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Limit of the two-dimensional linear potential theories on the propulsion of a
flapping airfoil in forward flight in terms of the Reynolds and

Strouhal number
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A sixth-order compact finite differences scheme of the two-dimensional transport-
Poisson equations in terms of vorticity-stream function is formulated to solve the motion
of a flapping airfoil in a noninertial reference frame, fitting a NACA-0012 profile with the
Kármán-Trefftz transformation. These numerical simulations have been used to estimate
the validity range of the linear potential theories of Fernandez-Feria and the classical
Garrick model on the propulsion of a pitching airfoil pivoting to a quarter chord length
of the leading edge and a heaving airfoil in forward flight, in terms of the Reynolds,
Re, and Strouhal number, St, compared with available numerical and experimental data.
The Fernandez-Feria’s propulsion theory shows better agreement with the numerical and
experimental results than the Garrick model for the time-averaged thrust coefficient where
it is found that the Fernandez-Feria’s theory is limited to Re � 4000 and St � 0.25 for
pure pitching motions and Re � 1000 and St � 0.2 for pure heaving motions.
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I. INTRODUCTION

The recent interest in the development of small unmanned aerial and aquatic vehicles bioinspired
by small flying animals [1,2] has caused that the unsteady aerodynamics of flapping foils to be
a subject of active research. In spite of the great advances in computational fluid dynamics, the
linear unsteady potential theory is still a great tool to estimate the aerodynamics forces and moment
of flapping airfoils for high Reynolds number and small oscillating amplitudes. The theoretical
models has been used widely to compare with numerical and experimental results [1,3–6] in order
to validate their results for cases where it is well known that the linear potential theory works well.

The linear potential theory for a heaving and pitching motion of a rigid foil was originally
studied in Ref. [7] for lift and moment and in Ref. [8] for thrust and propulsion efficiency. Recently,
the linear potential flow theory has been extended for a flapping airfoil in different cases [9–12]
with an almost flat wake vortex sheet, using the vortical impulse theory [13,14] in the correct
way to obtain the thrust and propulsive efficiency and with the main assumptions of considering
high Reynolds. number and small oscillating amplitudes. The classical linear potential theory from
Ref. [8] computes the thrust force of a plunging and pitching airfoil in forward flight considering
only two effects: the leading-edge suction and the projection in the flight direction of the pressure
force on the airfoil. However, the new approach of the linearized propulsion theory [9] takes into
account the complete vorticity distribution on the airfoil and the wake, correcting the propulsion
force predicted in Ref. [8]. A quite similar vortex theory formulation has been developed in
Ref. [15] but considering the trailing wake as a succession of point vortices instead of the continuous
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FIG. 1. Schematic of the heaving and pitching airfoil bounded by S and the integration domain delimited
by the surfaces S∞.

distribution in Ref. [13] to obtain the lift force and moment of an unsteady thin airfoil. In Ref. [16],
several semiempirical models and the linear potential theories have been compared for the thrust
force and propulsion efficiency of pitching foils. Also, numerical simulations have been done to see
the effect of the pivot axis location on its propulsive performance for pitching foils [17] comparing
with the linear theories. However, these results are for a fixed Reynolds number. On the other hand,
the authors of Ref. [18] have analyzed the effect of the Reynolds number for a pitching airfoil
pivoting to a quarter chord length of the leading edge but without comparing with the potential
theory.

Thus, the present work focuses on finding the range of validity of the linearized potential theory
in terms of Reynolds and Strouhal numbers. For that, a numerical simulation of a flapping airfoil
has been implemented, estimating the critical Reynolds and Strouhal numbers from which the linear
propulsion theories predict better the temporal evolution or the time-averaged thrust coefficient.
Pure motions have been considered: a pure pitching motion pivoting to a quarter chord length,
a = −0.25, with a pitching amplitude of a0 = 2◦, as well as the selected case of St = 0.2 varying
the pivot point location from the leading edge (a = −0.5) to the trailing edge (a = 0.5) and a pure
heaving motion with a plunging amplitude of h0 = 0.025 (both scaled with the foil’s chord length
c). The Strouhal number has varied from 0.05 to 0.4, and the Reynolds number has taken the values
500, 1000, 2000, 4000, and 8000 for both motions. Additionally, the main equations in terms of
vorticity and stream function which have to be solved to do a numerical simulation of a flapping
airfoil in a noninertial reference frame have been developed, fitting a NACA-0012 profile with a
conformal mapping.

