
PHYSICAL REVIEW FLUIDS 6, 114401 (2021)

Periodic orbits exhibit oblique stripe patterns in plane Couette flow
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Spatiotemporally chaotic dynamics of transitional plane Couette flow may give rise
to regular turbulent-laminar stripe patterns with a large-scale pattern wavelength and an
oblique orientation relative to the laminar flow direction. A recent dynamical systems
analysis of the oblique stripe pattern demonstrated that the Navier-Stokes equations have
unstable equilibrium solutions that capture the three-dimensional spatial structure of the
oblique stripe patterns. While equilibrium solutions are embedded in the turbulence-
supporting set and capture spatial features of the flow, a description of the dynamics
requires evolving time-periodic solutions. These periodic orbits are unstable, expected to
lie dense in the invariant set supporting turbulence, are shadowed by the chaotic trajectory
and may allow for a quantitative description of turbulent statistics via periodic orbit ex-
pansions. Here we identify unstable periodic orbits that not only show oblique large-scale
amplitude modulation in space but also have a characteristic time evolution. The periodic
orbits represent standing waves that slowly propagate across wavy velocity streaks in the
flow on viscous diffusion timescales. The unstable periodic orbits are embedded in the edge
of chaos in a symmetry subspace of plane Couette flow and thereby may mediate transition
to and from turbulent flows with oblique patterns.

DOI: 10.1103/PhysRevFluids.6.114401

I. INTRODUCTION

Transitional turbulence in linearly stable wall-bounded shear flows may segregate into laminar
and turbulent regions. The spatial coexistence of turbulent and laminar flow has been observed in
pipes with one extended space dimension [1] and in planar shear flows with two extended space
dimensions [2]. The properties of turbulent-laminar coexistence have been studied extensively both
in terms of statistical laws [3,4] and in terms of the dynamics at the interfaces between laminar
and turbulent regions [5,6]. For intermediate strength of driving, turbulent and laminar regions in
wall-bounded shear flows may self-organize into a regular pattern of spatially periodic stripes or
bands oriented obliquely relative to the laminar flow direction. Oblique stripe patterns have been
observed experimentally and numerically in various wall-bounded shear flows suggesting universal
mechanisms that create the regular pattern in the flow [7]. How turbulent-laminar stripes emerge at
particular pattern wavelengths and particular oblique orientations remains an open problem.

The present article discusses regular oblique stripe patterns in plane Couette flow (PCF) where
two extended parallel walls slide into opposite direction and drive an incompressible flow in the gap
between the walls. First experimental observations of oblique stripe patterns in spatially extended
PCF report a regular pattern at a Reynolds numbers of Re = Uwh/ν = 358 [8,9]. In PCF, Re is
the only control parameter of the flow where 2Uw is the relative wall velocity, 2h is the gap height
and ν is the kinematic viscosity. The wavelength of the stripe pattern λ is large compared to the
gap height, 40h � λ � 60h, and the observed orientation angle θ against the streamwise direction
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varies between 20◦ � θ � 40◦. Oblique stripe patterns with similar ranges of λ and θ have also been
reproduced in direct numerical simulations of PCF at 330 � Re � 380 [10]. Both, experiments
and simulations indicate a coupling of the pattern wavelength λ, the orientation angle θ and the
Reynolds number Re, such that λ and θ tend to increase with decreasing Re. A simple approximate
relation, Re sin(θ ) ≈ πλ, has been proposed based on a mean flow analysis of the stripe pattern
[11]. Further empirical and theoretical studies are needed to more precisely describe the relation
between wavelength λ, angle θ and the Reynolds number Re.

Oblique turbulent-laminar stripes posses a mean flow that is invariant under continuous transla-
tions in the direction along the oblique stripes. Moreover, the mean flow is symmetric with respect
to discrete translations with periodicity λ across the pattern. These translation symmetries in two
orthogonal space dimensions can be exploited in direct numerical simulations of flows showing the
oblique stripes by using minimal periodic domains [11,12]. In general, minimal periodic domains
treat dimensions with translation symmetries as periodic. This minimizes the computational cost to
study complex patterns and may simplify the simulated dynamics by disallowing instabilities break-
ing the imposed periodicity [13]. The minimal domain capturing the pattern contains a single period
of the sustained periodic flow structure [14]. To capture oblique turbulent-laminar stripe patterns, the
two lateral dimensions of the minimal periodic domain must coincide with the translation-invariant
directions of the pattern implying that the domain is tilted against the direction of the wall velocity
by angle θ . In one direction the domain has an extension corresponding to the pattern wavelength λ

