
PHYSICAL REVIEW FLUIDS 6, 114602 (2021)

Drag reduction via opposition control in a compressible turbulent channel
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The compressibility effect on opposition drag control is studied via direct numerical
simulation of turbulent channel flows at a bulk Reynolds number Reb = 3000 for three
different bulk Mach numbers: Mb = 0.3, 0.8, and 1.5. For all Mb, the drag reduction (DR)
has a similar trend as that of the strictly incompressible case; namely, DR first increases
and then decreases with the sensing plane location y+

d . With increasing Mb, DR slightly
decreases at small y+

d but increases at large y+
d . Consequently, y+

d for achieving maximum
drag reduction (DRmax) shifts to larger values, namely, from y+

d = 12.5 for Mb = 0.3 to
20 for Mb = 1.5, consistent with the outward shift of the peaks of Reynolds stresses at
higher Mb. By rescaling the sensing plane with semilocal units, a better collapse of DR is
achieved among different Mb, particularly for small y∗

d . The optimal sensing plane is found
to be y∗

d ≈ 15 with DRmax ≈ 23%. Interestingly, for large y+
d cases, a resonance buffer layer

characterized by a streamwise periodic array of spanwise-coherent rollers is established,
one of the main reasons for the deterioration of drag reduction performance. This layer
of hydroacoustic instability resonance results from the intense interaction of wall-normal
wave propagation with the background mean shear. Space-time correlation of wall-normal
velocity reveals near-wall organized spanwise structures with a well-defined streamwise
wavelength λx , decreasing with increasing Mb.

DOI: 10.1103/PhysRevFluids.6.114602

I. INTRODUCTION

Control of wall-bounded turbulent flows to reduce skin-friction drag has significant economical
and ecological benefits. Consequently, the recent decades have seen much effort to develop and
analyze drag control strategies. One of the promising control techniques is the so-called opposition
control (OC), which, based on the sensing on a plane parallel to the wall (called sensing plane),
employs local wall blowing/suction to counteract the sweep and ejection motions induced by the
near-wall streamwise vortices. Using direct numerical simulation (DNS) of turbulent channel flow,
Choi et al. [1] achieved approximately 25% drag reduction at the friction Reynolds number Reτ ≈
110 with the sensing plane located at y+

d = 10 (The superscript + indicates scaling by wall units,
namely, y+ = yuτ /ν). Hammond et al. [2] later studied the effect of y+

d and found that the maximum
drag reduction is obtained when y+

d = 15, and also showed that, for drag reduced cases, a virtual
wall is established halfway between the wall and the sensing plane, through which almost no flow
crosses, inhibiting the momentum transfer in the wall-normal direction. Focusing on the effects of
both sensing plane y+

d and blowing/suction amplitude A, Chung and Talha [3] found that, for a
given y+

d , drag reduction strongly depends on A. Even for A < 1, a substantial drag reduction can
still be achieved for 20 < y+

d < 30. In addition, they observed that the maximum drag reduction for
different y+

d cases is always obtained with the root mean square (r.m.s.) of the wall blowing/suction
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velocity v′+
w = 0.25. Xia et al. [4] studied the OC in spatially developing turbulent boundary layer

and found that 22% drag reduction is obtained after the transient region. Stroh et al. [5] compared
OC between the turbulent channel and boundary layer flows and showed that in spite of the very
similar drag reduction amounts achieved in these two flows, the underlying mechanisms for drag
reduction are quite different. While drag reduction is purely based on the attenuation of the Reynolds
shear stress in turbulent channel flow, the modification of the spatial flow development is essential
for drag reduction in the turbulent boundary layer. The effect of the Reynolds number has also
been investigated, where, similar to other methods [6,7], drag reduction slightly decreases with
the Reynolds number [8–10]. For example, Wang et al. [10] showed that a maximum 20% drag
reduction is achieved at Reτ = 1000 but at a slightly lower sensing plane (i.e., y+

d = 13.5).
Some other better performing or more practical control methods have also been proposed and

investigated based on this simple technique. For example, Lee et al. [11] developed the suboptimal
control, using information measurable at the wall only, e.g., streamwise wall-shear stress, spanwise
wall-shear stress, and wall pressure. Koumoutsakos [12] also proposed a control based on vorticity
flux, where 40% drag reduction was achieved at Reτ = 180. Pamiès et al. [13] employed the
blowing-only OC to improve drag control performance. Inspired by Choi et al. [1]’s work, Wang
et al. [10] investigated OC using both wall-normal and spanwise velocity components, where
more drag reduction and control efficiency can be achieved when spanwise velocity is included.
Recently, Yao et al. [14] developed a composite control strategy by integrating OC with the spanwise
opposite wall-jet method [7,15], yielding a much higher drag reduction than each individual method.
Lee et al. [16] applied a neural network in a turbulent channel flow at Reτ = 100 and obtained
18% drag reduction using spanwise wall-shear stress to predict wall-normal velocity at y+

d = 10.
Machine learning is now becoming one of today’s most rapidly growing techniques. Han and Huang
[17] pursued the feasibility of employing a convolutional neural network (CNN) to predict the
wall-normal velocity on the sensing plane using either spanwise or streamwise wall-shear stress
generated from DNS. Applying the trained CNNs to a low Reynolds number (i.e., Reτ = 100),
they obtained 19% and 10% drag reduction based on spanwise and streamwise wall-shear stresses,
respectively. Similarly, Park and Choi [18] also found that up to 18% drag reduction can be achieved
using CNNs at Reτ = 180. In addition, 15% drag reduction can still be obtained at Reτ = 578 by
applying the CNN trained at Reτ = 180. Due to the large computational cost of DNS at high Re,
some low-order flow models have been developed for drag control studies [19,20]. For example,
Luhar et al. [20] analyzed OC using a low-order model based on the resolvent analysis and showed
that the model could qualitatively capture the changes in drag reduction with sensing plane and
Reynolds number observed in DNS. In addition, they also extend OC from the physical domain
to a Fourier domain perspective (the so-called varying-phase opposition control), which allows the
controller amplitude for each mode to be complex [21].