II. FORMULATION OF THE PROBLEM

A two-dimensional (2D) and incompressible flow is considered over a heaving and pitching
airfoil of chord length c that moves with constant speed U along the negative x axis (see Fig. 1).
In this reference frame, the motion of the airfoil is given by the vertical displacement of its mean-
camber line, i.e.,

y0(x, t ) = h(t )ey + [α(t )ez] ∧ x, with x = (x − a)ex + yey, (1)
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and

h(t ) = h0 cos(2kt ), α(t ) = a0 cos(2kt + φ), (2)

where k = ωc/(2U ) is the reduced frequency, with nondimensional period T = π/k, which consists
of a heaving displacement h(t ) of amplitude h0 and a pitching rotation α(t ) of amplitude a0 pivoting
at x = a with φ the phase shift between the heaving and pitching motions of the foil. Note that the
nondimensional coordinate x and the amplitude of heaving motion, h0, is scaled with the foil’s chord
length c and the time t with c/U . Thus, the corresponding nondimensional velocity of the airfoil,
scaled with the velocity U , is given by

v0(x, t ) = −ex + dy0

dt
= −ex + dh

dt
ey + �(t ) ∧ x, (3)

where �(t ) = dα
dt ez is the pitching rotation velocity, whereas in a noninertial frame, the airfoil does

not move and the fluid domain is moving with the opposite velocity of the airfoil, i.e,

u∞(x, t ) = −v0(x, t ). (4)

As a consequence, the fluid field velocity can be decomposed into two terms,

u = u∞ + u′, (5)

where u′ is the disturbance in the fluid field velocity. To characterize the motion of the airfoil with
the kinematics parameters, the Strouhal number has been selected,i.e.,

St = f A

U
, (6)

where f is the frequency of the motion, A is the peak-to-peak excursion of the airfoil’s trailing-edge,
and U is the translating speed. For pure heaving and pure pitching motion, the Strouhal number can
be written respectively as

Stheave = 2kh0

π
, Stpitch = 2k

π

(
1

2
− a

)
sin(a0). (7)

A. Governing equations

In the noninertial frame, the nondimensional Navier-Stokes equations are written as

∂u
∂t

= −1

2
∇p − u · ∇u + 1

Re
∇2u − az − aCor − atan − acen, (8)

where p is the pressure (without the hydrostatic component) scaled with ρU 2/2 where ρ is the fluid
density, Re the Reynolds number based on the chord length of the airfoil, ay the heaving motion
acceleration, aCor = 2� ∧ u the Coriolis acceleration, atan = d�

dt ∧ x the tangential acceleration,
and acen = � ∧ (� ∧ x) is the centrifugal acceleration. Using the expression of the two-dimensional
vorticity ω = (∇ ∧ u)ez and noting that the curl of the different accelerations are

∇ ∧ (az ) = ∇ ∧ (aCor ) = ∇ ∧ (acen ) = 0, ∇ ∧ (atan ) = 2
d�

dt
, (9)

with the change of variable

ω′ = ω + 2�(t ), (10)

Eq. (8) reduces to

∂ω′

∂t
= −(∇ ∧ ψ ) · ∇ω′ + 1

Re
∇2ω′, (11)
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where the stream function, ψ , is defined by u = ∇ ∧ (ψez ). For convenience, the stream function
is separated into background, ψ, and disturbance, ψ ′, terms, i.e.,

ψ = ψ + ψ ′. (12)

The most convenient choice for the background velocity is the free-stream velocity, u∞, and thus

u∞ = ∇ ∧ ψ, u′ = ∇ ∧ ψ ′. (13)

The background stream function, ψ, can be obtained directly integrating the velocity Eq. (4), i.e.,

ψ = y + ḣ(t )x + α̇(t )

[
y2

2
+ x

( x

2
− a

)]
. (14)

On the other hand, for incompressible flows and taking into account the change of variable Eq. (10)
and the definition Eq. (12), the continuity equation yields

ω′ = −∇2ψ ′. (15)

Thus, the problem has been reduced to two analytical expressions, Eq. (10) and Eq. (12), with
two partial differential equations: the vorticity transport equation Eq. (11) and a Poisson equation
Eq. (15) for the stream function ψ ′.

