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This paper examines the streamwise-inhomogeneous nature of turbulence in a finite-
size developing wind farm. While previous analysis involving Fourier spectra revealed an
interesting dynamics showing a dominance of the large-scale motions on the order of ten
rotor diameters in the energetics of fully developed wind farms [T. Chatterjee and Y. T.
Peet, Phys. Rev. Fluids 3, 034601 (2018)], harmonic analysis methods do not capture the
streamwise variability of spectra, especially important in strongly inhomogeneous flows
such as a developing wind farm turbulence. The current study uses wavelet analysis of
large eddy simulation data to investigate the turbulent spectra with respect to its spatial
position along the wind farm. The analysis shows that the correlation length scales grow
significantly past the first row of wind turbines, testifying to a strengthening of the large-
scale motions by wind turbines. A vertical coherence of streamwise and vertical velocity
fluctuations is also found to increase significantly past the first row of turbines, associated
with the development of a global energy transfer mechanism between the outer layer and
the wind turbine region. While this mechanism, known as a downdraft of kinetic energy,
was previously discussed in the context of fully developed wind farms, the current study
illustrates a signature of its origination after as early as the first row of wind turbines.
Understanding of the mechanisms responsible for the reorganization of motions of different
scales in wind farm flows is useful for designing efficient wind farm control strategies and
mitigating the effects of the downstream wakes.

DOI: 10.1103/PhysRevFluids.6.114601

I. INTRODUCTION

Wind farms in atmospheric boundary layers (ABLs) pose a complex multiscale problem of
interaction between the surface layer turbulence, the wake turbulence generated by wind turbines,
and the outer layer motions [1]. The effect of this interaction is seen not only in the small scales of
motion and the dynamics of the individual turbulent eddies, but also in the larger scales that set the
stage for the global organization of turbulent motions in wind farms [2–4]. It was previously shown
that fully developed wind farm flows demonstrate an existence of organized coherent motions with
a significant spectral energy content in the length scales of around ten rotor diameters that also
contribute to the energy production in wind farms [5–7]. These motions were associated with the
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vertical momentum transfer mechanisms between the outer layer and the rotor region of wind farms,
known as the downdrafts of the mean kinetic energy (MKE) flux [7,8].

While the downdrafts were previously observed and discussed in the context of fully developed
wind farms [7,8], the questions remain of “when” and “how” they are formed in realistic finite-size
wind farms. Indeed, if the wind turbines are responsible for the increase of length scales and
a potential reorganization of the turbulent motions as compared to a turbine-free atmospheric
boundary layer, a detailed analysis of turbulence during the first several rows of a wind farm can
potentially reveal the processes involved with such a reorganization.

Previous analysis of finite-size wind farms already highlighted the importance of streamwise-
inhomogeneous mechanisms in both the flow topology and the energy harvest processes, such as
internal boundary layer growth, development and merging of wind turbine wakes [9–12], and an
interplay between streamwise advection and vertical MKE fluxes in the energy budget [13,14].
The current paper in particular focuses on the analysis of streamwise-dependent length scales of
the turbulent energetic motions, so that a gradual change in structure and characteristic sizes of
well-correlated eddies due to a placement of turbines can be investigated. This is done via a wavelet
transform analysis of the corresponding streamwise-inhomogeneous signals, which allows us to
obtain simultaneous information about the spectral content and the spatial location of the signal.
Wavelet transform has a rich mathematical history [15,16] and has been developed into a robust tool
in the last five decades for studying turbulence [17–19]. The current study can be contrasted with
the previous studies devoted to a spectral analysis in wind farms, which were, however, done with
Fourier-based methods [7,20]. Understanding the spatial variability and structure of the organized
energetic motions in finite-size wind farms is important for design and control of finite-scale
power generating facilities, as well as evaluation of the impact of wind farms on the surrounding
communities [21,22]. This might be especially relevant in the context of an emerging distributed
wind infrastructure paradigm [23], where small-scale power generating facilities are placed in living
communities for local distributed power generation.

In the current paper, large eddy simulation (LES) data for a flow generated via an interaction
of a 3×3 wind turbine (WT) array with a background neutral atmospheric boundary layer at Re ∼
O(109) are analyzed using wavelet tools to investigate the streamwise inhomogeneity of spectra and
vertical coherence in developing wind farm flows.

The LES of the 3×3 wind turbine array was originally introduced in our previous work [24,25].
The paper is organized as follows. In Sec. II, we discuss the computational setup and the grid design
for the LES model, which generates the high-fidelity data for our present analysis. In Sec. III A, we
present the definition and nomenclature of the wavelet transform. In Sec. III B, the limitations of
the wavelet analysis and the interpretability of results are discussed. In Sec. IV, we present the main
results concerning the wavelet spectra intermittency and the vertical coherence functions defined
below. Conclusions are stated in Sec. V.

II. NUMERICAL METHODOLOGY

The numerical method implements a variational formulation of the Navier-Stokes (NS) equations
involving a Galerkin projection using an open-source spectral element method (SEM) solver
NEK5000 [26] in PN − PN−2 formulation (see [27] for more details). The simulations have been
carried out in an LES framework [28] and the wind turbines are modeled using actuator lines [7].

A. Subgrid-scale model for large eddy simulations

The spatially filtered three-dimensional (3D) Navier-Stokes equations for LES of wind turbine
arrays in a neutrally stratified ABL flow can be obtained by incorporating a convolution integral
filter on the original Navier-Stokes equations:

∂ũ
∂t

+ ũ∇ũ = − 1

ρ
∇ p̃∗ + F̃x + F̃AL + ν∇2ũ − ∇ · τ. (1)
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We use an (x, y, z) Cartesian coordinate system, where x corresponds to the streamwise direction, y
to the spanwise direction, and z to the vertical (wall-normal) direction.

Here, ũ is the filtered velocity vector, p̃∗ is the modified pressure [29], and F̃x is the streamwise
driving pressure gradient, while F̃AL represents the actuator line forces exerted by the rotating
wind turbine blades. The subgrid stress (SGS) tensor in Eq. (1), τ = ũuT − ũũT arising from the
noncommutativity of filtering with the nonlinear advection term, is modeled using an algebraic
wall-damped Smagorinsky-type eddy viscosity closure [28,30],

τ SGS − 1
3τ SGSδkk = −2(l f )2|∇sũ|∇sũ, (2)

where ∇sũ = 1/2(∇ũ + ∇ũT ) and |∇sũ| = (2∇sũ : ∇sũ)1/2 and the filter length scale is defined
as l−n

f = (C0�)−n + [κ (z + z0)]−n (κ = 0.41 is von Kármán constant, z0 = z0,lo is aerodynamic
roughness length of the bottom surface, C0 = 0.19, n = 0.5). The grid size � in Eq. (2) is defined
as � = (�x�y�z )1/3 (�η is the grid size in the η direction defined as the local average between the
Gauss-Legendre-Lobatto (GLL) node spacings to either side from a particular point in this direction
[28]). The current choice of the SGS model represents a competent alternative to the dynamic-based
procedures, since it is computationally efficient yet of a similar level of fidelity. The validation of
this model in a neutral ABL framework for spectral elements can be found in [28].