Due to its practical relevance, drag control in compressible flow has also been extensively
studied, particularly for passive and open-loop active methods. Duan and Choudhari [22,23] found
a 7% drag reduction by DNS of hypersonic turbulent boundary layers over riblets. Zhe et al. [24]
investigated the effects of uniform blowing or suction on the skin friction in hypersonic turbulent
boundary layers at a free-stream Mach number of 6. They demonstrated that uniform blowing
reduces the skin friction while uniform suction increases it, similar as in the incompressible cases
[25,26]. Kametani et al. [27] studied uniform blowing/suction in compressible turbulent channel
flow (CTCF) and found that the drag reduction and the net energy savings are hardly affected by
the Mach number. Fang et al. [28] carried out a large eddy simulation of CTCF under spanwise
wall oscillation at a bulk Mach number of 0.5, with emphasis on heat transport and its relationship
with momentum transport. Recently, we studied the effectiveness of spanwise wall oscillation in
CTCF [29] and found that at the same semilocal Reynolds number, drag reduction as a function of
oscillation period exhibits good agreement between the supersonic and incompressible cases when
using semilocal scaling.
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Our main objective here is to study the compressibility effect of OC in CTCF. The rest of the
paper is organized as follows. In Sec. II, the governing equation, numerical scheme, and control
method are described. Then, the drag reduction results are presented in Sec. III. To elucidate
the underlying mechanism of skin-friction variation under control, flow statistics, and coherent
structures are examined in Sec. IV. Section V compares the strictly incompressible and low Mach
number cases and discusses the properties of the resonance buffer layer observed for large yd cases.
Finally, conclusions are drawn in Sec. VI.

II. COMPUTATIONAL APPROACH

A. Governing equations

We consider flows of a perfect gas, governed by the compressible Navier-Stokes equations

∂ρ

∂t
+ ∂ρui

∂xi
= 0, (1)

∂ρui

∂t
+ ∂ρuiu j

∂x j
= − ∂ p

∂xi
+ ∂σi j

∂x j
+ fi, (2)

∂e

∂t
+ ∂ (e + p)u j

∂x j
= ∂σi jui − q j

∂x j
+ fiui, (3)

where ρ is the density, ui the velocity component in the ith direction, p the pressure, qj and σi j are
the components of the heat flux vector and the viscous stress tensor, and e is the total energy per unit
volume, which is the sum of internal energy es and kinetic energy e = ρ(es + uiui/2). The Einstein
summation convention applies to the repeated indices.

For the perfect gas, the thermal and caloric equation of state (EOS) is p = ρRT , with R the
universal gas constant. The internal energy is a function of the temperature only es = cvT , with cv

the specific heat at constant volume, and cv = R/(γ − 1), γ = cp/cv is the specific heat ratio, and
cp the specific heat at constant pressure.

The viscous stress and the heat flux are defined as

σi j = 2μ

(
Si j − 1

3
δi jSkk

)
, (4)

q j = −k
∂T

∂x j
, (5)

where μ is the dynamical viscosity, Si j = (ui, j + u j,i )/2 is the rate of the strain tensor, and k =
cpμ/Pr is the thermal conductivity. The viscosity is assumed to obey Sutherland’s law

μ = μ0
T0 + S

T + S

( T

T0

)3/2
, (6)

where μ0 and T0 are reference values and S is a constant. Throughout, S = 110.4 K and T0 =
293.15 K, and the Prandtl number Pr = 0.72 [30].

B. Numerical scheme and simulation parameters

DNSs of the compressible turbulent channel flows are performed with an in-house code. The
streamwise, the wall-normal, and the spanwise coordinates are represented by x, y, z, respectively;
the corresponding velocity components are u, v, w. The governing equations are discretized using
the finite difference method with a seventh-order upwind-biased scheme for the convective terms
and an eighth-order centered scheme for the viscous terms. The time integration is done by using
the low-storage third-order Runge-Kutta scheme. The flow is assumed to be periodic in the x and
z directions, where the uniform mesh is used, and a mapping function is used in the y direction to
cluster mesh points towards the wall.
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Sensing

FIG. 1. Schematic of the opposition drag control.

In order to enforce a constant mass-flow rate in time, a spatially constant body force f1 is applied
in the streamwise direction [31], and the corresponding power spent is added to the right-hand
side of the total energy equation. The isothermal wall boundary condition is employed for the
temperature. For the uncontrolled case, the no-slip boundary conditions are applied on both walls,
i.e., (ui )w = 0. For the case with OC (Fig. 1), the wall-normal velocity at the wall is set as

vw(x, z, t ) = −A[ρv](x, yd , z, t )/ρw(x, z, t ), (7)

where A is the control amplitude, [ρv](yd ) is the wall-normal mass flux at the sensing plane yd ,
and ρw is the density at the wall (hereinafter, subscript w represents the quantity value on the wall).
Note that instead of solely using wall-normal velocity v as in incompressible cases [1,3], the wall-
normal mass flux ρv is employed here. This is because due to the high density near the wall, the
control based only on wall-normal velocity v is found to be very unstable for large y+

d cases. The
requirement of simultaneously measuring velocity and density in the flow certainly poses great
challenges in practical applications; however, this issue is beyond the scope of the current paper.

The bulk Reynolds and Mach number are defined as Reb = ρbUb/μw and Mb = Ub/cw, where
μw and cw are the dynamical viscosity on the wall and speed of sound at the wall temperature; and
bulk density ρb and bulk mean velocity Ub are defined as

ρb = 1

2δ

∫ 2h

0
ρdy,Ub = 1

2δρb

∫ 2h

0
ρudy, (8)

with h denoting the half-channel height. Hereinafter, overbar (·) denotes Reynolds averaging in the
homogeneous space direction and in time.