B. Boundary conditions

Boundary conditions are required for ω′ and ψ ′ in the Eq. (11) and Eq. (15) respectively in order
to close the problem. The appropriate boundary conditions at infinity are that the velocity equals the
free-stream velocity and the fluid is irrotational in the inertial frame. At the inlet, disturbances to the
free-stream flow are neglected, so that the boundary condition for the stream function, ψ ′, is given
by

∂ψ ′

∂n

∣∣∣∣
inlet

= 0, (16)

where ∂/∂n refers to the normal derivative. As the wake is highly unsteady, a much more passive
boundary condition is necessary for the outlet. In general, the pressure gradient will be small at the
output and it could be neglected. So, if the viscosity is neglected too, the boundary condition at the
outlet is given by

D

Dt

(
∂ψ ′

∂n

)∣∣∣∣
outlet

= 0, (17)

which has a similar form to boundary condition for vorticity and allows for some simplification
of the numerical procedure. This boundary condition has already been tested for a heaving airfoil
at low Reynolds numbers from Ref. [19]. In practice, the simulations are terminated before any
significant vorticity becomes close to the outlet boundary. The airfoil surface has to be a streamline,
∂ψ/∂s = 0, which for simplicity is selected, ψ = 0, so that the boundary condition for ψ ′ at the
airfoil is ψ ′ = −ψ. In addition, the airfoil is a nonslip surface and for that the vorticity at the airfoil,
ωa, can be related to the total stream function by

ωa = − ∂2ψ

∂n2

∣∣∣∣
airfoil

. (18)

C. Forces and pressure distribution on the surface

Once these equations are solved, one is interested in the force (per unit length) exerted by the
fluid on the foil, which in the present nondimensional notation (the force per unit length is scaled
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with 1/2ρU 2c) is given by

F(t ) = −
∫

S
pndS + 2

Re

∫
S
ω ∧ ndS = Fxex + Fyey, (19)

where S is the foil’s surface (contour in 2D) oriented with normal vector n toward the fluid. The x
and y components of this force have to be projected onto the parallel and perpendicular axes of the
free stream current to obtain the drag and the lift coefficients, respectively, i.e.,

CD(t ) = Fx(t ) cos[α(t )] − Fy(t ) sin[α(t )], (20)

CL(t ) = Fx(t ) sin[α(t )] + Fy(t ) cos[α(t )], (21)

and integrating over the oscillating cycle, one obtains the time-averaged values, which for the lift
coeffiecient, if the airfoil does not have an averaged angle over than zero, then it is null and for the
thrust coefficient it is given by

CT = 1

T

∫ t+T

t
CT (t )dt . (22)

Finally, to obtain the pressure on the airfoil surface, a simplified procedure is used based on the
pressure gradient along the no-slip surface to the normal derivative of vorticity modified for the
noninertial reference frame, i.e,

1

2
∇p · nt = − 1

Re
(∇ ∧ ω) · nt −

[
az + d�

dt
∧ x + � ∧ (� ∧ x)

]
· nt , (23)

where nt is the unit tangent vector to the surface of the airfoil. The pressure force at every point on
the airfoil is found by assuming an arbitrary value of pressure at one point (the trailing edge) and
marching through successive grid points using Eq. (23).

