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We study properties of the turbulent/nonturbulent interface (TNTI) between two layers
of stratified fluids through direct numerical simulations (DNSs). Zero mean shear forcing
creates moderate turbulence in one of the layers with the Taylor microscale Reynolds
numbers in the mixed region of Reλ = 35, 44. We focus on the similarities and differences
of the properties of stratified TNTIs due to two distinct types of forcing: (a) convection
due to a boundary heat source and (b) agitation resembling a vertically oscillating grid
experiment. Similarly to other stratified flows, the small scale dynamics of the TNTI in the
present DNSs differ from what would be expected in comparable yet unstratified TNTIs.
The interface cannot be indeed uniquely identified by the commonly used vorticity ω.
Instead, the potential enstrophy �2 is shown to be the most appropriate marker in these
flow cases. It is emphasized that the Kolmogorov lengthscale ηK ∼ √

ν/ω is not repre-
sentative of the small scale dynamics of the interface. Hence, an alternative lengthscale,
η�, is defined, in analogy to the Kolmogorov scale, based on the potential enstrophy,
η� = (ν3/�∗)1/6, being �∗ = |g/ρ0�|. The conditionally averaged profiles of potential
enstrophy �2, enstrophy ω2, and turbulent kinetic energy dissipation ε of the two distinctly
different turbulence forcing cases collapsed when scaled by η� at different time instants
in each simulation. This implies not only the self-similarity of the small scale statistics of
the TNTI in either of the two cases, but also the similarity between the statistics of the two
different turbulent flows in the proximity of TNTI.

DOI: 10.1103/PhysRevFluids.6.114803

I. INTRODUCTION

Entrainment across turbulent/nonturbulent interfaces (TNTIs) in stratified fluids is important for
a vast set of applications, such as the dynamics of the ocean, atmospheric pollution dispersion, and
the spread of contaminants [1]. Entrainment is responsible for the mixing and exchange of mass,
energy, momentum, and scalar quantities between the fluid regions [2,3].

In unstratified cases, the turbulent flow can propagate into the irrotational region, moving the
TNTI by viscous action, defined by small Kolmogorov-sized scales [4,5]. The TNTI itself can be
subdivided into viscous sublayer (VSL), as proposed in [4] with an estimated thickness of the order
of the Kolmogorov lengthscale ηK , and turbulent sublayer (TSL) [5–7], depending on the relative
magnitude of viscous diffusion and turbulent vorticity, ω.
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The VSL is a result of the process by which vorticity diffuses into the quiescent region. The
lengthscale associated with this phenomenon is controlled by the viscosity ν and the dissipation
(the squared rate of strain), which is comparable in magnitude to enstrophy, ω2. Therefore, the
lengthscale, after appropriate dimensional analysis, could be

√
ν/ω, that corresponds to ηK up to a

multiplicative factor of 2 [8–10]. The thickness of the TSL, responsible for the increase in vorticity
between the viscous sublayer and a fully turbulent region, is defined as the thickness of the enstrophy
jump. Results in [11–14] show that the turbulent sublayer thickness is of the order of magnitude of
the Taylor lengthscale, λ. More recently, [15] demonstrated theoretically and experimentally that
specifically in nonequilibrium turbulence the entrainment velocity scales with the Taylor velocity
vλ, rather than Kolmogorov velocity scale.

In general, the TNTI can be defined using the sharp change in magnitude of enstrophy, by
a passive scalar or density and/or temperature [16,17]. Differences may arise in the interface
identification by different markers [18]. This is explained by different governing processes near
the TNTI: viscous diffusion versus molecular diffusion. The differences depend on the values of
Prandtl or Schmidt numbers and for high Pr, Sc � 1 this may affect the statistics conditioned on
the TNTI [19–21].

In stratified fluids the flow physics is more complex because turbulence is also responsible for
the irreversible mixing of the entrained fluid that changes its properties [22,23]. Substantial insight
into stratified mixing without mean shear was obtained in experiments that employed a vertically
oscillating grid in a two-fluid layer system [24–26].