Simulations are performed at a fixed bulk Reynolds number Reb = 3000 with three different bulk
Mach numbers Mb = 0.3, 0.8, and 1.5. The computational domain has dimensions Lx × Ly × Lz =
6πh × 2h × 2πh in streamwise (x), wall-normal (y), and spanwise (z) directions, respectively.
The simulation parameters are listed in Table I. The domain sizes and grid resolutions are the
same as those used in Ref. [32]. The friction Reynolds number is defined as the ratio of outer to

TABLE I. Details of the numerical discretization employed in the simulations. The computational box size
is 6πh × 2h × 2πh for all cases, and Nx , Ny, and Nz are the grid sizes in each direction.

Case Reb Reτ Re∗
τ Mb Nx × Ny × Nz �x+ �y+ �z+

C3KM03 3000 191 197 0.3 384 × 129 × 192 9.4 0.45 − 6.2 6.2
C3KM08 3000 198 174 0.8 384 × 129 × 192 9.7 0.47 − 6.4 6.5
C3KM15 3000 219 144 1.5 512 × 129 × 256 8.1 0.52 − 7.1 5.4
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FIG. 2. Semilocal Reynolds number Re∗
τ as a function of y/h for Reb = 3000 at different Mb cases.

viscous length scales (δν = νw/uτ , where uτ = √
τw/ρw is the friction velocity and ν = μ/ρ is the

kinematic viscosity); hence, Reτ = h/δν = uτ h/νw. Recent studies [33,34] show that better collapse
of the flow statistics with incompressible flows can be obtained by normalizing the mean velocity
and Reynolds stress with respect to suitable semilocal wall units [35] based on the local density and
viscosity (i.e., u∗

τ = √
τw/ρ, δ∗

ν = ν/u∗
τ ). Accordingly, the semilocal Reynolds number is defined

as Re∗
τ = h/δ∗

ν = Reτ

√
(ρ/ρw )/(μ/μw ). Hereinafter, quantities made nondimensional with respect

to semilocal wall units are denoted with superscript ∗. Figure 2 shows the distribution of Re∗
τ as a

function of y/h for different Mb cases. For an isothermal CTCF, Re∗
τ = Reτ at the wall and decreases

towards the channel center. In addition, the rate of decrease increases with Mb, especially at the
near-wall region.

In the current study, the control amplitude is fixed at A = 1, and the sensing-plane locations
are varied between 5 � y+

d � 30. For each Mb, only the cases that can yield drag reduction are
considered. Note that no interpolation was applied to obtain the velocity at a sensing plane. Instead,
the sensing plane was chosen as the nearest grid point. For example, the sensing plane for y+

d = 15 at
Mb = 0.8 is not located exactly at y+ = 15 but at the nearest grid point, which is at y+ = 14.6. The
exact locations are summarized in Table II, and the nominal values in the table are later referred to as
the sensing-plane locations. All computations start with the same initial condition of an uncontrolled
fully developed flow at the same Reb and Mb.

TABLE II. Details of the sensing-plane locations. y+
d and y∗

d = y+
d

√
(ρ/ρw )/(μ/μw ) are the sensing-plane

location in wall and semilocal units, respectively.

Case 1 2 3 4 5 6 7 8 9 10

nominal values 5 7.5 10 12.5 15 17.5 20 22.5 25 30
C3KM03 y+

d 5.2 7.7 9.5 12.8 15.3 18.0 − − − −
y∗

d 5.2 7.6 9.4 12.6 15.0 17.8 − − − −
C3KM08 y+

d 4.7 7.1 9.9 12.1 14.6 17.3 20.4 22.1 25.7 −
y∗

d 4.4 6.6 9.1 11.0 13.2 15.6 18.2 19.7 22.8 −
C3KM15 y+

d 5.2 7.8 9.9 12.1 14.7 17.6 20.8 22.5 24.3 30.5
y∗

d 4.3 6.2 7.6 9.1 10.8 12.7 14.7 15.8 17.0 21.0
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TABLE III. Details of the numerical discretization employed for the incompressible turbulent channel
simulations. The computational box size is 4πh × 2h × 2πh for all cases, and Nx , Ny, and Nz are the numbers
of grid sizes.

Case Reb Reτ Nx × Ny × Nz �x+ �y+ �z+

I3KM00 3180 200 256 × 128 × 256 6.9 0.08 − 3.3 4.6

For comparison, drag control for strictly incompressible flows at friction Reynolds number
Reτ = 200 is also carried out. The numerical details are provided in Table III. The code used for the
incompressible case is the same as the one used in our previous studies [14,36], built around the main
solver developed by Ref. [37]. Using the method in Ref. [38], the incompressible Navier-Stokes
equations are solved based on the equations for the wall-normal vorticity and the Laplacian of the
wall-normal velocity. This formulation has the advantage of satisfying the continuity constraint
exactly while eliminating the pressure. A Fourier-Galerkin method is used in the streamwise
and spanwise directions, while a seventh-order B-spline collocation method is employed in the
wall-normal direction. A low-storage implicit-explicit scheme based on third-order Runge-Kutta
for the nonlinear terms and Crank-Nicolson for the viscous terms are used for time advance.
The flow is driven by a pressure gradient, which is adjusted in time to ensure that the mass flux
through the channel always remains constant. For more details about the numerical methods, see
Ref. [37].

III. DRAG REDUCTION

Since the mass-flow rate is kept constant during the simulation, drag reduction can be quantified
as a relative change in the skin-friction coefficient:

DR = 1 − Cf /Cf ,0, (9)

where Cf = 2τw/(ρbU 2
b ) and Cf ,0 = 2τw,0/(ρbU 2

b ) are the drag coefficients of the controlled and
reference (uncontrolled) cases, respectively.