III. NUMERICAL IMPLEMENTATION

The governing equations are discretized using a conformal map. A rectangular, r, θ domain is
first mapped to a circular domain using a log-polar transformation [20], and the circular cylinder is
mapped into an airfoil by the Kármán-Trefftz transformation,

mb
(ζ + b)m + (ζ − b)m

(ζ + b)m − (ζ − b)m = x + iy, with ζ = ζ0 + er+iθ , (24)

where ζ0 is the location of the cylinder center, r ∈ [log(r0), log(r f )], and θ ∈ [0, 2π ), where r0 is
the radius of the cyliner and r f is the radius end of the meshgrid. With respect to the Kármán-Trefftz
transformation, m is related to angle of trailing edge, obtaining the Joukwoski profiles when m = 2,
and b measures the thickness of the airfoil which, for m = 2, becomes in a flate plate when b = 1
and in a cylinder when b = 0. The different values used of the previous parameters are presented in
the caption of Fig. 2. The airfoil is constructed fitting a NACA-0012 profile, but to avoid numerical
singularities at the trailing edge, it has been rounded as one can see in Fig. 2, where also it has been
compared to the actual NACA profile. A portion of the typical mesh is shown in Fig. 3.

The vorticity transport equation in the computational space is given by

hrhθ

∂ω′

∂t
= −(∇r,θ ∧ ψ ) · ∇r,θω

′ + 1

Re
∇2

r,θω
′, (25)

where hr and hθ are the grid transformation metrics which links the physical (x, y) space with the
computational (r, θ ) space. The subscripts r, θ refer to derivatives in the r, θ domain.

The Poisson equation for ψ ′ becomes

∇2
r,θψ

′ = −hrhθω
′. (26)
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FIG. 2. Comparison of the NACA-0012 profile with Kármán-Trefftz profile. The values of the parameters
are ζ0 = −0.01765, r0 = 0.29, m = 2.0257, and b = 0.2566 with a goodness-of-fit of R2 = 0.9971.

One must take into account that hr = hθ as a result of the log-polar transformation in the first
mapping to a circular domain, turning the governing equations into Cartesian equations multiplied
by the factor hrhθ . After spatial discretization, the semidiscrete scheme Eq. (25) is equivalent to the
first ODE system, i.e.,

∂ω′

∂t
=R(ω′), with R(ω′) = 1

hrhθ

[
1

Re

(
∂2ω′

∂r2
+ ∂2ω′

∂θ2

)
− ∂ψ

∂r

∂ω′

∂θ
+ ∂ψ

∂θ

∂ω′

∂r

]
, (27)

and the Poisson equation for the stream function Eq. (26) yields

∂2ψ ′

∂r2
+ ∂2ψ ′

∂θ2
= −hrhθω

′, (28)

where the spatial discretization is carried out on a uniform grid of width � in both r and θ directions.
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FIG. 3. A portion of the generated grid in the circular domain (a) and in the physical space (b) for the
parameters ζ0 = −0.01765, r0 = 0.29, m = 2.0257, and b = 0.2566 with a uniform grid spacing of � = π/80
in the (r, θ ) plane.
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A. Discretization and initial condition

For time marching, a second-order Runge-Kutta scheme is used for the vorticity transport
equation. For spatial terms, sixth-order compact centered scheme differencing is used [21]. For
easy reference, the first and second derivatives, ∂ f /∂θ and ∂2 f /∂θ2, are given, respectively, by

1

3
f ′
i, j−1 + f ′

i, j + 1

3
f ′
i, j+1 = 14

9

fi, j+1 − fi, j−1

2�
+ 1

9

fi, j+2 − fi, j−2

4�
, (29)

2

11
f ′′
i, j−1 + f ′′

i, j + 2

11
f ′′
i, j+1 = 12

11

fi, j−1 − 2 fi, j + fi, j+1

�2
+ 2

11

fi, j−2 − 2 fi, j + fi, j+2

4�2
. (30)

In the case of the first and second derivatives in the radial direction, ∂ f /∂r and ∂2 f /∂r2, the nodes
i = 1, i = 2, i = Nr , and i = Nr − 1 have to be approximated with forward or backward compact
finite differences (where Nr is the total number of nodes in the radial direction of the meshgrid),
i.e.,