B. Near-wall model

At the bottom surface, boundary conditions involve a wall stress vector τs [31,32] being in-
corporated through the horizontal velocity vector data ũh at the first grid point using the standard
Monin-Obukhov similarity law [33] along with no-penetration conditions of large eddies, w̃ = 0,

1

ρ
τs = −κ2

̂̃uh, �z
2

(x, y, t )
∣∣ ̂̃uh, �z

2

∣∣(x, y, t )

log
(

z
z0

)∣∣∣2

�z
2

, �z/z0 � 1, (3)

where ̂̃uh, �z
2

= ̂̃u �z
2

�ex + ̂̃v �z
2

�ey ( �ex, �ey are unit vectors in the x, y directions) and |̂̃uh, �z
2
| =√̂̃u2

�z
2

+ ̂̃v2
�z
2

. The “hat” represents an additional explicit filtering carried out in the modal space
by attenuating the four highest Legendre polynomial modes out of p = 7 resolved modes of the
spectral element model [28,34]. ̂̃uh, �z

2
is calculated as an interpolation between the “wall” and �z

(the distance between the bottom boundary and the first GLL point from the boundary in the vertical
direction).

C. Actuator line model

In an actuator line model [35], the blades with the aerofoil cross sections are divided into
elements and the local lift (L) and drag (D) forces experienced by each element are calculated
as (L, D) = 1

2C(l,d )(α) ρ V 2
rel c wd , where c and wd are the chord length and the blade width,

respectively. The local angle of attack, α, is computed from the relative velocity, Vrel , the streamwise
velocity, u (ũ in LES) and the pitch angle, γ . The local aerodynamic force is calculated as
�f = L �eL + D �eD (here �eL and �eD are the unit vectors in the direction of the local lift and drag,

respectively). The total reaction force summed from all the N blade elements experienced by the
fluid is distributed smoothly onto several mesh points and is given as the actuator line force in the
NS equations (1),

F̃AL(x, y, z, t ) = −
N∑

i=1

�f (xi, yi, zi, t ) ηε (|�r − �ri|), (4)
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FIG. 1. A schematic of the computational setup featuring an ABL precursor feeding into a 3×3 wind
turbine array region. Left: ABL domain, with xy view of the computational domain (c), and a typical ABL
snapshot of the instantaneous u velocity in the yz plane (normalized by U∞) superposed with in-plane v, w

velocity vectors (a). Right: Wind turbine array domain, with xy view of the computational domain superposed
with the instantaneous u/U∞ velocity (d), and a close-up view of the WT domain around the turbine rotors
(only the element boundaries are shown) with the temporally averaged u/U∞ velocity (b).

where �r = (x, y, z), (xi, yi, zi ) are the coordinates of the centers of the actuator blade elements at
time t , and ηε (d ) is a Gaussian function in the form of ηε (d ) = 1/ε3π3/2 exp [−(d/ε)

2
]. ε = 2 wd

is used in the current study as suggested in [35,36] for optimum results.
In the current actuator line simulations, Tjæreborg turbines have been used [35]. The lift and

drag coefficients Cl (α),Cd (α) for the blades were taken from the National Advisory Committee for
Aeronautics (NACA) 44xx series aerofoil wind tunnel measurements performed on NACA airfoils
at a chord Reynolds number, Rec = 6×106. The equivalent time-varying thrust coefficient of the
turbines is in the range CT ∼ 0.7–0.8, which is similar to CT = 0.75 used in the actuator disk model
of [8]. Each actuator line is discretized using 30 uniformly sized blade elements (i.e., per rotor
radius) as in [35]. The Actuator Line (AL) model is more advanced than the actuator disk model
[2,8], commonly used in numerical computations of wind farms, in its capability to capture the tip
vortices being shed in the near wake ([34,35]).

D. Computational setup

The computational setup consists of a neutral ABL precursor domain of size 10πD×5πD×5D
scaled with the turbine rotor diameter D [28], and a wind farm domain of a size 15πD×5πD×5D
containing a 3×3 array of wind turbines, with Fig. 1 showing a schematic of the setup and some
typical flow snapshots. The ABL precursor simulations are driven by a pressure gradient forcing
that ensures a constant mass flux, and the data from the midplane of the ABL precursor (x = 5πD)
are spectrally interpolated [37] onto the grid points of the inflow plane of the wind farm domain,
to serve as the inflow condition to the wind farm domain [24,38]. In the subsequent analysis, we
will be referring to the inner and outer layers of the ABL. In accordance with the previous literature
[39,40], we define the inner layer here as the region in and below the logarithmic layer, and the
outer layer as the region above the logarithmic layer, where the velocity profile deviates from the
logarithmic law, occurring at z � 0.2H [39].

A 3×3 WT array domain is designed in concordance with the experimental setup described in
[5,41] and has been introduced in a spectral element framework in our previous work ([24,25]).
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TABLE I. Details of the computational grids for the precursor ABL and the wind turbine array domains.
Ne

η is the number of spectral elements in the η direction. Eight GLL nodes have been used per element per
Cartesian direction.

Case Geometry Ne
x ×Ne

y ×Ne
z Grid points

Neutral ABL 10πD×5πD × 5D 30×20×24 5.06×106

WT array 15πD×5πD×5D 48×32×24 1.281×107

The first row of three rotors is placed at πH/2 distance from the inflow boundary (H = 5D is the
ABL thickness), which is equivalent to 7.85D. The streamwise distance between the turbines is
7D, while the spanwise distance is 3D. The hub height of the turbines is at zh = D = 0.2H , i.e.,
at the lower 20% of the ABL. The hub-height location is designed in such a way that the bottom
tip, zh − D/2 = 0.1H , lies in the inner layer, while the top tip of the rotor, zh + D/2 = 0.3H , lies
in the outer layer of the ABL. Wind turbines rotate with a tip-speed ratio λR = 5, where tip-speed
ratio is defined as λR = ωR/Uh, where Uh is the mean wind speed of the incoming ABL flow at
hub height zh, R is the radius of the turbine rotor, and ω is the rotor speed in rad/s. A stabilized
outflow boundary condition [42] has been used for the outflow of the wind turbine domain which is
∼26D away from the third row of the turbines. The blockage ratio for the wind farm domain is 3%
[43]. Grid details of the neutral ABL and the WT array domains are documented in Table I. Both
grids feature the SEM polynomial order p = 7 which corresponds to eight GLL points within the
element. The grid resolution

�e
η = Le

η

/
p, (5)

where Le
η is the width of the element in the η direction, is documented in Table II for both ABL and

WT array domains. Since the grid resolution defined in this way is an element-dependent quantity,
the maximum, minimum, and the average values of the �e

η within each grid are presented in Table II.
It is seen that, while the ABL grid features a uniform distribution of elements in all three directions,
the WT array grid is refined in the rotor swept area in the yz plane, as well as immediately upstream
and downstream of the turbine rotors in the streamwise direction. A close-up of the spectral element
grid (without the GLL points) near the wind turbines for the WT array is shown in Fig. 1 for a
reference.

A velocity scale U∞ is defined as the mean wind velocity above the canopy, calculated as
the time-averaged and horizontally averaged streamwise velocity above the WT array (at the top
domain boundary). With the velocity scale U∞, and the length scale D, the Reynolds number of
the simulations is ∼109. After achieving statistical stationarity, the simulations have been carried
out for 800 flow through times Te to collect statistics (Te = 15πD/U∞). Statistics were calculated
using ≈ 16000 snapshots that were placed 1/20 Te apart. Statistical decorrelation of snapshots and
convergence in the large scales was ensured with this choice of temporal separation and the number
of snapshots.

TABLE II. Maximum, minimum, and average grid sizes for the ABL and the wind turbine array domains.