Figure 3(a) shows the drag reduction DR as a function of the sensing-plane location y+
d for

all Mb cases along with that for the (strictly) incompressible case. The effectiveness of OC is very
sensitive to y+

d . For the incompressible case, DR gradually increases with y+
d to a maximum and then

decreases. Consistent with previous results [2,3], the optimal sensing-plane location y+
d,opt is around

15, and the associated maximum drag reduction DRmax ≈ 22.8%. Overall, DR for the compressible
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FIG. 3. Drag reduction (DR) as a function of (a) y+
d and (b) y∗

d .
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FIG. 4. Mean density ρ (a)–(c) and temperature T (d)–(f) profiles for different y+
d cases at (a), (d) Mb = 0.3,

(b), (e) Mb = 0.8, and (c), (f) 1.5 with Reb = 3000.

cases exhibits similar trends as the incompressible one. At small y+
d , DR for Mb = 0.3 agrees well

with the incompressible case and slightly decreases with increasing Mb; at large y+
d , DR for Mb =

0.3 case deviates from the incompressible case. The optimal DR occurs at lower y+
d for Mb = 0.3

case. Such deviation is very interesting and will be discussed in detail later. In addition, at large
y+

d , the rate of decrease of DR with respect to y+
d becomes smaller as Mb increases, resulting in a

larger DR at higher Mb. Consequently, the y+
d range for achieving positive DR is much broader at

higher Re. In particular, the range for DR > 0 increases from 0 < y+
d < 17.5 to 0 < y+

d < 30 when
Mb changes from 0.3 to 1.5. This enlarge of y+

d range can extend the applicability of OC for the
supersonic and hypersonic cases, especially at high Re, since strictly sticking to a particular y+

d is
not required. Although the maximum drag reduction DRmax does not vary significantly with Mb,
the sensing-plane location y+

d,opt for achieving DRmax increases with increasing Mb. In particular,
y+

d,opt becomes 12.5, 17.5, and 20 for Mb = 0.3, 0.8, and 1.5, respectively; and the corresponding
DRmax = 22.3%, 23.6%, and 22.1%, very close to the DRmax obtained for the incompressible cases.
The change in y+

d,opt with Mb is consistent with the outward shift of the peak turbulence intensity
(discussed in Sec. IV C).

Note that previous results [34,35,39] showed that good collapses between incompressible and
compressible cases could be obtained for the mean velocity and Reynolds stresses in semilocal
coordinates y∗ is employed. In addition, in the study of spanwise wall oscillation drag control in
CTCF [29], we found that when scaling the control parameters using the semilocal unit, a better
agreement can be obtained between incompressible and compressible cases. Hence, it is interesting
to examine DR as a function of sensing-plane location in semilocal units y∗

d . Figure 3(b) clearly
shows that DR agrees better among different Mb cases, particularly at small y∗

d . The location of the
sensing plane for achieving DRmax is roughly at y∗

d,opt ≈ 15 for all Mb cases. The larger discrepancy
of DRmax at large y∗

d between different cases is due to the resonance in the buffer layer to be
discussed later.

IV. FLOW PHYSICS

A. Mean density and temperature profiles

Profiles of the Reynolds-averaged density ρ and temperature T for different y+
d are displayed

in Fig. 4. For all Mb cases, T rises steeply near the wall and reaches a plateau in the core region;
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correspondingly, ρ decreases rapidly near the wall and then reaches a plateau in the channel core
[40]. The temperature at the center of the channel T c and density at the wall ρw increase with Mb,
which is due to enhanced viscous heating. Under OC, while T is almost unchanged for small y+

d
cases, it increases significantly for larger y+

d case, which is attributed to the formation of organized
near-wall spanwise structures due to flow resonance [e.g., Figs. 11(f), 11(h) 11(i)]. Accordingly, ρ

at the wall also increases, but it is only slightly altered in the core region, where the compressible
effect is rather weak. The variation of these thermodynamic properties, particularly for the large y+

d
cases, will be shown to play a role in affecting the drag control performance. This is different from
the results reported by Kametani et al. [27] for drag control using uniform blowing and suction,
where ρw and T c are not significantly altered.

B. Mean streamwise velocity profiles

When the compressibility effect is present, instead of using classical wall unit scaling, the van

Driest transformation [41] (U +
d = ∫ U +

0

√
ρ/ρwdU +), which can incorporate the density variation

effect, is often employed to collapse the velocity profiles of supersonic flows with those of incom-
pressible flows. Although this transformation has been shown to work for supersonic flows over
adiabatic walls [42–44], it fails to capture the correct intercept of the log law for diabatic walls,
especially when strong heat flux is present [42]. To overcome this drawback, Trettel and Larsson
[33] derived a new transformation

U ∗ =
∫ U +

0

√
ρ

ρw

[
1 + 1

2ρ

dρ

dy
y − 1

μ

dμ

dy
y

]
dU +, (10)

which has been shown to collapse very well the mean velocity profiles for supersonic channel flows
with isothermally cooled walls [32,34].

The mean velocity profiles based on both the van Driest and Trettel-Larsson transformations
under OC for different y+

d are displayed in Fig. 5. Under control, similar to the incompressible cases
[3,45], the velocity profiles in the outer region show a characteristic upward or downward shift.
Consistent with that observed in Ref. [29], the magnitude of the shift is roughly proportional to DR,
particularly under the Trettel-Larsson transformation. Different from other control methods, such
as riblets [46] and spanwise wall oscillation [29,47], the mean velocity profiles under OC control
deviate from the law of the wall. In particular, it undershoots the uncontrolled one in the viscous
sublayer, which is due to a smaller velocity gradient caused by the nonzero limiting behavior of the
Reynolds shear-stress gradient in the near wall (inset in Fig. 7).