(i) i = 1

f ′
1 + 5 f ′

2 = 1

�

[
− 197

60
f1 − 5

12
f2 + 5 f3 − 5

3
f4 + 5

12
f5 − 1

20
f6

]
, (31)

f ′′
1 + 126

11
f ′′
2 = 1

�2

[
13097

990
f1 − 2943

110
f2 + 573

44
f3 + 167

99
f4 − 18

11
f5 + 57

110
f6 − 131

1980
f7

]
, (32)

(ii) i = 2

2

11
f ′
1 + f ′

2 + 2

11
f ′
3 = 1

�

[
− 20

33
f1 − 35

132
f2 + 34

33
f3 − 7

33
f4 + 2

33
f5 − 1

132
f6

]
, (33)

11

128
f ′′
1 + f ′′

2 + 11

128
f ′′
3 = 1

�2

[
585
512 f1 − 141

64 f2 + 459
512 f3 + 9

32 f4 − 81
512 f5 + 3

64 f6 − 3
512 f7

]
.

(34)

For i = Nr and i = Nr − 1, the compact finite-difference coefficients are the same for the second
derivative and with the opposite sign for the first derivative on the right-hand side but taking into
account that the evaluation has to be done in the backward direction (i = Nr, . . . , Nr − 6, for the
right-hand side). Note that the factor 2077/157 in the first term of the second derivative for i = 1
on the right-hand side reported in Ref. [21] has been corrected in Eq. (32).

For the Poisson equation for the stream function, the equations are discretized using a sixth-order
compact centered scheme [22] and solved using a strongly implicit procedure solver with a Cholesky
factorization. For the boundary condition on the airfoil surface in the case of the vorticity is used
the fourth-order Briley formula [23], i.e.,

ω′
a = 1

18�n2
[85ψa − 108ψa+1 + 27ψa+2 − 4ψa+3] + 2�. (35)

On the other hand, in order to avoid nonphysical starting flows when simulating a flapping
motion, the permanent von Kármán vortex street wake behind the airfoil is previously obtained
when it is horizontally at rest.

B. Mesh convergence and validation of the code

A grid sensitivity analysis was performed using three or more meshes for every considered
Reynolds number and setting up a = −0.25, a0 = 2◦, and with St = 0.4, which is the highest value
of the Strouhal number considered in the present study and therefore the most adverse case in terms
of trailing edge velocity. After a large number of simulations, it is selected a specific grid size
for every considered Reynolds number in the present study in order to optimize the computational
cost assuming a relative error below 2%, where � = π/300 for the lower case (Re = 500) and
� = π/800 for the highest Reynolds number (Re = 8000) (see Fig. 4), with a the time step
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0
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0.2

0.3

FIG. 4. Grid convergence study of the time-averaged thrust coefficient relative to the constant value CT 0

for the different Reynolds numbers considered in the present study with the selected grid spacing, � (filled
markers) when a = −0.25, a0 = 2◦, and with St = 0.4. Numerical simulations with 50 periods and time-
averaged values computed over the last five cycles.

�t ∼ 10−5. Apart from that, the Appendix reports the validation of the code with a impulsively
started cylinder for several Reynolds numbers, comparing the closed wake length, the location of
the main eddy core, and the velocity at the mean line of the cylinder wake with the theory and
the experimental results from Ref. [24]. In addition, the temporal evolution of the lift coefficient
for pure heaving motion of the considered airfoil for Re = 10 000, h0 = 0.025, and k = 7.86 has
been compared with the experimental results of Ref. [3], the numerical results of Ref. [6], and the
theoretical ones in Ref. [7].

IV. RESULTS

A. Pure pitching motion

As first numerical results, the model described above is used to simulate a pitching airfoil
(h0 = 0), pivoting to a quarter chord length, a = −0.25, with a pitching amplitude of a0 = 2◦. The
Strouhal number ranges from 0.05 � St � 0.4, i.e., varying the reduced frequency from 3 � k � 24
[see the Eq. (7)] for various Reynolds numbers. In Fig. 5(a) one can see the time-averaged thrust
coefficient relative to the constant thrust value, CT 0, which is the time-averaged thrust coefficient

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.05

0.1

0.15

0.2
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0.3

0.35
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0 2000 4000 6000 8000 10000 12000
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(a) (b)