Neutral ABL WT array

Direction �η max �η min �η �η max �η min �η

x 0.1496D 0.1496D 0.1496D 0.1683D 0.0472D 0.1402D
y 0.1120D 0.1120D 0.1120D 0.1658D 0.0179D 0.0701D
z 0.0298D 0.0298D 0.0298D 0.0471D 0.0238D 0.0298D
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III. ANALYSIS METHODOLOGY

A. Definition and nomenclature of wavelet transform

1. Wavelet transform

The wavelet transform can be defined as a convolution of the function in physical space with
the basis function dependent on a spatial location and a scale. The basis function of the wavelet
transform is ψ ∈ L2(R) which satisfies the admissibility condition as

Cψ =
∫ ∞

−∞

|ψ̂ (kx )|2
|kx| dkx < ∞, (6)

where ψ̂ (kx ) is the one-dimensional (1D) Fourier transform of ψ .
For the turbulent fluctuating velocity field u′

i(x, y, z, t )i=1,...,3 ∈ �(R3, [0,∞) ∩ L2(R3)), the
wavelet transform of u′

i, i.e., Wψ [u′
i](a, b)i=1,...,3 ∈ �(C3, [0,∞) ∩ L2(R4)) can be given as

Wψ [u′
i](a, b, y, z, t ) =

∫ ∞

−∞
u′

i(x, y, z, t )ψ∗
a,b(x)dx, (7)

where ψa,b(x) = 1√|a|ψ ( x−b
a ) is obtained by translating and dilating the mother wavelet.

We now replace a (scale) and b (translation) by the variables

k̃x = kψ/a, x̃ = b, (8)

to distinguish them from the variables without the tilde (kx, x) used in Fourier and physical space,
respectively. Here, kψ is the centroid wavenumber of the mother wavelet [18,44] and is defined by

kψ =
∫ ∞
−∞ kx|ψ̂ (kx )|2dkx∫ ∞
−∞ |ψ̂ (kx )|2dkx

. (9)

A space-dependent energy spectrum can be defined as a function of (̃x, k̃x ) [45]:

Ẽu′
i
(̃kx, x̃, z) = 1

kψCψ

∫ ∞

−∞

〈∣∣{Wψ [u′
i](kψ /̃kx, x̃, y, z, t )}∣∣2〉

T dy. (10)

It can be shown [46,47] that a streamwise integration of the wavelet energy spectra, Ẽu′
i
(̃kx, z) =∫ ∞

−∞ Ẽu′
i
(̃kx, x̃, z)d̃x, is equivalent to a bandpass filtering of a Fourier energy spectrum EF

u′
i
(kx, z),

premultiplied by the inverse of the wavenumber k̃x,

Ẽu′
i
(̃kx, z) = 1

k̃xCψ

∫ ∞

−∞
EF

u′
i
(kx, z)|ψ̂ (kxkψ /̃kx )|2dkx, (11)

a fact that will be further used for the validation of the wavelet transform.

2. Morlet wavelet

The wavelet used in the subsequent energy spectral analysis is an analytical Morlet wavelet [48].
The analytical Morlet wavelet (a complex exponential with a real Gaussian window) and its Fourier
transform can be defined as [44,49]

ψ (x) = exp(ik0x − x2/2), (12)

ψ̂ (kx ) =
√

2π exp
( − 1

2 (kx − k0)2
)
. (13)
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FIG. 2. Coefficient of variation Ĉ of streamwise spectra at various averaging times. (a) Ĉu′ , (b) Ĉw′ .
Lx = 15πD is the streamwise length of the WT array domain.

The peak wavenumber for the wavelet can be obtained from the roots of dψ̂/dkx = 0, which is
k0 for the Morlet wavelet from Eq. (13). In this work, we use the peak wavenumber k0 = 2 π .
Since the scale to wavenumber frequency in wavelet transform is given by a = kψ/k̃x, where kψ

is calculated by Eq. (9), from [49] we find that a = k0+
√

2+k2
0

2k̃x
, which gives the Fourier wavelength

λ̃x = 2π/k̃x ≈ a for k0 = 2π . Note that the centroid wavenumber kψ = k0+
√

2+k2
0

2 is very close to
the peak wavenumber k0. The Morlet wavelet obeys the “localization” property; for example, its
Fourier transform ψ̂ (kx ) and its derivatives decay rapidly as the wavenumber kx → ∞ [50]. High-
order moments of the Morlet wavelet are nearly zero for k0 = 2π [48].

In the subsequent analysis, the symbol tilde used to denote the wavenumber associated with the
wavelet scale, k̃x = kψ/a, will be omitted for brevity.

B. Limitations of analysis and interpretation of results

1. Statistics of large scales

In this section, the fidelity of the statistics for large scales of motion is illustrated. Large scales are
defined here as the scales of the order of ten rotor diameters, O(10D), or one boundary layer height
H , and must be contrasted with large-scale and very-large-scale motions observed in the outer layer
in wall turbulence, which reach the lengths of several boundary layer heights [51,52]. The large
scales of motion have long representative time scales and can potentially have fewer decorrelated
snapshots, necessitating caution while obtaining statistical convergence. To assess the sensitivity of
large-scale statistics to the averaging time, we calculate the uncertainty of the planar averaged and
temporally filtered streamwise and spanwise energy spectra at different wavelengths. The spectra
can be given as

〈Ẽu′
i
〉y,z,Tavg = 1

Tavg

∫ Tavg

0

[
1

LyLz

∫ ymax

ymin

∫ zmax

zmin

u′
i(y, λx, z, t )∗u′

i(y, λx, z, t )dydz

]
dt. (14)

Note that the spectra are a function of the temporal averaging (filtering) time Tavg and in the limit
limTavg→∞〈Ẽu′

i
〉y,z,Tavg = 〈Ēu′

i
〉y,z, the spectra approach a true, infinite-time average. The uncertainty in

the averaging time is calculated from the coefficient of variation with respect to different consecutive
time series of the duration t = Tavg (standard deviation normalized by the arithmetic mean of the
energy spectra corresponding to velocity u′

i), Ĉu′ (λx, Tavg) and Ĉw′ (λx, Tavg), and is documented in
Fig. 2. The plots in Figs. 2(a) and 2(b) illustrate a fast decay in the coefficient of variation with
increasing Tavg, which slows down after approximately 100 flow-through times. It is seen that the
decay in the largest resolved scales of motion, λx = Lx, on the order of the domain length, is fairly
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slow and does not reach an acceptable level of statistical invariance for a duration of 400 flow-
through times, which is half of the total simulation time. After 400 flow-through times, length
scales of the order of λx = Lx/2 show reasonable levels of invariance for the streamwise velocity,
but not for the vertical velocity. In this paper, we thus focus our analysis on length scales with
the upper bound of λx = 12D. We choose this value as an upper bound, because the uncertainty
for λx = 12D scales after 400 flow-through times is less than 0.1% for both u′ and w′ velocities:
maxTavg Ĉu′ � 0.1%, maxTavg Ĉw′ � 0.1%, which speaks of a sufficient convergence of the spectra.
Note that the total averaging time for the results presented in this paper (Tavg = 800 Te) is twice the
maximum sampling time for the calculation of the coefficient of variation (Tavg = 400 Te), since the
latter in the current analysis was calculated by subdividing all the available snapshots into disjoint
subgroups, with a maximum size of 400 Te.