C. Reynolds stresses

The effect of control on Reynolds stresses (τi j = ρRi j , with Ri j = ũ′′
i u′′

j = ũiu j − ũiũ j) is further

scrutinized. (Hereinafter, φ̃ represents Favre averaging defined as φ̃ = ρφ/ρ, with φ′′ denoting the
remaining fluctuations.) Figures 6 and 7 show the Reynolds normal (τ11, τ22, and τ33) and shear (τ12)
stresses as a function of y+

0 for different y+
d cases, respectively. Note that to highlight the absolute

changes under control, the Reynolds stresses are normalized with the uncontrolled wall-shear stress
τw,0. (Hereinafter, the subscript 0 denotes the value of uncontrolled case.) For the uncontrolled
case, the peak value of τ11 increases as Mb increases, but the peak of wall-normal Reynolds stress
τ22, spanwise Reynolds stress τ33, and Reynolds shear stress τ12 decrease with increasing Mb. As
explained in Refs. [32,48], the increase of the τ11 peak at high Mb is due to increased mean shear
(dU/dy). In addition, as Mb increases, flow temperature, as well as viscosity, increases, suppressing
the ejection and sweep events of near-wall streamwise vortices, thus leading to lower values of the
peak in τ22 and τ33. The peak locations of all the Reynolds stresses in wall units increases with Mb,
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FIG. 5. Transformed mean streamwise velocity profiles for different sensing plane y+
d cases at (a), (b) Mb =

0.3; (c), (d) Mb = 0.8; (e), (f) Mb = 1.5. The left and right rows represent the van Driest transformation and
the Trettel-Larsson transformation, respectively.

which is consistent with the finding that y+
d,opt becomes larger at higher Mb. References [32,34,39]

showed that the Reynolds stresses collapse with the incompressible cases when scaled with the
semilocal unit, with the only exception that the τ11 peak increases with Mach number. This also
explains why DR between different Mb cases collapse better when using y∗

d
As shown in Refs. [1,3], OC establishes a virtual wall, which is typically located halfway between

the physical wall and the sensing plane y+
d . Hence, as y+

d increases, the virtual wall gradually moves
away from the wall. For the incompressible case [45], the virtual wall location yvw can be identified
by a local minimum of the wall-normal Reynolds stress τ22 or Reynolds shear stress τ12. However, it
is clear from Figs. 6(d)–6(f) that the correspondence between the location of virtual wall yvw = y+

d /2
and the local minimum of τ22 disappears, especially for the large y+

d cases at Mb = 1.5. Figure 8
further shows the local minimum location of τ22 and τ12 as functions of y+

d for all Mb cases. For
small y+

d cases, the local minimum location of τ22 agrees with the virtual wall location yvw = y+
d /2,

but starts to deviate at large y+
d . For Mb = 1.5 case, the location of the local minimum moves even

towards the wall when y+
d � 20. On the other hand, the location of the local minimum of τ12 is
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FIG. 6. Reynolds normal stresses components (normalized by the wall-shear stress of the uncontrolled case
τw,0) as a function of y+

0 for different y+
d cases: (a)–(c) τ11; (d)–(f) τ22; (g)–(i) τ33. The left, middle, and right

columns correspond to Mb = 0.3, 0.8 and 1.5 cases, respectively. See Fig. 5 for the legends of the curves.

found to well match the virtual wall yvw [Fig. 8(b)]. This is because the OC considered here is
designed based on wall-normal mass flux ρv; hence the density distribution plays a significant role
in positioning the minimum of τ22 as well as the virtual wall. As density ρ is maximum at the
wall and rapidly decreases along the wall-normal direction, especially for large y+

d case, the local

minimum of τ22 = ρv2 = (ρv)2/ρ is more biased towards the wall. Although the virtual wall effect
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FIG. 7. Reynolds shear stress τ12 (normalized by the wall-shear stress of the uncontrolled case τw,0) as a
function of y+

0 for different y+
d : (a) Mb = 0.3, (b) Mb = 0.8, and (c) Mb = 1.5. See Fig. 5 for the legends of the

curves.
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FIG. 8. The location of near-wall local minimum of (a) τ22 and (b) τ12. The back dashed line denotes
y = y+

d /2

is not apparent on spanwise Reynolds stress τ33, it also occurs in the distribution of τ11. A plateau
is formed around the virtual wall, and gradually evolves to a local minimum as y+

d increases.
Near the virtual wall, turbulent intensities are significantly suppressed. In particular, τ22 and

τ11 become almost zero at the virtual wall for the optimally controlled case, which inhabits the
interaction between the near wall and the core regions. Due to the actuation applied at the wall,
namely, opposite blowing/suction, the wall-normal Reynolds stress τ22 and shear stress τ12 are
enhanced very close to the wall. When the sensing plane is farther away from the wall, τ12 below
the virtual wall significantly increases, which is the key factor of deterioration of drag control
performance [2]. In addition, all the Reynolds stresses are suppressed above the virtual wall for the
drag reduction cases, especially for the optimal control cases. Compared to the uncontrolled case,
the peak location moves away from the wall under control, which is consistent with the observation
in the strictly incompressible cases [1,45] as well as for other control methods [15,49].

D. Skin-friction decomposition

Based on the FIK identity [50,51], the total skin friction can be expressed as

Cf = 6

Reb︸︷︷︸
CL

f

+ 3
∫ 1

−1
yρũ′′v′′dy︸ ︷︷ ︸

CT
f

+ 3

Reb

∫ 1

−1
y
( μ

μw

− 1
)∂u

∂y
dy︸ ︷︷ ︸

Cμ

f

+ 3

Reb

∫ 1

−1
yμ′

(∂u′

∂y
+ ∂v′

∂x

)
dy︸ ︷︷ ︸

CμT
f

,

which decomposes the skin friction into four components: (i) an equivalent laminar part CL
f , (ii) a

turbulent part CT
f represented by the weighted integration of the total Reynolds shear stress, (iii)

the compressible contribution Cμ

f related to the mean viscosity variations and the mean wall-normal

velocity gradient, and (iv) the compressible-turbulent interaction part CμT
f .