A characteristic feature of stably stratified fluids is the presence of internal waves that are
triggered by the turbulent agitation and propagate through the fluid at angles that are determined by
the local stratification. Researchers addressed the internal waves generated by the turbulent wake of
a sphere moving horizontally in a linear stratification both experimentally [27,28] and numerically
[29]. Internal waves due to turbulence mechanically activated by grids were studied in the laboratory
and simulations in a linearly stratified fluid [30,31].

Internal waves in stratified fluids can produce vorticity in the previously quiescent zone [32].
Therefore, vorticity is not anymore a reliable marker of the turbulent/nonturbulent interface [19].
Therefore, in stratified turbulent flows, the potential vorticity � = ω · ∇ρ (where ρ is density),
which is not transferred by the internal waves [33], was suggested to identify turbulent regions
[31]. Even if its advantage in the study of the atmospheric convective boundary layer has been
questioned [34], because the enstrophy varies several orders of magnitude between the turbulent
side and the gravity waves in the free troposphere, � has been successfully used to mark the
nonturbulent and turbulent regions [31]. Potential enstrophy was also used in conjunction with
enstrophy to identify TNTI in DNSs of turbulent stratified wake [19]. Recently � was effectively
used to detect the TNTI in shear-driven, linearly stratified, turbulent flow DNS [35]. The authors [35]
performed in-depth analysis of ω and � budgets, and estimated the interface thickness, studying
flow properties near TNTI as the function of the buoyancy Reynolds number, Reb = (LO/ηK )4/3,
which accounts for the effects of turbulence and buoyancy, where LO =

√
ε/N3 is the Ozmidov

lengthscale, and ε and N are the turbulent kinetic energy dissipation rate and buoyancy frequency,
respectively.

One of the open questions with respect to the physics of the stratified fluids interfaces is whether
a large-scale forcing on the turbulent side affects small-scale TNTI properties. We studied this
aspect numerically through a comparative analysis of two stratified turbulent flows: one generated
by a convective forcing through a boundary buoyancy flux, and another using a mechanical type of
forcing, analogous to a vertically oscillating grid, both without mean shear.

We demonstrate that the statistics in the VSL scaled with the lengthscale ηk [4] has to be adjusted
for the stratified turbulent cases, at least in the range of the Reynolds numbers of this work and for
shearless forcing types we present. Another small-scale lengthscale, η�, defined with ν and �, is
developed. We then present the statistics scaled with η�, that show the small-scale self-similarity in
the TNTI region for the two different flow cases, irrespective of their large-scale forcing type.
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II. METHODS

Two cases with shearless turbulence are simulated: an oscillating grid turbulence case (hereafter
denoted as G) and a convective boundary layer case (C). The direct numerical simulation is
performed using the DNS code SPARKLE, which integrates the incompressible Navier-Stokes equa-
tions in the Boussinesq approximation [36,37]:

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ0

∂ p

∂xi
+ ν

∂2ui

∂x2
j

+ bδi3, (1)
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∂b

∂x j
= κ

∂2b

∂x2
j

, (2)

∂ui

∂xi
= 0, (3)

where ui is the velocity vector, b = g(ρ0 − ρ)/ρ0 is the buoyancy, ν is the kinematic viscosity
and is κ the molecular diffusivity, g is the gravitational acceleration, and ρ0 is a reference density.
Equations (1)–(3) use Einstein notation, where i = 1, 2 represents the horizontal components, x, y,
and i = 3 is the vertical direction, z. The code is fully parallelized, making use of domain de-
composition in two directions. The spatial differential operators are discretized using second-order,
symmetry-preserving central difference [38] and time integration is carried out with an adaptive
second-order Adams-Bashforth method [36].