2. Resolution at small scales

The smallest scale that can be analyzed with the wavelet transform depends on the resolution of
the LES grid. It is thus instructive to estimate the length scales (wavelengths) that can be captured
by the current numerical grid. Per the Nyquist criterion, the resolved wavelength threshold, λη,res,
can be defined as twice the corresponding grid resolution, which, as discussed above, in the SEM
can be represented by an average GLL node distance within the element, �e

η defined by Eq. (5):

λe
η,res = 2 �e

η. (15)

As evident from the discussion in Sec. II D and Table II, the WT array grid resolution is nonuniform,
capturing finer scales in the proximity of wind turbine rotors, and larger scales further away from
the turbines. Correspondingly, the minimum, maximum, and average wavelengths captured by a
streamwise wavelet transform on the WT grid, as analyzed in this paper, are λx,res max = 0.3366D,
λx,res min = 0.0944D, and λx,res = 0.2804D. Please note that this definition of the resolved wave-
lengths only takes into consideration the variability in the size of spectral elements and not the
variability of the GLL node clustering within an element. This definition aims to reconcile the
high-order approximation defined on spatially varying GLL points, and the classical spectral
approximation prototypical with the uniform grids. All spectral results in the following analysis
refer to the wavelengths above 0.6D, which is larger than the spectral grid resolution limit of
λx,res max = 0.3366D found in the far wake of wind turbines.

C. Choice of wavelets and validation versus Fourier spectra

For a reliable representation of the turbulent spectra and length scales, it would be desirable to
demonstrate the relative independence of the results on the chosen convolution (wavelet) function.
Additionally, The readers should take a note of Fig. 3 to consider the cone of influence (COI) in
the wavelet transform, where the results are not trustworthy and influenced by domain boundaries.
All wavelet spectral results demonstrated in the paper are out the COI. In Fig. 4, the energy spectra
obtained with Morlet wavelet (used in this paper) and the Morse wavelet are compared at several
streamwise stations around the second row of turbines. The plots in Fig. 4 illustrate that small scales
less than the rotor diameter manifest a dependency of the computed spectra on the wavelet kernel,
while the larger scales appear to be fairly indifferent to the wavelet function used. Since the scales
analyzed in the current paper are greater than 0.6D, a particular choice of the wavelet kernel is not
expected to have a major influence on the results presented.

The two wavelets are further compared and validated versus the Fourier spectra by looking at a
streamwise-integrated wavelet energy spectra with respect to the Fourier spectra in Fig. 5. From
Eq. (11), one can see that the streamwise-integrated wavelet spectrum is essentially equivalent
to a bandpass filtered Fourier spectrum, which is confirmed in the current results. All the typical
scaling laws in the inner layer are captured well by both the wavelet and the Fourier spectra,
albeit agreement between the Morlet wavelet and the Fourier results is slightly better than for the
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FIG. 3. Schematic of the cone of influence (COI) in a wavelet transform plot. Red lines, boundaries of
the COI of the domain edges. Gray area, within the COI of the domain edges, edge effects dominant; white
area, outside of the COI of the domain edges, free from edge effects; [−B, B], compact support of the mother
wavelet; kψ , centroid wavenumber of the mother wavelet.

Morse wavelet, perhaps, owing to the fact that the Morlet wavelet has more higher-order vanishing
moments than the Morse wavelet [50,53].

IV. RESULTS

A. Streamwise correlation length scales

To document a streamwise inhomogeneity of a developing wind farm flow, we first present
the streamwise correlation length scales in Fig. 6, which shows the correlation length scales for
streamwise and vertical velocity fluctuations in the rotor region z = zh ± D/2, and in the outer
layer. Correlation length scales are calculated as the integral of the correlation function,

Lζ (x, z) =
∫ �x,C

−�x,C

ρζ (x,�x, z)d�x, (16)

with �x,C being the cutoff location, where the correlation reaches the maximum negative value.
To obtain the streamwise-varying correlation function, we use the windowing technique to ensure
statistical convergence of the correlations as

ρζ (x,�x, z) =
∫ x+W/2

x−W/2
〈ζ (x′, y, z, t )ζ ∗(x′ + �x, y, z, t )〉y,T dx′ ∀ζ = u′,w′, (17)

where W is the window size. Windows are allowed to overlap by 40%.

(a) (b)

FIG. 4. Validation of the wavelet transform: comparison of a streamwise-varying spectra, kxẼu′ (λx, x)/U 2
∞,

between Morlet and Morse wavelets, at different streamwise stations around the second row of turbines: solid
line, xt + 0.1D; dashed line, xt + 5D; dash-dotted line, xt + 6.9D; xt = 14.85D is the location of the second
row of turbines. (a) z = 0.125D, (b) z = zh + D/2. Green, Morlet wavelet; violet, Morse wavelet.
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(a) (b)

FIG. 5. Validation of the wavelet transform: comparison of a streamwise-integrated spectrum,
kxẼu′ (λx )/U 2

∞, between Morlet and Morse wavelets and a Fourier transform. (a) z = 0.125D, inner layer;
(b) z = zh + D/2, top tip of the rotor. Green +, Morlet wavelet spectra; violet �, Morse wavelet spectra;
solid black, Fourier spectra.

The streamwise growth of the correlation length scales as depicted in Fig. 6 is pronounced in the
wind turbine array region, especially for streamwise velocity fluctuations and the vertical velocity
in the outer layer. This illustrates that the wind turbines interacting with the atmospheric boundary
layer promote the development of larger-scale motions, especially in the outer layer. These motions
in the outer layer are also characterized by strong streamwise correlations in vertical velocity that
are likely associated with the downdrafts of kinetic energy in wind farm flows observed previously
[7,8]. Correlations in streamwise velocity decrease past the second row of turbines at all vertical
locations, testifying to a dominance of small-scale processes associated with the mixing in the wake
region. Interestingly, a similar decrement of integral length scales downstream of turbine rotors
was also observed in [54]. A secondary growth of streamwise length scales past the wind turbine
array region at the hub height is also noted, potentially testifying to a recovery of large-scale eddies
spurred by wind turbine interactions once they pass the region of a strong near-wake mixing.

The energetic mixing processes and the correlation length scales in a wind farm and a subsequent
wake can be dependent upon the wind turbine operational parameters and the wind farm geometrical
layout. In Appendix A, we document the influence of some of these parameters (such as a tip-
speed ratio and a streamwise distance between the turbines) on the correlation length scales. The
main conclusion from this study is that both the higher tip-speed ratios and the smaller interturbine
distances increase the growth of the energetic large-scale motions and, at the same time, amount to
a higher streamwise variability of length scales inside the wind farm domain due to stronger mixing
effects.
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FIG. 6. Moving window correlation-based length scales, Eq. (17), at different heights (a) Lu and (b) Lw .
Window size is 0.45Lx (Lx is the streamwise length of the domain); overlap is 40%.
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(a) (b)

FIG. 7. Contour maps of wavelet energy spectra, (a) Eu′×105 and (b) Ew′×105 at hub-height z = zh. Maps
are overlaid with the contour lines in green. Green markers, streamwise location of the turbine rows.

B. Wavelet spectra and intermittency

1. Intermittency of velocity fluctuations

We begin this section by highlighting the u′,w′ wavelet spectra at the hub height, z = zh (Fig. 7),
which illustrate the peak in energy in the turbine rotor regions. It can be seen that the spectra indicate
the following picture:

(1) The streamwise spectral energy content [Fig. 7(a)] peaks within the wind farm region at
about the length scales ∼7D. These scales (∼7D) are indicative of the interturbine distances, and
they, expectedly, dominate the size of the streamwise coherent motions in the wake region. Beyond
the wind farm, the structures are no longer being broken down by the turbines, so that the length
scales of the streamwise energy-containing eddies grow to �10D.