FIG. 5. (a) Comparison of the time-averaged thrust relative to the constant value CT 0 with the experimental
results from Ref. [5] (M-W in the legend) and the numerical from Ref. [25] and the theoretical ones in Ref. [8]
and Ref. [9] (F-F in the legend) for various Reynolds numbers. (b) Time-averaged thrust as a function of the
Reynolds number for two values of the Strouhal number together with the value of CT 0. Pure pitching motion
with a0 = 2◦ and a = −0.25.
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FIG. 6. Comparison of the thrust (a) and lift (b) oscillating amplitude with the experimental results from
Ref. [5] and the theoretical results in Ref. [8] and Ref. [9] for the thrust and in Ref. [7] for the lift with various
Reynolds number. Pure pitching motion with a0 = 2◦ and a = −0.25.

value that tends to result when k → 0 [10]. Together with the present numerical results, the
experimental results from Ref. [5] for Re = 12 000 are plotted. Also, the previously mentioned
theoretical models [8,9] have been plotted [from now on the Garrick and F-F (Fernandez-Feria)
models, respectively] in comparison with the numerical and experimental results. The F-F theory
predicts the numerical and experimental results better than the classical Garrick theory, where the
F-F theory is limited for values of the Strouhal number St � 0.25 and for values of the Reynolds
number Re � 4000, since the relative time-averaged thrust value does not change for high Reynolds
number, as can be seen in the Fig. 5(b). This effect has been found also for high pitching amplitudes
[18].

On the other hand, the theoretical results of the F-F model compare better than the Garrick ones
not only in the case of time-averaged values but also for the thrust oscillating amplitudes as one can
see in the Fig. 6(a) showing this effect more clearly for high values of the Strouhal number. In the
case of the lift coefficient oscillating amplitude, the numerical results collapse with the theory from
Ref. [7] [see Fig. 6(b)]. Recent findings show that CT − CT 0 should scale with St2 [18,26], but to be
consistent with the linear theories, the unsteady thrust amplitude has been normalized by the square
of the pitching angle [see Fig. 7(a)]. Nevertheless, in the Fig. 7(b), the corresponding phase lag in
the thrust coefficient normalized with St2 has been plotted in regard to sin(4kt ) to compare with
the experimental results from Ref. [5]. As can be seen, the F-F model predicts slightly better a CT

oscillating amplitude independent of a0, but both theories scale the phase lag with St2.
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FIG. 7. Comparison of the thrust oscillating amplitude normalized with a2
0 (a) and the phase lag normalized

with St2 (b) with the experimental results from Ref. [5] and the theoretical results in Ref. [8] and Ref. [9] for
various Reynolds number. Pure pitching motion with a0 = 2◦ and a = −0.25.
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FIG. 8. (a) Comparison of the time evolution of the thrust coefficient relative to CT 0 with the numerical
results from Ref. [25] and the theoretical results in Ref. [8] and Ref. [9], F-F in the legend. (b) Comparison
of the temporal evolution of the lift coefficient with the theoretical results from Ref. [7]. Pure pitching motion
with a0 = 2◦, a = −0.25, k = 8 (St 
 0.133) and the considered values of the Reynolds number.

In Fig. 8(a) for the selected case of k = 8 (St 
 0.133), the oscillating amplitude of the thrust
coefficient has been plotted, where F-F model compares better than the Garrick model, and the
Garrick theory presents a bigger lag in the temporal evolution of the thrust coefficient. Together with
the present results the numerical results from Ref. [25] for Re = 12 000 are plotted, showing that for
high Reynolds numbers, the thrust coefficient relative to the constant thrust value, CT 0, practically
does not change. Also, the temporal evolution of the lift coefficient is plotted in Fig. 8(b) for the
considered values of the Reynolds number comparing with the theoretical results from Ref. [7], As
shown in Fig. 6(b), the numerical results are practically independent of the Reynolds number and
the oscillating amplitude of CL coincides with the theoretical results. However, as one can see in
Fig. 8(b) the theory lags behind the numerical results.