Both simulations have periodic boundary conditions applied at the lateral walls and free-slip
conditions at the upper and bottom boundaries. At t = 0, the fluid is at rest and has a two-layer
stratification with its interface at z = h0 ≡ h(t = 0). h corresponds to the mixing layer depth,
described in Sec. II D. We choose ρ0 to be the density of the bottom layer, which leads to b0 = 0 for
z < h0 and bref = �b for z > h0.

A. Grid turbulence simulation

The grid-generated turbulent flow (case G) is a DNS in a cuboidal domain of size Lx × Ly × Lz =
h0 × h0 × 2h0, on the 360 × 360 × 720 mesh. The oscillating grid is implemented using a standard
immersed boundary method, with a motion of the form

zgrid(t ) = zgrid0 + 0.5S sin(2π f t ), wgrid = 0.5S 2π f cos(2π f t ), (4)

which is imposed by setting the velocity in the region occupied by the grid equal to (0, 0,wgrid );
a qualitative representation of case G is shown in Fig. 1(a). To preserve the incompressibility of
the fluid, the Poisson solver for pressure is called right after the computation of Eq. (4). Similar
simulations with this forcing type were implemented several times in different contexts [39–41].

Key parameters of the oscillating grid case are the midstroke position of the grid, zgrid0/h0 =
−0.467, the stroke length S/h0 = 0.267, and the dimensionless oscillation frequency f t∗ = 42,
where t∗ = L/u′

RMS is the turnover time, u′
RMS the horizontal (longitudinal u′ and transverse v′)

velocity fluctuations root mean square, and L is the integral lengthscale [42]. The thickness and
the mesh size of the grid are a/h0 = 0.03 and M/h0 = 0.2, respectively. These were chosen to
resemble an oscillating grid with solidity of 0.31, similar to the experiments performed in [43].
The parameters are set to develop a well-mixed turbulent layer in proximity of the initial buoyancy
discontinuity located at h0.

The Reynolds number is computed similarly to the experimental studies as Re = u′
RMSL/ν =

Kgβg/ν [42,43], where Kg is the so-called grid action, and βg is an empirical constant that depends
on the grid characteristics S, f , M [44]. This approach is based on empirical relationships that define
u′

RMS and L with the oscillating grid characteristics: u′
RMS = Kg/d , L = βgd , where d ≡ z − zgrid0

is
the distance from the grid midstroke position. The results of the model [42] for Kg and βg are shown
in Figs. 1(b) and 1(c), respectively.
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FIG. 1. Oscillating grid DNS case G: (a) Three-dimensional (3D) representation of the grid within the
domain at t/t∗ = 3.8; the colored fields represent the fluid vertical velocity. (b) Spatial distribution of u′

RMS and
(c) longitudinal integral lengthscale as function of the distance from the grid, d .

B. Convective boundary layer simulation

The convective case (C) is simulated with a steady vertical heat flux qw = −κ∂θ/∂z applied
at the bottom boundary. The three-dimensional volume has Lx × Ly × Lz = 4h0 × 4h0 × 2h0 size,
with a computational resolution of Nx × Ny × Nz = 720 × 720 × 360. Similarly to G, this case
also develops a fully mixed region between the turbulence source at the boundary and the initial
density jump at h0. In the case C the characteristic velocity of the convective mixed layer is
U = (βgqwh0)1/3 [45], with β the thermal expansion coefficient, and the characteristic lengthscale
is L = h0. The Reynolds number for the case C is Re = UL/ν = 1260.

C. Further simulation details

Both simulations were performed for a period trun, but all the results in Sec. III are computed
after trun/2 in order for the system to reach a quasistationary condition. Details are summarized
in Table I. In addition to the domain sizes Ni=x,y,z, Li=x,y,z and the large-scale Reynolds number
Re, Table I reports other key parameters: the Taylor microscale Reynolds number, Reλ = uT λ/ν,
and buoyancy Reynolds number, Reb, which are more relevant for comparison of the well-mixed
layers due to different large-scale forcing, and near the TNTI, respectively. Both parameters are
given for two locations: at z = h, and closer to the turbulence source, in the well-mixed region,
where stratification effect is negligible (LO � ηK ). Reλ is computed using the Taylor microscales

TABLE I. The DNS cases main features.