(2) For the vertical spectra [Fig. 7(b)], the peak is at similar length scales, but occurs slightly
downstream of the turbine rows. It is also interesting to note that the region of the energetic length
scales in the vertical direction is generally broader, with the range of scales between 3D and 10D
involved, which were previously shown to be important in the energy production by wind farms [7].

To better understand the spatial variability of the wavelet energy spectra, we document the
intermittency function of u′, w′ energy spectra [18,44] in the streamwise direction defined as

Iξ (λx, x, z) = Ẽξ (λx, x, z)
1
Lx

∫ xmax

xmin
Ẽξ (λx, x, z)dx

, (18)

where ξ = u′,w′ are the streamwise and wall-normal turbulent velocity fluctuations, respectively,
and Lx is the streamwise length of the domain. This definition is along the lines of [55] and is a
measure of the deviation of the energy spectra at different streamwise locations from its streamwise
integrated mean. In the context of the current paper, the intermittency function illustrates the degree
of spatial variability of the kinetic energy and other statistical variables due to the presence of wind
farms, which is indicative of a local departure from statistical homogeneity.

Figure 8 documents the streamwise intermittency of the wavelet energy spectra in and above
the turbine rotor region (z = zh − D/2, zh, zh + D/2). The gray patch in the plots corresponds
to the region of “edge effects” owing to the cone of influence of the wavelet coefficients at the
maximum wavelength plotted, λx = 12D. Evidently, wavelet coefficients corresponding to smaller
wavelengths have a smaller region of influence (refer to Fig. 3). For smaller scales � 12D, colored
markers are also provided denoting the boundaries of the cone of influence. Figure 8 illustrates that
the maximum variability of the streamwise spectra at the hub height manifests itself in the length
scale of λx = 7D, which is the streamwise distance between the rows of turbines. Above the hub
height, we see an equivalent increase in the energy content over a broad range of length scales, while
below the hub height it is only the small scales which manifest a high degree of variability. The peaks
in small scales, which are seen in all locations through the turbine rotor region in both u′ and w′
spectra, roughly correspond to the streamwise location of wind turbines. Increased production of the
kinetic energy in the small scales behind the turbine rotors is consistent with the recent investigation
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(a) (b)

(c) (d)

(e) (f)

FIG. 8. Streamwise intermittency function for (a), (c), (e) u′ velocity, Iu′ (λx, x, z), and (b), (d), (f) w′

velocity, Iw′ (λx, x, z). (a), (b) z = zh − D/2, bottom tip of the rotor; (c), (d) z = zh, hub height of the rotor;
(e), (f) z = zh + D/2, top tip of the rotor, for different length scales using Morlet wavelets. Gray patch, region
inside the cone of influence (COI) of the wavelet for the maximum wavelength considered, λx = 12D. Marks
of the same color as the plots are bounds of the COI of the respective length scales. Red ellipses, streamwise
location of the turbine rows.

[54] that demonstrated the decreased values of the correlation function and decreased integral length
scales of streamwise velocity fluctuations behind the turbines. This observation is consistent with
the behavior of the mixing length scales presented in Appendix A, which shows an increase in length
scales upstream of turbine rotors and a marked decrease downstream thereof.

It is interesting to note a steady decay in all scales of motion for the Iu′ function in the bottom
tip location of the rotor [Fig. 8(a)], indicating that there is a gradual drop in the streamwise energy
spectra as one moves downstream throughout the wind farm array. A suppression of turbulence
behind the bottom tip of the rotors and close to the ground was previously observed in [9,56,57].

The variation registered in the intermittency function occurs due to the presence of wind turbines.
This is evidenced by the absence of such variations in a domain without wind turbines, analyzed in
Appendix B. In particular, in Appendix B, we compare the wavelet u′ and w′ energy spectra of a
3×3 wind farm with the case of a neutral ABL without wind turbines. From this comparison, the
modulation of different scales of motion by the wind farm as compared to a neutral ABL flow is
further highlighted, and the interested readers are referred to Appendix B for this information.
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FIG. 9. Vertical variation of the intermittency function Itke(λx, x, z) of the turbulent kinetic energy
wavelet spectra at various streamwise locations: (a) x = xR,1 + 2D, (b) x ≈ xR,2 + 2D, (c) x ≈ xR,3 + 2D, and
(d) x ≈ xR,3 + 14D (downstream of the wind farm). xR,i, location of the ith row of turbines.

2. Intermittency of kinetic energy

The spatial variability of the spanwise and temporally averaged kinetic energy wavelet spectra as
a function of streamwise and wall-normal locations is documented in this section. The intermittency
function of the kinetic energy wavelet spectra, defined as

Itke(λx, x, z) = Ẽ (λx, x, z)
1
Lx

∫ xmax

xmin
Ẽ (λx, x, z)dx

, (19)

is illustrated in Fig. 9. A peak of intermittency is observed at length scales λx ∼ 7D around the
hub height, z/D ∼ 1, shortly downstream of the first row of turbines [Fig. 9(a)]. After the second
row of turbines, high intermittency is observed at all scales below 7D at hub height, and the region
of high intermittency also spreads slightly above and below hub height. This is indicative of a
vertical mixing of wind turbine wakes, as well as a growth of the internal boundary layer. After
the third row of turbines, the zone of high intermittency is extended even further into the vertical
direction. Downstream of the wind farm, in Fig. 9(d), the intermittency at the hub-height level is
low, presumably due to a wake diffusion. However, the region above the turbine rotors, z/D ∼ 3,
shows high intermittency at all scales. The upward shift of the region of high intermittency with
the downstream distance can possibly be associated with the updrafts of the large-scale structures
generated in the wake by the large-scale motions.

C. Vertical coherence

1. Vertical coherence of the velocity fluctuations

The dynamics of the large scales in the WT array are further illustrated by the temporally
averaged wall-normal correlations of the wavelet transform of the signals. The “coherence” [58,59]
of the wavelet-transformed signals of the turbulent fluctuating velocity u′

i at two wall-normal z, z′
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(a) (b)

(c) (d)

FIG. 10. Wavelet spectral vertical coherence of streamwise velocity u′ (left) and wall-normal velocity w′

(right) in the rotor region, ρWψ [u′
i,u

′
i]

(kx, x, z, z′). (a), (c) u′ coherence. (b), (d) w′ coherence. (a), (b) z = zh,
z′ = zh − D/2; (c), (d) z = zh, z′ = zh + D/2. Black amd pink markers, streamwise location of the turbine
rows. Blue dashed line, boundary of the COI.

locations can be defined as a correlation coefficient:

ρWψ [u′
i,u

′
j ](kx, x, y, z, z′, t ) = |W∗

ψ [u′
i](kx, x, y, z, t )Wψ [u′

j](kx, x, y, z′, t )|
|Wψ [u′

i](kx, x, y, z, t )||Wψ [u′
j](kx, x, y, z′, t )| . (20)

In the current paper, we use the temporally and spanwise-averaged wavelet coherence as

ρWψ [u′
i,u

′
j ](kx, x, z, z′) = 1

Ly

∫ ymax

ymin

〈ρWψ [u′
i,u

′
j ](kx, x, y, z, z′, t )〉T dy. (21)

A study of z-directional (vertical) coherence of the u′,w′ velocities is essential towards un-
derstanding how the flow is reorganized with respect to the vertical motions related to energy
updrafts and downdrafts. Figure 10 shows the spectral vertical coherence of u′,w′ fluctuations in the
streamwise location and streamwise wavenumber plane with correlations at z = zh, z′ = zh ± D/2.
The vertical coherence function indicates that the eddies at hub height are better correlated in the
wall-normal direction with the eddies near the top tip [Figs. 10(c) and 10(d)] than with the eddies
near the bottom tip of the rotors [Figs. 10(a) and 10(b)]. Further, the u′ coherence is fairly uniform
with respect to a streamwise location in the large length scales λx ∼ O(10D), while the w′ coherence
increases as we move towards the downstream of the wind farm. This might be a manifestation of
the processes responsible for reorganization of the large-scale structures downstream of the tur-
bines favoring stronger coherent vertical motions associated with the downdrafts, that are growing
stronger as the wind farm flow develops, and continue to evolve downstream of wind farm.

