multiscale mesh). In Fig. 7, we observe that
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FIG. 7. The storage and loss moduli (G′ and G′′) are plotted in green squares and red dots, respectively, for
1%w/w PAM in water using the protocol described in this paper. To compare we show the values at the same
concentration for a smaller particle size as reported in Fig. 5 of Tassieri et al. (Ref. [5]). We observe that the
measured values closely concur with the reported values, which further corroborates our technique.

the values of G′(ω) and G′′(ω) seem to approach each other, but it is difficult to infer conclusively
about the possibility of a crossover happening at even higher frequencies since the inertial effects of
the medium start showing up [1] at that regime, which may complicate the physics considerably. For
a discussion on the inertial effects in microrheology see the Appendix D. Clearly, more experiments
with different probe sizes are called for to clarify this matter.

To check further for the efficacy of our technique, we implement it with an aqueous solution of
worm-like micelles—a system which is well studied in literature. As for PAM in water, the complex
viscoelastic moduli of the worm-like micelles solutions we follow the simple Maxwell model at low
frequencies [45,46], which implies that G′ and G′′ should scale as ω2 and ω, respectively. We verify
this for a low concentration of CTAB-20 mM and NaSal-9 mM in an aqueous solution, where our
measured G′ and G′′ are plotted as a function of ω in Fig. 8. Very similar behavior was observed
with almost the same concentration (within 6% of our values) of an identical worm-like micelles
solution in earlier work [47]. We also obtain very good quantitative agreement for the values of G′
and G′′ with the data reported in that work, as we display in Fig. 8.

Finally, for further consistency checks of our technique, we applied it on polyethylene oxide
(PEO), a high-molecular-weight and nonionic polymer, and display our measurements of G′ and
G′′ in Fig. 9. Once again we obtain good agreements for the expected trends of both moduli at low
frequencies (G′ ∝ ω2 and G′′ ∝ ω), which firmly establishes the efficacy of our technique for a large
variety of viscoelastic materials.

VI. CONCLUSION

In conclusion, we mitigate a major issue in active microrheology—that of extracting rheological
parameters of a fluid over a large bandwidth with high signal to noise in a single shot. Thus, we
propose a new technique, which we name as the multiple sinusoids superposition method,” where
we use a superposition of multiple sine waves to excite a colloidal probe particle embedded in a
PAM–water mixture at different concentrations to extract the complex rheological parameters. For
low frequencies, we use a square wave, which is by definition a combination of odd harmonics of
sines, while for higher frequencies we apply a superposition of sine waves with the modulation
amplitudes increasing with increasing excitation frequency in a proportional manner. This ensures
that the signal to noise extracted at high frequencies does not diminish in spite of the low displace-
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FIG. 8. Measurement of the complex viscoelastic moduli for aqueous CTAB/NaSal (worm-like micelles)
solution. The storage and loss moduli (G′ and G′′) are plotted in black solid circles (G′) and squares (G′′),
respectively. At low frequencies, the data match expected trends (dashed lines) for both moduli, i.e., G′ ∝ ω2,
and G′′ ∝ ω. We compared our results with work reported earlier for the same sample (Fig. 3 of Morishima
et al.), where the existing data are displayed in green open circles (G′) and red squares (G′′) (Ref. [47]).

ment of the probe particle at those frequencies. We use only the phase component of the probe
response, which is advantageous since it does not require calibration of the displacement sensitivity
of our detection system and is not susceptible to spurious electronic noise which affects amplitude
measurements considerably. We extract the phase from a discrete fast Fourier transform that we
perform on the measured time series of the probe displacement and obtain the complex rheological

FIG. 9. Measurement of the complex viscoelastic moduli for polyethylene oxide in water solution. The
storage and loss moduli (G′ and G′′) are plotted in green dots and red squares, respectively, for a concentration
of 0.05% w/w. At low frequencies, the data match expected trends (dashed lines) for both moduli, i.e., G′ ∝ ω2,
and G′′ ∝ ω.
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FIG. 10. The normalized amplitude responses are obtained from the time series of particle displacement
and plotted against the angular frequency of the active probe particle. Here the normalized amplitude means
the ratio of the output signal to the input excitation for each frequency. We observe better amplitude response
in samples with lower concentrations. We normalize the curve, putting the maxima at 1, for clarity.

parameters by repeating the measurement at two different trap stiffnesses. Our extracted rheological
parameters match reasonably well with the values available in the literature, which acts as a good
consistency check. The method is fast, accurate, and is easily extendable to even higher frequencies
by employing optical traps of higher stiffnesses and larger sampling rate for signal measurement. We
are currently in the process of extending this method to microrheology experiments inside biological
cells [48], where it can possibly extract information at frequency values hitherto inaccessible by
active microrheology.