Nx Ny Nz Lx Ly Lz/h3
0 Pr Re trun/t∗ Reλ(z = h) Reλ(z = 0.7h) Reb(z = h) Reb(z = 0.7h) Ri �z/ηK

C 7202 × 360 42 × 2 1.25 1260 16 13 44 0.210 105 240 0.91
G 3602 × 720 12 × 2 1.25 92 6 8 35 0.125 21000 30 1.44
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FIG. 2. Vertical profiles of case C (upper row), and case G (lower row) over time: (a, e) buoyancy; (b, f)
turbulent kinetic energy; (c, g) diffusive flux; (d, h) turbulent flux.

uT ≈ √
2k/3 and λ = √

10νk/ε, utilizing the turbulent dissipation rate, ε, and the turbulent ki-
netic energy k = 1

2 (u′2 + v′2 + w′2). The buoyancy Reynolds number Reb, commonly representing
turbulence intensity in stratified flows relates the influence of buoyancy and small-scale turbulence.
The Ozmidov scale is computed with the frequency N defined as (gdb/dz)1/2. The strength of
the stratification is estimated with the bulk Richardson number Ri. It is defined as Ri = �bh/k,
where k = k(z = 0.7h). The Prandtl number is set to Pr = 1.25, for both cases G and C, to increase
viscosity over molecular diffusivity.

D. Horizontally averaged statistics

Before presenting the conditional analysis, the basic statistics of the two cases are discussed.
Figure 2 shows the spatial distributions of key flow properties of the two DNSs emphasizing
their common features and differences. The horizontally averaged profiles of buoyancy b, turbulent
kinetic energy k, the diffusive flux φB = −κ db/dz, and the turbulent buoyancy flux w′b′, are shown
for the two DNSs (case C in the top row and case G in the bottom row). The quasistationary temporal
evolution of these quantities is shown by color shades as explained in the legends. The profiles are
horizontally averaged, with further averaging over one turnover time scale t∗. Since the emphasis
of this paper is on the entrainment properties of different flows, the profiles are normalized by the
value at the mixed layer depth h. The mixed layer depth h is diagnosed via the minimum of the
diffusive buoyancy flux φB (or equivalently the inflection point of the mean buoyancy). bφE and kφE

are then the buoyancy and the turbulent kinetic energy, sampled at z = h. The entrainment flux φE

was determined following [46] by extrapolating the linear profile of the total buoyancy flux to the
boundary layer depth h.

The horizontal dotted lines in case G [Figs. 2(e)–(h), at −0.6 and −0.33] mark the stroke of
the grid. Since the fluid velocity in this region is directly affected by the oscillating grid motion,
the corresponding volume is excluded from the conditional analysis in Sec. III B. The negligible
differences between the curves with different shades, corresponding to the prescribed time intervals,
emphasize that the systems have reached their quasi-steady-state regimes, for all the relevant
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quantities. Moreover, Figs. 2(a) and 2(e) and Figs. 2(c) and 2(g) show that both simulation results
have similar profiles for buoyancy and diffusive fluxes. This is one of the key similarity points
of the two cases. It is also clear that, in the time needed to reach the quasisteady condition, the
molecular diffusion causes the buoyancy profile to transition from the initial step function profile,
with discontinuity at z = h0, to a continuous profile with a transitional region at about z ≈ h. The
existence of this layer supports a region in which internal waves can propagate.

Despite the similarity in flux profiles, the two cases are different in their mechanisms: the
convective C case produces turbulence via buoyancy w′b′ over the entire mixed layer (apart from the
entrainment zone in which w′b′ is negative), while for the grid case G, the turbulence is generated at
the grid and then transported through the mixed layer. Here, the buoyancy flux is negative throughout
the mixed layer, which goes at the expense of the turbulence kinetic energy (TKE). This is evident
in the profiles of turbulence kinetic energy, which are substantially different [Figs. 2(b) and 2(f)].
Figure 2(b) presents relatively large values of k throughout the bottom half of the domain before a
sharp drop at (z − h)/h < −0.2. For the G case, Fig. 2(f), TKE decays with the reciprocal of the
distance from the grid as k1/2 ∼ u′

RMS = Kg/(z − zgrid0
) [42,47], right below the region of the direct

agitation by the oscillating grid.