In Fig. 11, the u′ and w′ spectral vertical coherence is shown in the streamwise location and
wavenumber plane for the correlations calculated in the outer layer, z = zo, z′ = zo + D/2. At
large scales, λx ∼ O(10D), the u′ spectral vertical coherence remains similar in magnitude as a
coherence in the rotor region, while the w′ coherence in the outer layer increases by approximately
5% compared to the rotor region. High coherence of the vertical velocity in the outer layer points
to a strong influence of the downdraft motions on the outer layer dynamics that contributes to the
energy transfer between the outer layer and the wind turbine region.
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(a) (b)

FIG. 11. Wavelet spectral vertical coherence of streamwise velocity u′ (left) and wall-normal velocity w′

(right) in the outer layer, ρWψ [u′
i,u

′
i]

(kx, x, z, z′). (a) u′ coherence and (b) w′ coherence. z = zo, z′ = zo + D/2,
zo = 4.125D. Black and pink markers, streamwise location of the turbine rows; blue dashed line, boundary of
the COI.

2. Coherence height

In order to understand the vertical variation of the coherence of velocity fluctuations in the region
in and around the rotors, we calculate ρWψ [u′

i,u
′
j ](kx, x, z, z′) with varying z, z′. To assess a cumulative

effect on the vertical correlation across the wind farm domain, we focus on the streamwise-averaged
coherence defined as ρ̄Wψ [u′

i,u
′
j ](kx, z, z′) = 1

Lx

∫ xmax

xmin
ρWψ [u′

i,u
′
j ](kx, x, z, z′)dx.

Since the coherence function ρWψ [u′
i,u

′
j ] is a nondimensional quantity, we are interested in asso-

ciating a length scale similar in spirit with the integral length scale in the vertical direction within
the certain span. This is further illustrated in the plots involving “coherence heights” (Fig. 12). We
define this length scale, or the coherence height Hu′

i,u
′
j
, analogous to the definition noted in [60]:

[
Hu′

i,u
′
j
(λx, x)

]2 =
∫ z2

z1

∫ z2

z1

ρWψ [u′
i,u

′
j ](kx, x, z, z′)dzdz′. (22)

The streamwise-averaged coherence height can be analogously defined as

Hu′
i,u

′
j
(λx ) = 1

Lx

∫ xmax

xmin

Hu′
i,u

′
j
(λx, x)dx. (23)

Depending on the region of interest, the integration limits z1, z2 in Eq. (22) can be adjusted [60]. In
the current paper, the coherence height in the turbine rotor region, Hr, u′

i,u
′
j
(z1 = zh − D/2, z2 =

zh + D), is compared to the coherence height in the inner layer, Hi, u′
i,u

′
j
(z1 = 0.1D, z2 = 0.5D)

(see Fig. 12). Note that zh − D/2 = 0.5D, so the two regions of integration are adjacent.
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FIG. 12. Variation of the streamwise-averaged coherence height Hu′
i,u

′
j
(λx ) with wavelengths. Black, u′

i =
u′, u′

j = u′; red, u′
i = w′, u′

j = w′; blue, u′
i = u′, u′

j = w′. (a) Hr, u′
i,u

′
j
(λx ) in the rotor region (integration limits

z1 = zh − D/2, z2 = zh + D). (b) Hi, u′
i,u

′
j
(λx ) in the inner layer (integration limits z1 = 0.1D, z2 = 0.5D).
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Figure 12 shows that, first, the coherence height in both regions is consistently lower than
the integration span, confirming that the length scales are not truncated by the finiteness of the
integration domain. The coherence height in the rotor region [Fig. 12(a)] varies between 0.8D and
1.2D and shows a strong correlation of structures all throughout the rotor width. Moreover, the
plots show a steady growth in coherence height for u′, w′, and u′w′ correlations with the streamwise
length scale, testifying to the strengthening of the large-scale motions on the order of the interturbine
distance by wind turbines as noted above. The coherence height is the largest for the vertical
velocity, followed by a streamwise velocity and by u′w′ correlation, showing the dominant role
of the vertical motions in the energy transfer across the rotor region. On the other hand, a coherence
height in the inner layer [Fig. 12(b)] (1) is on the order of 0.3D–0.35D (70% of the integration
length, compared to the 85% of the integration length in the rotor region), (2) does not show a
dominance of the correlated vertical motions (interestingly a lack of vertical mixing in the inner
layer was also reported in the preliminary analysis of the recent field measurements in [61]), and (3)
does not show a growth with λx for vertical correlations which are saturated at 0.35D at all length
scales.

V. CONCLUDING REMARKS

The current paper focuses on investigation of spatial inhomogeneities in a spectral content of the
energetic turbulent motions in a developing wind farm flow. For this purpose, a wavelet spectral
analysis is performed on the spatially varying turbulent quantities, that allows us to decouple the
spatial location and the spectral content of the inhomogeneous signals. We observe a significant
growth of length scales for both streamwise and vertical velocity fluctuations after the first row
of turbines, especially in the rotor region and in the outer layer of the atmospheric boundary layer.
Wavelet intermittency function in a streamwise direction shows a significant amplification of energy
in the length scales around 10D for both streamwise and vertical velocity fluctuations. The energy
peaks at the length scales of 7D for streamwise velocity fluctuations, which coincide with the
streamwise interturbine separation length, while a broader range of scales is seen to contribute
to the energetic vertical motions. The vertical coherence plots signify that the motions of the order
of 10D are also strongly correlated in the vertical direction, both for the streamwise and vertical
fluctuations. It can also be observed that the u′ fluctuation energy peaks at the narrow band of length
scales slightly less than 10D between the second and third rows of turbines, while the energy in w′
fluctuations, encompassing a broader region of scales of motion, peaks downstream of a wind farm.

The observed picture testifies to a formation of intermediately large-scale motions, on the order
of 10D, spurred by the presence of wind turbines in the atmospheric boundary layer. The evidence
of the formation of the large-scale structures as early as past the first row of turbines is supported
by the current data. One of the main conclusions of the current study is that not only streamwise
but also vertical velocity correlations are enhanced in large scales after the first row of turbines.
Enhancements of vertical velocity correlations is associated with the enhancement of the vertical
momentum transfer between the outer layer and the wind turbine region, the so-called downdrafts
of the mean kinetic energy [7,8]. This mechanism was previously observed in fully developed wind
farms [7,8]. From a wind farm energetics perspective, it is associated with the energy extraction
by wind turbines from the energetic motions in the outer layer that are brought down to the wind
turbine level via the downdraft mechanisms. A significance of the current study is in demonstrating
that this mechanism starts developing early in the wind farm and is likely associated with the
(intermediately) large-scale motions created due to the interaction of wake turbulence with the
boundary layer turbulence. While the energy associated with the downdrafts shows its peaks right
downstream of the wind farm, the signature of strongly correlated motions in a streamwise and
vertical direction persists far into the wake of wind farms, showing that the created large-scale
motions are significantly robust and are not easily dissipated. This is in line with the previous studies
that showed a persistence of the wind farm wakes for as long as ∼50 km downstream of a wind farm
[62].
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TABLE III. Summary of the geometry and computational grid parameters for the different cases simulated.
Each case contains a 3×3 array of wind turbines. λR is the tip-speed ratio, and sx is the streamwise distance
between the turbine rows.