Figures 9(a)–9(c) show the skin-friction decomposition as a function of y+
d for Mb = 0.3,

0.8, and 1.5 cases, respectively. For the uncontrolled case, CL
f contributes approximately 25% of

the total Cf , the compressible-turbulent interaction term CμT
f is negligible, and the compressible

contribution term Cμ

f is also small—approximately 0.3% at Mb = 0.3, 1.3% at Mb = 0.8, and 4.5%
at Mb = 1.5. Hence, the turbulent part CT

f is the dominant contribution for the total Cf (similar to
the incompressible case), and its contribution gradually decreases as Mb increases, being 75.0%,
73.5%, and 69.8% at Mb = 0.3, 0.8, and 1.5, respectively.
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Under control, since Reb is fixed, CL
f is held constant for all cases. Cμ

f is negligible at Mb = 0.3
and slightly increases with y+

d at Mb = 0.8. For example, Cμ

f /Cf ,0 increases to approximately 2.4%
for y+

d = 22.5 at Mb = 0.8. For the Mb = 1.5 case, the contribution of Cμ

f further increases, in
particular, increasing to approximately 7.7% of the total Cf ,0 at y+

d = 30. Figure 9 shows that, even
for Mb = 1.5 case, the reduction (or increase) in total Cf is mainly due to the decrease (or increase)
in CT

f (corresponding to the suppression of the turbulent Reynolds shear stress). Although CT
f at

Mb = 1.5 is comparable to that of Mb = 0.8 cases for small y+
d , it is much smaller than that of Mb =

0.8 for large y+
d , which is consistent with a larger DR (Fig. 3). It is interesting to observe that, for

large y+
d cases, when drag reduction deteriorates, CT

f rapidly increases, which is counterbalanced by

the negative contribution from CμT
f . For example, for y+

d = 22.5 at Mb = 0.8, CT
f contributes about

67% of the total Cf ,0, but Cμ

f becomes approximately −4.4%. The negative Cμ

f can be qualitatively
explained as follows. At the sweep (high-speed streak) regions (Fig. 1), the streamwise velocity
fluctuations u′ > 0, hence ∂u′/∂y > 0 (since u′ = 0 at the wall). Then, OC ejects low-temperature
(also low-viscosity) fluid into the flow, resulting in a negative μ′. Consequently, μ′∂u′/∂y in the
compressible-turbulent interaction term is negative.

E. Near-wall streaks and vortical structures

In this section, the influence of OC on near-wall streaks and coherent structures is further
investigated. Figure 10 shows the streamwise velocity fluctuations

√
ρu′′/

√
τw at y∗

0 ≈ 15. For each
Mb, we consider three cases: uncontrolled, optimal controlled, and the largest y+

d . For uncontrolled
case [Fig. 10(a)], typical meandering low-speed streak structures are observed aligned along with
the streamwise direction. As Mb increases [Figs. 10(b), 10(c)], the streaks become more coherent
(longer, wider, and less wavy), and hence more stable. Note that previous works [32,39,48] showed
that there is a universal behavior of streaks among different Mb when the semilocal scaling is em-
ployed. Compared with the uncontrolled cases, although the streaks still possess typical meandering
shapes, their strengths are significantly weakened. For larger y+

d case, the near-wall streaks become
shorter with clear small-scale undulations, which are the signature of the spanwise vortex rollers
shown in Figs. 11(g)–11(i).

The instantaneous vortical structures visualized using λρ criterion [52] for the cases in Fig. 10
are shown in Fig. 11. Numerous slender streamwise vortices are distributed throughout the wall
region in uncontrolled cases. And the streamwise vortices are more sparsely distributed and elon-
gated at higher Mb case. Consistent with weakened streaks observed in Fig. 10, the generation
of drag-inducing near-wall streamwise vortices is also suppressed for optimally controlled cases,
especially for Mb = 1.5 case, where much fewer vortices are observed. Surprisingly, in addition to
streamwise vortices, organized spanwise rollers are observed in the near-wall region for larger y+

d
[Figs. 11(g)–11(i)]. Similar structures have been observed for studies of CTCF with an acoustic
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impedance boundary condition [53,54]. These structures are mainly trapped in an extremely thin
viscous region, which is designated as the resonance buffer layer by Scalo et al. [53]. The resonance
buffer layer develops due to the Kelvin-Helmholtz instability, which is driven by the interaction of

u
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FIG. 11. Vortical structures visualized using λρ criterion for (a)–(c) uncontrolled, (d)–(f) y+
d = 17.5, and

(g)–(i) y+
d = 25. The left, middle, and right columns correspond to Mb = 0.3, 0.8 and 1.5, respectively.
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FIG. 12. Premultiplied streamwise spectra of streamwise velocity kxEρu′′u′′ as a function of streamwise
wavelength λ+

x,0 and y+
0 . The top, middle, and bottom rows correspond to Mb = 0.3, 0.8, and 1.5, respectively;

and at each Mb, the contour levels are [0.1 0.2, 0.4, 0.6 0.8] of the maximum value of the uncontrolled case.

the mean shear and the wall-normal wave propagation resulting from resonant excitation of wall
blowing and suction. The signature of the spanwise rollers in the resonance buffer layer attributes
to the distinct excess of Reynolds shear stresses in the near-wall region [Fig. 7], the main cause for
the deterioration of drag reduction.

F. Energy spectra

Figure 12 compares the premultiplied streamwise spectra of streamwise velocity kxEρu′′u′′ (nor-
malized by the maximum value of the uncontrolled case) as a function of streamwise wavelength
λ+

x,0 and y+
0 between the uncontrolled and controlled cases. For the uncontrolled case, the spectra

clearly show the presence of an energetic inner site corresponding to the near-wall streak generation
cycle [55]. The peak location of the spectra typically represents the mean length of the streaks. For
incompressible flows, the length of near-wall streak is of the order of 103 in wall units. Consistent
with that shown in Fig. 10, Figs. 12(a), 12(d) 12(h) suggest that the streak length, when scaled
in wall units, increases with Mb. In particular, the wavelength of the peak becomes λ+

x ≈ 1000,
1500, and 2000 for Mb = 0.3, 0.8, and 1.5. Furthermore, the wall-normal location of the peak also
slightly increases with Mb, which is consistent with an outward shift of the streamwise Reynolds
stress in Fig. 6. For the optimal controlled cases, the energy contribution from the near-wall
region is effectively suppressed. In addition, the energy-containing part is shifted towards a smaller
wavelength λ+

x and larger y+
0 with a much weaker peak. This is consistent with Fig. 10 showing
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FIG. 13. Premultiplied spanwise spectra of streamwise velocity kzEρu′′u′′ as a function of spanwise wave-
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at each Mb, the contour levels are (0.1 0.2, 0.4, 0.6 0.8) of the maximum value of the uncontrolled case.