[12]. Thus in this minimal domain approach, not only Re but also θ and λ are imposed parameters.
This is in contrast to experiments and simulations in large extended domains where the angle
θ and the wavelength λ are unconstrained and can be freely selected by the flow. By choosing
a tilted minimal periodic domain matching experimental observations, Barkley and Tuckerman
[11] obtained well-converged temporal statistics of a stripe pattern at Re = 350, θ = 24◦, and
λ = 40h. They find the pattern’s mean flow to be well-approximated by few harmonic functions with
centrosymmetry about the center points of the laminar and the turbulent flow region, respectively.
Oblique stripe patterns have also been numerically studied in tilted rectangular minimal domains of
pressure-driven channel flow [15] and in tilted nonrectangular minimal domains of PCF [16].

When lowering Re from the turbulent regime toward the parameters where stripes are ob-
served, the oblique pattern emerges from statistically homogeneous turbulence. Some studies have
suggested that turbulent-laminar stripes are the consequence of a large-wavelength instability of
unpatterned turbulence, in analogy to linear instabilities forming steady patterns described by
nonlinear amplitude equations [8,17]. The identification of such large-wavelength instabilities is
however challenging because the nonlinear dynamics of turbulent flows are chaotic in time and
space [18]. Consequently, there is no time-independent base state whose stability can be ana-
lyzed in a straightforward way. One way to disentangle the temporal dynamics from the spatial
structure of the flow is to study exact equilibrium solutions of the governing equations with
steady, time-invariant dynamics that capture the coexistence of different pattern motifs in space
[19]. If an exact equilibrium solution of the fully nonlinear Navier-Stokes equations captures the
spatial coexistence of nontrivial “turbulent” flow structures and the laminar solution, then the
turbulent-laminar coexistence may be described as a homoclinic connection in space between
laminar flow and an equilibrium solution underlying a turbulent state. This description assumes that
the spatial coordinate across a one-dimensional pattern is treated as a timelike variable [20]. Such
spatial homoclinic orbits have been identifed in PCF between laminar flow and spanwise localized
wavy-streaky structures [21–23]. However, these time-invariant solutions do not capture the oblique
orientation of the stripe pattern. Furthermore, these solutions do not suggest any particular pattern
wavelength because they exist for arbitrary spanwise extent. Recently, an equilibrium solution of
PCF has been found to capture the pattern of oblique turbulent-laminar stripes [24]. This stripe
equilibrium is computed at Re = 350 in the same tilted minimal periodic domain with θ = 24◦ and
λ = 40h used to simulate oblique stripes [11]. The stripe equilibrium bifurcates first with a period
of λ = 20h from the well-known Nagata equilibrium with wavy-streaky flow structures [25–27],
and second, increases the spatial period to λ = 40h in a spatial period-doubling bifurcation. This
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bifurcation sequence confirms the existence of a large-wavelength instability creating the oblique
stripe patterns in PCF at a particular wavelength.

The stripe equilibrium solution has the spatial structure of the oblique stripe pattern but is time
independent. Thus, the equilibrium cannot capture the temporal dynamics of oblique stripe patterns.
The temporal dynamics of weakly turbulent shear flows has been described in terms of dynamically
unstable invariant solutions including equilibrium solutions, but more importantly periodic orbits
[28–30]. Unstable periodic orbits (UPO) have exactly periodic time evolution. These orbits capture
recurrent motion of the flow and are thus particular interesting building blocks for the temporal
dynamics [31]. A sufficiently large number of UPOs may allow to quantitatively predict turbulent
statistics [32,33]. Their bifurcations control changes in the statistics with system parameters [34].
Also individual UPOs provide significant insights into the dynamics as they may capture character-
istic time evolution of the flow [35]. To capture the temporal dynamics of oblique stripe patterns in
PCF, unstable periodic orbits are needed that both, have relevant intrinsic temporal dynamics and
capture the spatial characteristics of the pattern. Such orbits have not been identified yet.

Unstable invariant solutions may transiently guide turbulent dynamics along their stable and
unstable manifolds in state space [36], the space spanned by all solenoidal velocity fields [37].
Specifically relevant for the dynamics of transition between laminar and turbulent flow are so-called
edge states [38,39]. Edge states are attractive invariant sets within the edge of chaos, a codimension-
1 manifold in state space that separates trajectories approaching turbulent states from trajectories
approaching the laminar solution. This property allows to identify edge states using a method known
as edge tracking [40]. Many spatially localized invariant solutions in subcritical shear flows have
been found because they are edge states for appropriately chosen flow parameters [41–43]. The
previously reported stripe equilibrium is not an edge state [24] and the edge of chaos for turbulent-
laminar stripes has not been studied.