Case Geometry Ne
x ×Ne

y ×Ne
z Grid points

λ3
Rsx,7D 10πD×5πD × 5D 48×32×24 1.281×107

λ5
Rsx,7D (baseline) 10πD×5πD×5D 48×32×24 1.281×107

λ8
Rsx,7D 10πD×5πD×5D 48×32×24 1.281×107

λ5
Rsx,3.5D 10πD×5πD×5D 51×32×24 1.361×107

While this work focuses on the analysis of the intermediately large scales of motion, between D
and 10D, future work could target an investigation of the interaction between the very-large-scale
motions (VLSMs) with wind turbines, requiring significantly longer computational domains [3]. In
addition to the long upstream domains to correctly capture the VLSM of an incoming ABL flow
as in the work of [3], it would also be of interest to have a very long wind turbine domain and
a downstream recovery region to capture the modulation of VLSMs by wind turbines and their
subsequent reorganization.
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APPENDIX A: COMPARISON OF STREAMWISE CORRELATION LENGTH SCALES
FOR DIFFERENT TIP-SPEED RATIOS AND TURBINE LAYOUTS

In the current section, we document the comparison of length scales for different tip-speed ratios
and turbine layouts in a 3×3 wind turbine array. Table III summarizes the geometry and grid sizes
used for the simulated cases. The simulation cases are labeled as λ

χ
Rsx,ηD, where λR = ωR/Uh = χ

is the tip-speed ratio (TSR) and sx = ηD is the streamwise distance between the turbine rows. The
lateral distance between the turbines remains sy = 3D for all the cases. While this section documents
the influence of the tip-speed ratio and the turbine layout on the correlation length scales, the rest of
the paper presents the data from the baseline case, λ5

Rsx,7D.
We compute length scales based on two different measures: (i) correlation length scales, which

estimate the coherence of turbulent motions within a specified interrogation window, and (ii) mixing
length scales based on the resolved turbulent kinetic energy and the subgrid scale dissipation. The
correlation length scales are calculated as the integral of the correlation function as documented in
Eqs. (16) and (17) in Sec. IV A.

The mixing length scales are defined as

Lspan
k,ε

=
√

2
3 k1.5

ε

∣∣∣∣
Y span

, (A1)

Ldisk
k,ε =

√
2
3 k1.5

ε

∣∣∣∣
Y disc

, (A2)

where k = 1
2 (̃u2 + ṽ2 + w̃2) is the resolved turbulent kinetic energy and ε = −τ SGS∇sũ is the SGS

dissipation [see Eq. (2) for the definition of τ SGS and ∇sũ]. The mixing length scale elucidates the
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FIG. 13. Moving window correlation-based length scales [Eq. (17)] at different heights for the different
cases simulated as in Table III. Solid lines, λ3

Rsx,7D; dashed lines, λ5
Rsx,7D; dotted lines, λ8

Rsx,7D. Lu and Lw ,
length scale based on streamwise and vertical velocity correlation. (a) Lu, window size = 0.2Lx , overlap =
20%. (b) Lw , window size = 0.2Lx , overlap = 20%. (c) Lu, window size = 0.45Lx , overlap = 40%. (d) Lw ,
window size = 0.45Lx , overlap = 40%. Green crosses denote the streamwise location of the turbine rows.

turbulent mixing of eddies that have a velocity scale ve ∼ √
2/3 k and a turnover time scale te ∼ k/ε.

The superscripts span and disk in Eqs. (A1) and (A2) correspond to the averaging over a full span
of wind farm, Y span = {y : ymin � y � ymax}, and over the projection of the total area occupied by
the turbine disks, Y disk = ∪3

i=1{y : yci − D/2 � y � yci + D/2}, where yci is the y coordinate of the
center of wind turbines in the column i = 1, 2, 3, respectively.

Correlation length scales [Eqs. (16) and (17)] are documented in Figs. 13 and 14. From these
figures, we observe that the correlation length scales depend both on the tip-speed ratio (Fig. 13)
and the turbine layout (Fig. 14), with a general trend that higher tip-speed ratios and a tighter turbine
layout (shorter interturbine distance) increase the correlation length scales.

In a calculation of the correlation length scales, we compare two different window sizes 0.2Lx

and 0.45Lx, with the overlap widths of 20% and 40%, respectively. A larger window size naturally
captures larger length scales, but a precision of spatial localization of those scales is lower. From
Figs. 13 and 14 it is observed that the streamwise growth of length scales upstream of a wind farm
is consistently predicted by both windows in all the simulated cases, which testifies that this trend is
significant in both u′ and w′ correlations and affects a variety of scales of motion. We hypothesize
that the increase of length scales at the entrance and immediately upstream of the wind turbine array
is associated with a blockage effect of the flow by wind turbines [63,64], which, in turn, results in
a channeling and an acceleration of the local flow in between the turbines. It has been previously
reported that flow acceleration causes an increase in turbulence length scales [65,66], which can be
understood intuitively from considerations of vortex stretching. We observe that higher tip-speed
ratios and a tighter layout intensify this phenomenon, at least in u′ correlation scales, consistent
with the notion that both higher tip-speed ratios and a tighter layout result in stronger turbine-flow
interactions and stronger channeling effects.

The effect of the window size on the dip in u′ correlation length scales past the first row of
turbines, previously observed in the baseline case in Fig. 6, is pronounced. A smaller window of
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FIG. 14. Moving window correlation-based length scales [Eq. (17)] at different heights for the different
cases simulated as in Table III. Dashed lines, λ5

Rsx,7D; dash-dotted lines, λ5
Rsx,3.5D. Variable specifications remain

the same as in Fig. 13. Green crosses, wind turbine locations with sx = 7D; pink circles, wind turbine locations
with sx = 3.5D.

0.2Lx does not manifest this dip, which means that it is the larger scales of coherent motion that are
being disrupted by the mixing processes and the interturbine interactions. The subsequent recovery
of length scales at hub height downstream of a wind farm with the larger window size, previously
observed in the baseline case, is even stronger for TSR = 8 and considerably weaker at TSR = 3,
suggesting that these recovered length scales might be the signatures of the large-scale motions
spurred by the turbine rotation. Expectedly, the length scale recovery with a shorter interturbine
distance but the same TSR leads to an identical maximum of Lu/D values between λ5

Rsx,7D and
λ5

Rsx,3.5D cases at the end of the domain, but recovery commences earlier in the λ5
Rsx,3.5D case due to

a shorter region occupied by wind turbines. Notably, a streamwise variation of length scales past the
first row of turbines is captured in the λ5

Rsx,3.5D case by both 0.2Lx and 0.45Lx windows, presumably
because the shorter length scales are affected by this phenomenon due to a closer wind turbine
spacing.