Finally, in Fig. 9(a) the time-averaged thrust coefficient has been plotted varying the pivot point
location for the selected case of St = 0.2, relative to the constant value C∗

T 0 = C̄T (St = 0.05) [see
Fig. 9(b)] as a approximation of CT 0. Note that for a = −0.5 the pivot point is located in the leading
edge, and when a = 0.5, it is in the trailing edge. The collapse of the time-averaged thrust coefficient
for high Reynolds number is produced also varying the pivot point location, and once again, the F-F
model predicts better the numerical results than the Garrick model.

B. Pure heaving motion

As second numerical results, a pure heaving motion (a0 = 0) has been considered, with a
plunging amplitude of h0 = 0.025. The Strouhal number ranges from 0.05 � St � 0.4, i.e., varying
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FIG. 9. (a) Comparison of the time-averaged thrust relative to the constant value C∗
T 0 (b) with the theoretical

results in Ref. [8] and Ref. [9] for various Reynolds numbers and varying the pivot point location for St = 0.2
and a0 = 2◦.
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FIG. 10. (a) Comparison of the time-averaged thrust relative to the constant value CT 0 with the theoretical
ones in Ref. [8] and Ref. [9], F-F in the legend, for various Reynolds number. (b) Time-averaged thrust as a
function of the Reynolds number for two values of the Strouhal number together with the value of CT 0. Pure
heaving motion with h0 = 0.025.

the reduced frequency from π � k � 8π [see the Eq. (7)] for the same Reynolds numbers in the case
of pure pitching motion. In this case, the F-F theory is limited for values of the Strouhal number
St � 0.2 as one can see in Fig. 10(a). For bigger heaving amplitudes, it has been found that the
limitation of the theory is reached for St � 0.3 as has been reported in Ref. [9] and later in Ref. [6].
Apart from that, for pure heaving motion, the theory can be used for smaller Reynolds numbers
than for pure pitching motion as one can see in the Fig. 10(b) more clearly. However, the thrust
coefficient oscillating amplitude is predicted better by the Garrick theory than the F-Ftheory [see
Fig. 11(a)], in spite of the lift coefficient oscillating amplitude, which is still well reproduced in
Ref. [7] [see Fig. 11(b)]. Note that, although the Garrick theory compares better than the F-F theory
for the oscillating amplitude of the thrust coefficient, the time-averaged thrust coefficient continues
matching better with the F-Ftheory, as has been mentioned before. On the other hand, one has to
take into account that for values of the Strouhal number St � 0.3, the solution is aperiodic and the
time-averaged thrust coefficient depends on the number of flapping cycles which one uses to obtain
the mean, as for bigger heaving amplitudes shown in Ref. [6].

C. Combined motions

Both linear potential theories make the assumption of considering small oscillating amplitudes
as has been mentioned before. Nonetheless, the F-F theory still continues to predict better the
numerical or experimental results even when the oscillating amplitudes are not small. To show that,
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FIG. 11. Comparison of the thrust (a) and lift (b) oscillating amplitude with the theoretical results in
Ref. [8] and Ref. [9] for the thrust and in Ref. [7] for the lift with various Reynolds number. Pure heaving
motion with h0 = 0.025.
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FIG. 12. Comparison of the theoretical results with the experimental results from Ref. [4] of the time
evolution of the thrust and lift coefficient for k = 0.25, h0 = 0.5, a0 = 8.42◦, φ = π/2, and αm = 8◦ (St 

0.08).

the theoretical results have been compared for a combined motion with an averaged angle greater
than zero, αm, with the experimental results from Ref. [4] for a flat plate. Although this case has not
been simulated because the mesh convergence would have to be done again for this particular case,
it is interesting to show the better agreement of the F-F theory for not-small oscillating amplitudes
compared to the Garrick theory when a αm �= 0 is considered. The kinematics parameters of this
motion are given in the caption to Fig. 12. Note that, to compare correctly these experimental
results with the theory, one has to add the steady lift contribution, CL0 = 2παm, and consequently
to remove the contribution of the mean angle in the plate circulation. As one can see in Fig. 12,
the theoretical results of the F-F model are still much better than those of the Garrick model even
when the αm �= 0 and the motion amplitudes are not small. Nonetheless, for very high Reynolds
numbers, the theoretical results begin to not compare well with the experimental results because of
the turbulence effects in these large motion amplitudes.