that the streaks under OC are significantly weakened. However, at large y+
d , due to intense blowing

and suction, the energy in the near-wall region significantly increases, and a second peak develops
close to the wall (y+

0 < 10). In addition, consistent with the near-wall spanwise rollers observed in
Figs. 11(c) and 11(e), a spike is observed at the small wavelength λ+

x in energy spectra, and the
wavelength of the spike remains roughly constant in the wall-normal direction. The wavelength
slightly decreases with Mb. The energy content associated with the near-wall spanwise rollers
becomes smaller at higher Mb, which is consistent with a smaller inner peak in τ11 [Figs. 6(a)
and 6(b)]. The characteristics of the resonance layer will be discussed in Sec. V B.

Figure 13 compares the premultiplied spanwise spectra of streamwise velocity kzEρu′′u′′ (normal-
ized by the maximum value of the uncontrolled case) as a function of the spanwise wavelength λ+

z,0

and y+
0 between the uncontrolled and controlled cases; the peak location of the spectrum typically

represents the mean streak spacing. For incompressible flows, the near-wall streak spacing in the
viscous sublayer is about 102 in wall units. Figures 13(a) and 13(d) show that the streak spacing for
uncontrolled cases, when scaled in wall units, increases with Mb. Again, for the optimally controlled
case, the energy near the wall is significantly suppressed, with the peak shift to large λ+

z,0 and y+
0 ,

suggesting that the streak spacing becomes wider. For large y+
d cases, a second peak occurs near

the wall, which is much stronger for Mb = 1.5 case. Note that the absence of a spanwise periodic
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d cases as a function of (a) y/h and (b) y+.

Note that the lines and square denotes the strictly incompressible and Mb = 0.3 cases, respectively.

signature in the energy spectra indicates that the structures observed in the resonance buffer layer
are predominantly two dimensional.

V. DISCUSSION

A. Comparison between the incompressible and the low Mach number cases

Here, we provide a detailed comparison between the low Mach number (i.e., Mb = 0.3) and the
strictly incompressible cases. Figures 14(a) and 14(b) shows the mean streamwise velocity profiles
(U +) in outer and inner wall unit, respectively. It is clear that U + agrees very well between these
two cases at low y+

d . For y+ = 17.5 case, U + for Mb = 0.3 is below the strictly incompressible
one in the whole range of y. Figures 15(a)–15(d) further show the Reynolds normal (τ11, τ22, and
τ33) and shear (τ12) stresses as a function of y+

0 for different y+
d cases, respectively. Again, all the

Reynolds stresses collapse between Mb = 0.3 and the strictly incompressible cases for low y+
d .

For y+ = 17.5 case, expect for τ33, all the Reynolds stresses for Mb = 0.3 significantly deviates
from the incompressible case. In particular, τ12 is much larger than the incompressible cases in
the near-wall region. Figure 16 shows the instantaneous vortical structures visualized using λρ

criterion, which is equivalent to λ2 here [56], for the incompressible case with different y+
d cases.

Similar to that observed for Mb = 0.3 case [Fig. 11(a)], numerous slender streamwise vortices are
distributed throughout the wall region for the uncontrolled case. In addition, the generation of drag-
inducing near-wall streamwise vortices become less for y+

d = 10 case. Interestingly, although the
number of streamwise vortices increases at larger y+

d , the organized spanwise rollers observed for
the compressible cases are not presented, suggesting that the density and viscosity variation in the
near wall region is essential for the formation of these rollers. It also confirms that the development
of spanwise rollers is the main cause of the increase of Reynolds shear stress and hence drag for the
Mb = 0.3 case at large y+

d .

B. Resonance buffer layer

Flow visualization for large y+
d cases in Fig. 11 reveals a remarkable, streamwise-periodic array

of spanwise-coherent rollers. In addition, the energy spectra show that these structures are confined
in a layer near the wall, with the spacing unchanged along the y direction. Careful inspection shows
that these structures are not stationary, and they propagate in the streamwise direction. Hence, the
coherent component associated with these structures can be assumed as

φ̂(x, y, ϕ) = F
(

2π

[
x

λx
− frt

)])
= F

(2π

λx
[x − cxt )]

)
, (11)
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d cases: (a) τ11; (b) τ22; (c) τ33, and (d) τ12. Note

that the lines and square denote the strictly incompressible and Mb = 0.3 cases, respectively.

where F is a generic periodic function with a fundamental period 2π , λx = 2π/kx is the streamwise
wavelength, fr = ωr/2π is the resonance frequency, and cx is the wave propagation speed. The
characteristics of the coherent component can be determined using two-point space-time autocorre-
lations of wall-normal velocity fluctuations, which is defined as

Rvv (�x,�τ, y) = v′(x, y, z, t )v′(x + �x, y, z, t + �τ )

v′2(y)
. (12)

u
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+

FIG. 16. Vortical structures visualized using λρ criterion for the strictly incompressible case: (a) y+
d = 0

(uncontrolled), (b) y+
d = 10, and (c) y+

d = 20.
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d = 30.