The experimental data that support the findings of this study are available from the corresponding
author upon reasonable request.
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APPENDIX A: AMPLITUDE RESPONSE

Although we completely use the phase response from the trapped probe to compute the rheo-
logical parameters of the VE fluid, in principle this can also be done from the amplitude response,
which has its own drawbacks as discussed in the paper. But it is intriguing to note that the amplitude
response of the particle is inversely proportional to the trapping power, which is further corroborated
by Eq. (10) of the main paper. The very increasing nature of the shear modulus with concentration is
linked to the fact that the amplitude response decreases with increasing concentration of the samples.
We demonstrate this in Fig. 10 for two different concentrations and two different laser powers.
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FIG. 11. Storage moduli of 1% w/w PAM solution extracted from modulating the particle by different
amplitudes.

APPENDIX B: WEISSENBERG NUMBER

The Weissenberg number (Wi) is defined as Wi = ẋoλ
2a , where λ is the relaxation time constant

of the fluid and a is the radius of the trapped colloidal probe. The method of obtaining the time
constant is described in a previous work [10]. The Weissenberg number is very commonly used in
the literature to denote the ratio of the elastic to the viscous forces.

APPENDIX C: STORAGE MODULUS WITH MODULATION AMPLITUDE

The response of the viscoelastic system lies in the linear regime when Wi 	 1 [40]. The Weis-
senberg number depends on the velocity of the trapped particle inside the solution. So we modulated
the particle with different amplitudes 70 nm and 130 nm, respectively, and extracted the storage
modulus of 1% w/w PAM solution. At the higher modulation amplitude the Weissenberg number is
close to 0.1, where, as for the lower amplitude, it is close to 0.05. So performing the experiment at
the higher amplitude modulation may introduce nonlinearity in the response of the viscoelastic fluid
at higher concentrations. We plotted in Fig. 11 both the storage moduli for modulating the particle
with different amplitudes, and it shows that with higher amplitude-modulation the storage modulus
does not saturate at high frequency as is the case for lower amplitude since we probably approach
the nonlinear viscoelastic regime for the former. For this, we used 70-nm modulation for the highest
concentration. In the future we will expand our study on the nonlinear effects of viscoelastic fluids
at higher concentrations.

APPENDIX D: INERTIA EFFECT IN VISCOELASTIC FLUID

We neglected the inertia effect here as our measurement frequency range obeys the following
relation according to Ref. [32] in the main paper

ω 	
√

π2G(ω)/4a2ρ f , (D1)

where G(ω) is the frequency-dependent shear modulus, a is the particle radius, and ρ f is the density
of the particle. In our case, the frequency is 100 krad/s and our measured frequency 14 krad/s is less
than that. However, at very high frequency there still may be some influence of the residual inertia
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FIG. 12. Storage moduli PAM solution in water for five different concentrations of 0.01%, 0.05%, 0.1%,
0.5%, 1% w/w. Here storage moduli vary with ω2.

of the fluid-probe system. Such effects can modify the saturation behavior of the shear-moduli
frequencies over 10-kHz frequency. Such effects are explicitly calculated in Ref. [49].

APPENDIX E: VISCOELASTIC MODULI WITH ERROR BARS

Here we display in the Figs. 12 and 13, the gain and loss moduli for PAM solutions at different
concentrations along with the error bars for each measurement, respectively. Typically, the errors
are large at low frequency values since the number of data points is less in those regions leading to
less averaging.

FIG. 13. Loss moduli PAM solution in water for five different concentrations of 0.01%, 0.05%, 0.1%, 0.5%,
1% w/w. Here the loss moduli vary with ω.
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