III. RESULTS

A. Definition of the turbulent/nonturbulent interface position

As mentioned in the introductory section, there are several possible definitions of TNTI. In
unstratified cases, vorticity is used to separate rotational from irrotational fluid, based on either
vorticity or enstrophy thresholds, ω2 � ω2

th. An appropriate threshold is chosen such that the
conditional statistics near the TNTI do not significantly depend on its value (e.g., [5,8]). It is
typically supported by the plot of the turbulent volume as a function of enstrophy, which exhibits a
plateau at a properly chosen ω2

th. It is also possible to visualize the interface position, its shape that
should not vary strongly depending on the value of ω2

th (see, e.g., [6,48]).
In stratified cases, vorticity can be produced in the environment by internal waves [32,49]. This

situation complicates the use of ω2
th as a TNTI marker. This may be especially relevant for low and

moderate Reynolds numbers [34]. Conversely to ω2, �2 is produced by viscous and diffusive effects
[19]. Initially irrotational fluid regions may acquire potential enstrophy only by turbulence-related
mechanisms (like entrainment) but not through internal waves.

Figures 3(a) and 3(b) and Figs. 3(d) and 3(e) show a two-dimensional (2D) vertical cross section
(C and (G simulations, respectively), presenting the potential enstrophy [Figs. 3(a) and 3(d)] and
enstrophy [Figs. 3(b) and 3(e)] with the former exhibiting a clear boundary between the turbulent
and nonturbulent fluids. Note that the vertical axis is relative to the mixed layer depth h defined in
the previous section, and it is clear that the instantaneous TNTI is situated about 20% higher than h.
The instantaneous values of ω2 can be seen to extend even further up, and are a result of the smooth
stratification produced by molecular diffusion and to the relatively low values of Re which allow
internal waves to propagate into this region. We experimented with a large number of indicators
for TNTI, including enstrophy, and hybrid indicators [19], but in all other cases the results were
unacceptably sensitive to the chosen threshold. Only potential enstrophy turns out to be a robust
indicator for the TNTI, provided that the threshold is chosen sufficiently small. Figures 3(c)–(f)
show the turbulent volume fraction VT as a function of �2, normalized by its mean value 〈�2〉
computed over the turbulent and quiescent regions (excluding the volume spanned by the oscillating
grid in G). It is clear that VT is only weakly dependent on the exact value near the chosen threshold:
4 × 10−6〈�2〉 for case C DNS and 1.6 × 10−6〈�2〉 for case G.

B. Comparison of the near-interface dynamics between the two cases

It is generally expected that the significant properties for the near-interface turbulent dynamics,
driven by the viscous diffusion of vorticity into the irrotational region, are the kinematic viscosity
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FIG. 3. Case C (upper row) and G (lower row): vertical cross section of (a–d) normalized �2, (b–e)
normalized ω2, and (c–f) turbulent volume fraction as function of �2. Black lines mark threshold (solid),
1/5 of threshold (dashed), 1/10 of threshold (dotted).