Compared to the length scales based on streamwise velocity fluctuations, those based on the
vertical velocity fluctuations exhibit less dependence on the TSR and the turbine layout, a lack
of length scale shortening past the first row of turbines, a fairly uniform streamwise distribution
throughout the length of the wind farm and the wake, and a larger ratio of the length scale values
in the outer layer to the values around the hub height, and top and bottom tips of the rotors. As
discussed before, these increased correlations of the vertical velocity in the outer layer compared
to the correlations in the rotor region likely represent the signatures of the large-scale downdraft
motions, and are persistent across all simulated wind farm cases.

From the above discussion, it is seen that the windowed correlation length scales are subjective
by definition, and a quantification of the variation of length scales depends on the window and
overlap length. Consequently, we complement the analysis with another definition of length scales
[Eqs. (A1) and (A2)], which relies on the local values of the turbulent kinetic energy and the SGS
dissipation, thus avoiding the need for a windowed correlation.
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FIG. 15. Mixing length scales [Eqs. (A1) and (A2)] at different heights for the different cases simulated as
in Table III. Solid lines, λ3

Rsx,7D; dashed lines, λ5
Rsx,7D; dotted lines, λ8

Rsx,7D; dash-dotted lines, λ5
Rsx,3.5D. Left:

Spanwise-averaged correlation length scales. Right: Disk-averaged correlation length scales. Green crosses,
wind turbine locations with sx = 7D; pink circles, wind turbine locations with sx = 3.5D.

It is interesting to note that the mixing length scales documented in Fig. 15 are of the same
order of magnitude as the windowed correlation length scales. Unlike the windowed correlation
length scales, however, the mixing length scales show much higher spatial variability, especially
between the turbines, due to their local nature and a lack of dependence on the correlation window.
Further, we note that when length scales are spanwise averaged, streamwise growth is observed
in the upstream induction region, while for disk-averaged quantities, a slight dip is observed. This
is in agreement with the fact that the channeling effect, occurring between wind turbine rows, is
not captured by disk averaging, and, moreover, disk-averaging locations correspond to a region
of a slightly decelerated flow, for which the turbulent length scales typically decrease [67]. This
also explains a lack of well-defined peaks immediately upstream of wind turbines in disk-averaged
quantities, while they persist in their spanwise-averaged counterparts. Furthermore, disk-averaged
quantities capture stronger differences between the cases, since they sample exclusively in and
around the wake regions, which are most significantly affected by the differences in a tip-speed ratio
and a turbine layout. Both spanwise-averaged and disk-averaged mixing length scales consistently
reveal stronger dips and a quicker recovery as the TSR is increased from 3 to 8 [Figs. 15(a) and
15(b)] and as the separation distance between the turbines is decreased from 7D to 3.5D [Figs. 15(c)
and 15(d)], testifying to a stronger effect of mixing at higher tip-speed ratios and a tighter layout,
as previously observed. Notably, mixing length scales assume very small values in the outer layer,
as opposed to the correlation length scales, due to an evanescent role of mixing in the outer layer
turbulence as exemplified by low levels of turbulent kinetic energy in these locations.

In summary, mixing length scales aim to represent the local state of turbulence and are able
to capture sharp variations of scales of motion between the wind turbine rows. Correlation length
scales, on the other hand, account for a spatial coherence between turbulent motions and aim to
provide the information about larger, slowly varying eddies. Both length scales give a coherent
picture that higher tip-speed ratios and a smaller interturbine distance intensify both the wake mixing
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FIG. 16. Streamwise intermittency function of the WT array and the neutral ABL for (a), (c), (e) u velocity,
Iu′ (λx, x, z), and (b), (d), (f) w velocity, Iw′ (λx, x, z). Both intermittency functions are normalized by the
streamwise-averaged energy. (a), (b) z = zh − D/2, bottom tip of the rotor; (c), (d) z = zh, hub height of the
rotor; (e), (f) z = zh + D/2, top tip of the rotor. Solid lines, ABL domain; dash-dotted lines, WT domain. Color
marks, boundaries of the COI for the WT and ABL domains. Gray or green patches, regions inside the COI of
the wavelet with the maximum wavelength considered, λx = 12D for the WT and ABL domains, respectively.

and the flow channeling effects, thus acting to increase the larger scales of motion outside the mixing
region, and promote stronger variability in the near wake of wind turbines due to mixing effects.

APPENDIX B: COMPARISON OF WAVELET SPECTRA WITH NEUTRAL ABL

In Sec. IV B 1, we have considered an intermittency function of the wavelet u′ and w′ energy
spectra in a wind turbine array, which is essentially a measure of a streamwise variation of the
normalized wavelet spectra. To compare the wavelet energy spectra in the WT array to this in the
neutral ABL flow, in this section we look at the relative wavelet spectra of the ABL flow normalized
by the same value as the WT array wavelet spectra in Eq. (18); that is, we consider the following
function:

Iξ (λx, x, z)|ABL = Ẽξ (λx, x, z)|ABL
1

Lx W T

∫
x∈R Ẽξ (λx, x, z)|W T dx

, ξ = u′,w′. (B1)

114601-21



TANMOY CHATTERJEE AND YULIA T. PEET

(a) (b)

(c) (d)

FIG. 17. Streamwise intermittency function of the WT array and the neutral ABL for (a), (c) u veloc-
ity, Iu′ (λx, x, z), and (b), (d) w velocity, Iw′ (λx, x, z). Both intermittency functions are normalized by the
streamwise-averaged energy spectra of the WT array. (a), (b) z = 0.125D, inner layer; (c), (d) z = 4.375D,
outer layer. Lines, color marks, and gray or green patches, same as in Fig. 16.

With a slight abuse of notation, we will call this function, defined by Eq. (B1), a neutral ABL
“intermittency” function and plot it on the same plot with the WT array intermittency function in
Figs. 16 and 17. We remark that this definition of the intermittency for the ABL domain does not
yield an averaged value of one in a streamwise direction, but it serves judiciously as an indication
of the relative strength between the wavelet spectral energy at the specified length scales between
the neutral ABL and the WT cases.

The comparison of the intermittencies for the WT array and the neutral ABL cases is presented
in Fig. 16 for the heights corresponding to the turbine rotor region in the WT array, and in Fig. 17
for the inner and outer layers. For clarity of the plots, only the scales λx = 0.6D, D, and 7D for
both the neutral ABL and the wind farm cases are shown. It can be seen that the presence of
wind turbines results in a significant reorganization of the boundary layer energetics compared
to the neutral ABL case without wind turbines. The small-scale streamwise and vertical motions
are significantly suppressed in the inner and outer layers. In the turbine rotor region, while the
streamwise small-scale motions are essentially not effected, the vertical motions are still suppressed
in the upstream portion of the wind farm. Past the first row of turbines, however, the energy in
both the small and the large scales starts growing in the WT domain in the region of hub height
through the top tip, ultimately reaching values higher than in the neutral ABL for the scales λx � D.
A suppression of the small scales in front of the wind farm can be related to the blockage and
the channeling flow effects associated with the induction region of wind farms [63,64,66], and
is consistent with our previous observation of a growth of length scales in the upstream portion
of a wind farm discussed in Appendix A. The subsequent growth of energy in the small scales
downstream of wind turbines is likely associated with the turbulent mixing in the turbine wakes,
while the growth of large scales might be related to the development of global roll cell modes. We
also remark that the neutral ABL spectra show significantly weaker variability in the streamwise
direction at all length scales and at all heights as opposed to the WT spectra, as expected.
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