Figure 17 shows Rvv at y/h = −0.98 for different Mb cases. The streamwise wavelength λx,
determined from the peak of Rvv (�x, 0, y), decreases with Mb, namely, from 0.34 to 0.24 as Mb

increases from 0.3 and 1.5. Note that λx here is smaller than that in Ref. [53] (i.e., λx = 0.4). A
sensitivity analysis of the computational domain size and grid resolution (Appendix) confirms that
the observed value is not a numerical artifact. In addition, the resonance frequency fr = 1/�τ also
decreases with Mb, from fr ≈ 16.2 for Mb = 0.3 to fr = 2.94 for Mb = 1.5. Note that the resonance
frequency observed here are larger than those in Ref. [53], which was prechosen as the frequency of
the flow (i.e., fr = Mb). Consequently, the propagation speed cx = λx fr also decreases with Mb. In
particular, cx = 5.56, 1.65, and 0.69 for cases shown in Figs. 17(a)–17(c), respectively, which are
comparable to the speed of sound (c = √

γ RT = √
T /Mb) in the resonance buffer layer. It is also

worth mentioning that, as the temperature, as well as the speed of sound, increases with increasing
y+

d , the propagation speed cx is slightly larger at larger y+
d (e.g., increases from 0.69 to 0.71 when

y+
d varies from y+

d = 22.5–30 at Mb = 1.5). The generation of spanwise rollers at high y+
d is very

interesting, and a detailed study should be conducted to investigate their genesis and the potential
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TABLE IV. Parameters used in the study of domain size effect for the supersonic case at Reb = 3000 and
Mb = 1.5. Here, Cf values are for the uncontrolled case and DR values are the amount of drag reduction for
spanwise wall oscillation with T + = 100 and A+ = 12.

Case Lx × Ly × Lz Nx × Ny × Nz �x+ �z+ DR (%)

R3KM15S 3πh × 2h × 2πh 512 × 129 × 256 4.42 5.9 0.5
R3KM15L 12πh × 2h × 2πh 1024 × 129 × 512 8.84 2.95 0.2

approaches to attenuating them for better drag reduction performance, beyond the scope of the
current paper.

VI. CONCLUSION

Inspired by the significant drag reduction achieved in incompressible flows [1], we performed a
detailed study of OC in CTCF through DNS. The drag control performance is evaluated at a fixed
bulk Reynolds number Reb of 3000 for three different bulk Mach numbers: Mb = 0.3, 0.8, and 1.5.
For all Mb, DR has a similar trend to that of the incompressible case, namely DR nonmonotonically
varies with y+

d . Compared with the incompressible case, DR slightly decreases at small y+
d but

increases at large y+
d . Consequently, with increasing Mb, the optimal sensing plane shifts to larger

values, and the maximum drag reduction also slightly decreases. In particular, different from the
incompressible cases where y+

d,opt is around 15, y+
d,opt is 12.5, 17.5, and 20 for Mb = 0.3, 0.8, and 1.5,

respectively; and the DRmax is around 23% for all cases. In addition, when scaling the sensing plane
with semilocal units, a better collapse on DR is observed between different Mb, especially for low
y∗

d . The optimal sensing plane is located at y∗
d ≈ 15. Study of OC at higher Reynolds numbers [57]

showed that the drag performance decreases with increasing Re in incompressible flows, mainly due
to the increased contributions of large-scale and very-large-scale structures. It would be interesting
to investigate the Reynolds number effect of OC in compressible flows.

Interestingly, for large y+
d cases, a resonance buffer layer, characterized by streamwise-periodic

array of spanwise-coherent rollers, develops. It is generated due to intense hydroacoustic insta-
bilities resulting from the interaction of high-amplitude wall-normal wave propagation with the
background mean shear. Space-time correlation reveals that the resonance buffer layer has a well-
defined streamwise wavelength λx and resonance frequency fr ; both of them are found to decrease
with Mb. In addition, the coherent structures in the resonance layer travel in the streamwise direction
with an advection velocity close to the speed of sound. These near-wall spanwise rollers lead to a
significant increase in the Reynolds shear stress near the wall, one of the main reasons for the
deterioration in DR for high y+

d cases, particularly at low Mb. The temporal and spatial coherence of
the resonance buffer layer structures suggests that the triple decomposition via spanwise averaging
or phase locking of instantaneous quantities [58] can be fruitful to separate the effect of the wave and
random turbulence, as well as their mutual interaction, to be pursued in future. Note that due to the
presence of strong coherent wall-normal transpiration, OC for large y+

d cases become similar to the
drag control using streamwise traveling wave blowing and suction [59,60]. It would be interesting
to investigate the similarity of these two control methods.
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FIG. 18. Comparison of (a) mean streamwise velocity profiles based on Trettel-Larsson transformation,
and (b) Reynolds normal stresses components for different domain size cases of Reb = 3000, Mb = 1.5 and
y+

d = 25.

APPENDIX: SENSITIVITY TO BOX SIZE AND GRID RESOLUTION

Although the domain size we employed is relatively large, it is still necessary to verify that the
observed flow response, particularly the presence of the resonance layer, might be an artifact of the
specific computational domain size and grid resolution adopted. Hence, two additional simulations
of different computational domain size and grid resolutions are conducted for the supersonic
Reb = 3000 and Mb = 1.5 case (see Table IV for the details of the simulation parameters). When
choosing y+

d = 25, all cases yield a similar amount of drag reduction. Figure 18 compares the
mean velocity profiles based on the Trettel-Larsson transformation and Reynolds normal stresses,
where good agreements are observed among different computational domain size cases. Figure 19
shows the streamwise and spanwise autocorrelation of the wall-normal velocity component Rvv

at y/h = −0.98. First, both streamwise and spanwise correlations diminish at large �x and �z,
suggesting the adequacy of domain size. Furthermore, Rvv (�x) exhibits the signature of the span-
wise rollers in the resonance buffer layer, and a negligible difference is observed in the streamwise
wavelength among different domain size cases, suggesting that the characteristics of the resonance
buffer layer determined in the main text do not depend on the particular numerical setup.
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FIG. 19. (a) Streamwise and (b) spanwise two-point autocorrelations correlations of wall-normal velocity
Rvv at y/h = −0.98 for different domain size cases of Reb = 3000, Mb = 1.5, and y+

d = 25.
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