ν and vorticity ω [4,8,9]. The most relevant lengthscale in this region is the Kolmogorov scale,
ηK ∼ √

ν/ω (derivable from the more common expression ηK = (ν3/ε)1/4 using the relation ε =
2νω2, valid in homogeneous isotropic turbulence [50,51]). Therefore, for the following comparison
of the small-scale near-interface dynamics of the two DNS cases in Figs. 4 and 5 we normalize the
distance to the interface, z∗ = z − zI , where zI is the interface position, by ηK computed at the TNTI.
We want to check if some similarities in the conditional profiles of �2, ω2, k, and ε in Figs. 4(a),
4(c), 4(e), and 4(g) can be found. These quantities, scaled by ηK , do exhibit good self-similarity
in time for each DNS separately. The conclusion one has to draw from these results is that the two
simulations—despite both being driven by shearless turbulence—do not produce the same dynamics
near the TNTI, with the turbulent quantities in C changing much more slowly as a function of z∗/ηK

than G.
However, in the choice of the threshold indicator, it was quite clear that the enstrophy was not

suitable for these cases. Since the potential enstrophy �2 was shown to be a robust TNTI indicator,
it stands to reason to define a new local lengthscale

η� =
(

ν3

�∗

)1/6

, (5)

where �∗ is defined as

�∗ = |ω · ∇b| =
∣∣∣∣ g

ρ0
�I

∣∣∣∣ (6)

and �I the square root of the threshold of potential enstrophy. η� defines the relevant scale in cases
when the vorticity evolves not only through viscous diffusion, but also by stratification effects.
In stratified cases �2 can only enter the nonturbulent region via molecular effects. Therefore,
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FIG. 4. Vertical conditional profiles of (a, b) �2, (c, d) ω2, (e, f) k, (g, h) ε scaled with ηK (left column)
and η� (right column). G, black curves; C, red curves.

applying a dimensional analysis using � and ν to obtain a lengthscale, η� is the natural small-scale
lengthscale.

The flow properties scaled with η� for both DNSs are reported in Figs. 4(b), 4(d), 4(f), and 4(h).
The key result is that the two simulations exhibit remarkably similar behavior near the TNTI, when
scaled based on η�. Indeed, for �2, ω2, and ε, the profiles of \textrmG and \textrmC are nearly
indistinguishable for z∗/η� > −10. Only the kinetic energy for the two cases deviates deeper into
the nonturbulent layer (z∗/η� > 5).

Comparison of profiles of potential enstrophy and enstrophy in Figs. 4(b) and 4(d) further
highlights the effectiveness of the proposed method for TNTI detection and the use of the new
lengthscale. Not only does �2 present a larger magnitude in the “jump” across the interface as
in [35], �2 curves also show a clear change in slope, with the presence of the inflection point at
z∗ ≈ 0, and a distinct boundary between the turbulent and the nonturbulent regions which is sharper
as compared to ω2.

To provide a precise value for the TNTI thickness δI we followed the procedure proposed in [35]
based on a fit of Gaussian shape to ∂�2/∂z. This procedure yields δI ∼ 10η� for both C and G. It is
noteworthy that in the stratified shear driven flow [35] δI increased with decreasing Reb, as the flow
evolved in time. It remains to be studied whether this effect is present in shearless stratified cases
on a larger range of Reb.
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FIG. 5. Vertical conditional profiles of (a, b) Reε , (c, d) w′b′ scaled with ηK (left column) and η� (right
column). C, red curves; G, black curves.

We also computed the TNTI thickness with the Kolmogorov length ηK scaling: both DNSs
present constant behavior in time; however, the difference in δI is larger between C and G than
the results obtained from the η�. In case G δI = 10ηK , while in C we obtain δI = 15ηK . For
completeness, we tested the viscous scale derived by [52] and used by [35] for low Reb, but results
were inconclusive.

We further compare the two cases and the scaling with the viscous lengthscale versus the new
lengthscale in Fig. 5 presenting the turbulent Reynolds number Reε = k2/(νε) and the turbulent
buoyancy flux w′b′. Here, no collapse is observed in either of the lengthscales. Both turbulence
Reynolds numbers are O(1) at the TNTI; the convective driven case C is more strongly agitated
compared to the grid case G in the turbulent region, leading to higher values of Reε . This is possibly
caused by the different nature of forcing type. The turbulent fluxes shown in Figs. 5(c) and 5(d)
reflect, similarly to Reε , the different types of turbulent agitation of the two cases in the turbulent
regions and the change from negative to positive values of w′b′ that leads to a local maxima in the
interfacial layer.