V. CONCLUSION

A two-dimensional numerical model has been presented to compute the flapping motion of an
airfoil, using the Kármán-Trefftz transformation fitting a NACA profile. The governing equations
have been solved with a compact finite-differences scheme of sixth order in terms of vorticity and
stream function, which has been validated with different experimental, numerical, and theoretical
results.

The numerical simulation of a flapping airfoil has been used to find the validity limit of two
theoretical models given in Ref. [8] and Ref. [9], respectively, in terms of Reynolds and Strouhal
numbers for pure pitching motion and for pure heaving motion. In general terms, the F-F theory

FIG. 13. Definition of the characteristic dimensions of the wake structure of the flow around the circular
cylinder.
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FIG. 14. Comparison of the numerical results with the experimental data from Ref. [24], for Re = 550
(a) and for Re = 3000 (c), of the closed wake length, L/D, and location of the main eddy core, xc/D, yc/(2D)
(measured from the most downstream point of the cylinder). Numerical results (continuous line) for the velocity
at the mean line of the wake compared with the theory (dots), and the experimental data from Ref. [24], for
several moments of time (see the legend of the figure) for Re = 550 (b) and for Re = 3000 (d).

presents better results for time-averaged coefficients than for time-dependent coefficients for the
case of pure pitching motion. Also, it has been found that the F-F theory could be used when the
Reynolds number is greater than 4000 and St � 0.25. However, only the Garrick theory matches
with the numerical results for small values of the Strouhal number, when it is computing the
time-averaged thrust coefficient. In the case of pure heaving motion, the Reynolds number limitation
is smaller than the case of pure pitching motion, i.e., the F-F theory could be used from Re � 1000
and St � 0.2, although for large heaving amplitudes, the Strouhal number limitation could be greater
(St � 0.3) [6]. On the other hand, the Garrick theory compares better than the F-F theory for the
oscillating amplitude of the thrust coefficient, but the time-averaged thrust coefficient continues
to match better with the F-F theory. In order to correctly compare both linearized theoretical
models with the experimental and numerical results it is necessary to add the quasisteady constant
thrust value, CT 0 [10], when it is computing the time-averaged thrust coefficient, which must
be obtained numerically or experimentally. Finally, the F-F theory still works better than the
Garrick theory even when the flapping amplitudes are large and with an averaged angle over than
zero.

123101-13



J. ALAMINOS-QUESADA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10

-8

-6

-4

-2

0

2

4

6

8

10

12

FIG. 15. Lift coefficient CL (t ) during a cycle compute for Re = 10 000, h0 = 0.025, and k = 7.86 com-
pared with the experimental results of Ref. [3], the numerical results of Ref. [6], and the theoretical ones in
Ref. [7].
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APPENDIX: VALIDATION OF THE CODE

To validate the code and test that it is working correctly, some numerical simulations have
been done comparing with experimental avalaible results in the bibliography. Firstly, the numerical
simulations have been compared with the flow around a circular cylinder where the characteristic
dimensions of the wake structure are defined in Fig. 13. In Figs. 14(a) and 14(c), one can see the
comparison of the closed wake length and the location of the main eddy core for Re = 550 and
Re = 3000. Given the three-dimensional nature of the experimental problem and the difference in
starting conditions, the agreement is very good.

In addition, the velocity at the mean line of the cylinder wake has been compared with the theory
and the experimental results from Ref. [24] for the same flow conditions as above. Figures 14(b) and
14(d) show a comparison between computed and experimental flows with very good agreement.

Finally, Fig. 15 shows a comparison of the lift coefficient CL(t ) during a cycle, computed for
Re = 10 000, h0 = 0.025, and k = 7.86 for a pure heaving motion with the experiments from
Ref. [3], the numerical simulations from Ref. [6], and the theory in Ref. [7] in order to test the
conformal mapping fitting the NACA profile. Again the agreement is very good.
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