C. Vorticity structure in the near-TNTI region

One of the key questions is whether the vorticity dynamics is different between the two
cases. We address this question by studying the alignment of vorticity vectors with the TNTI
isosurface, conditionally sampled at different distances from the interface. The alignment of two
three-dimensional vector fields can be characterized through the alignment angle θ , which is defined
as cos θ = ω · n/|ω||n|, where n is the normal to the TNTI surface [53]. The alignment is analyzed
through the conditional mean profiles and probability density functions (PDFs) of cos θ , in Fig. 6.

We observe a strong alignment between vorticity and the TNTI surface, similar to the results
in [53]. This is expected at the TNTI interface, including stratified flow cases, since according to
Helmholtz’s second theorem a vortex filament either extends to the fluid boundaries or forms a
closed path [54], hence vortical tubelike structures, associated to turbulence, could not end inside
the fluid. Evidence for the above statement is shown in Fig. 6(a): a plateau at −10 < z∗/η� where
the minimum value of 〈cos θ〉 is approximately 0.3 for both DNSs.

The PDFs of cos θ at three distance intervals are shown in Figs. 6(b), 6(c), and 6(e). The PDFs
in the interval [−20,−15]η� show that in the turbulent regions the vorticity angles are almost
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FIG. 6. Alignment of ω with the TNTI normal n. C, red curves; G, black curves. (a) Vertical profiles
of 〈cos θ〉. PDFs of cos θ at different interval height: (b) −20 < zI/η� < −15, (c) −10 < zI/η� < −5, and
(d) −2.5 < zI/η� < 2.5.

uniformly distributed and there is no preferential alignment. A lower Reynolds number in the G case
compared to the C case is probably the reason for the small bias in the alignment. However, when
getting closer to the TNTI, as in Figs. 6(c) and 6(d) that represent the intervals [−10,−5]η� and
[−2.5, 2.5]η�, respectively, we observe that the most frequent angle between ω and n is cos θ = 0
similarly to [53], confirming a tendency of ω to align with the TNTI.

IV. SUMMARY AND CONCLUSIONS

We presented a DNS study of the TNTI in shearless stratified turbulent flows, with a buoyancy
jump between two layers. We focus on the question of similarity at small scales in the proximity of
the interface of two fluid cases, forced by two distinctly different ways: convective forcing using a
constant heat flux versus an agitation resembling an oscillating grid.

We confirmed that in the stratified cases considered here, the common approach to identify
the TNTI based on the enstrophy threshold is not reliable, since ω2 is no longer representative
of the viscous processes across the turbulent/nonturbulent boundary alone, but can also contain
contributions from internal waves. The latter were caused by the interaction of the turbulence with
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a stratified layer which developed due to molecular diffusion. Hence the potential enstrophy �2,
which is not affected by stratification-related phenomena, needs to be used to define TNTI in both
shearless cases, similarly to [19,35]. Based on the analogy between the enstrophy ω2 and potential
enstrophy �2 we defined a lengthscale η�. Using this lengthscale, the basic TNTI statistics for the
two cases collapsed onto each other. Furthermore, the lengthscale clearly distinguished between
the turbulent region and the near-TNTI region in the slopes of the profiles of turbulent properties.
The near-TNTI region defined by our lengthscale also reflects the fact that the vortical structures
realign to the interface within this region (while being randomly oriented in the turbulent core).
However, there were also indicators that did not collapse onto one curve, such as Reε and the
turbulent heat flux w′b′.

In light of the intriguing results for the lengthscale η�, it will be crucial to explore the behavior
for these flow cases at higher Reb and also for other canonical flows, such as a stratified wake.
Furthermore, it may be interesting to analyze the various terms of the potential-enstrophy equation,
to obtain more detailed description of the physical phenomena that influence �2, similar to the study
of [35]. It is also interesting to test if this scale has presence in the small-scale dynamics of turbulent
linearly stratified flows.
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