Following the recent identification of an equilibrium solution capturing the spatial structure of
oblique turbulent-laminar stripes in PCF [24], in this article we discuss UPOs underlying oblique
stripe patterns. Imposing discrete symmetries allows us to identify one UPO in the edge of chaos at
Re = 350 in a tilted domain. Continuation reveals two additional UPOs at the same Re connected
via fold bifurcations. The UPOs represent standing wave oscillations with a wavelength of λ =
20 and an oblique orientation at θ = 24◦. We describe the turbulent dynamics at Re = 350 and
demonstrate the dynamical relevance of the identified UPOs both for the edge dynamics and the
turbulent decay.

This article is structured as follows. To identify the symmetry subspace in which edge tracking
yields an UPO, we reduce the complexity of the spatiotemporal dynamics by imposing symmetries
on the flow dynamics (Sec. II). Edge tracking in two symmetry subspaces yields an attractor that is
chaotic in one case but near-periodic in the other (Sec. III). For the near-periodic case, we identify
an UPO that is connected to two other UPOs at Re = 350 via fold bifurcations (Sec. IV). The
dynamical relevance of the three identified UPOs is discussed in Sec. V.

II. NUMERICAL SIMULATIONS IN SYMMETRY SUBSPACES

The velocity vector field U (x, y, z, t ) and the pressure p(x, y, z, t ) in PCF are governed by the
incompressible Navier-Stokes equations

∂U
∂t

+ (U · ∇)U = −∇p + 1

Re
∇2U , (1)

∇ · U = 0, (2)

in a three-dimensional channel. The channel domain is considered as periodic in the two lateral
directions x and z, such that the velocity field repeats in space as U (x, y, z, t ) = U (x + Lx, y, z, t )
and U (x, y, z, t ) = U (x, y, z + Lz, t ) with Lx and Lz the lateral domain sizes. The Navier-Stokes
equations are nondimensionalized with the half-gap height h and the wall velocity Uw leading
to the dimensionless Reynolds number Re = Uwh/ν. No-slip boundary conditions at the walls
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(b)(a)

FIG. 1. Geometry of PCF. A Newtonian fluid (light blue) is studied numerically in x-z-periodic domains,
bounded in y by two parallel walls (light gray). The walls move with a relative velocity of 2Uw in opposite
directions and thereby drive a flow. The unit vector ês indicates the streamwise direction. In the present article,
PCF is studied in both, nontilted domains, viewed from the side in (a), where ês is aligned with x, and in tilted
domains, viewed from top in (b), where ês is oriented at a nonzero angle θ relative to the x dimension. For all
values of θ , the nondimensionalized laminar flow profile is U 0(y) = yês. We visualize nonlaminar PCF in the
indicated midplane at y = 0.

are imposed such that U (y = ±1) = ±ês. The unit vector ês = cos(θs)êx + sin(θs)êz describes the
streamwise direction in which the walls move. The streamwise direction may be rotated by θs

relative to the x and z directions of the rectangular domain. The nondimensionalized Navier-Stokes
equations with these boundary conditions admit the linear velocity profile U0(y) = yês as laminar
flow solution (Fig. 1).

We perform direct numerical simulations (DNS) of PCF in domains sufficiently large to con-
tain turbulent-laminar stripes. Such large-domain DNS can be computationally demanding. We
employ the MPI-parallel code CHANNELFLOW 2.0 [44]. The code implements a pseudospectral
method based on Fouier-Chebychev decompositions of the velocity deviation field u(x, y, z, t ) =
U (x, y, z, t ) − U0(y). An implicit-explicit multistep algorithm of third order is used for time
marching. The mean pressure gradient is fixed at zero along the streamwise and the spanwise
direction. We perform DNS of weakly turbulent PCF at Re = 350 in a large numerical domain
of size [Lx, Lz] = [197, 87.5] with [Nx, Ny, Nz] = [1024, 33, 512] spectral modes and walls moving
with θs = 0 along the x dimension. The flow self-organizes into oblique turbulent-laminar stripes
predominantly oriented along the domain diagonal at θ = ±24◦. The large-scale pattern is subject
to statistical fluctuations in the pattern wavelength and orientation, as already observed previously
[10]. Oblique stripe patterns may drift in space, break up, and form again. To reduce the complexity
of the spatiotemporal dynamics, we will impose additional discrete symmetries of PCF. Imposing a
discrete symmetry disallows instabilities that would spontaneously break this symmetry and reduces
the number of degrees of freedom in the numerical simulation. Thereby, imposed symmetries also
reduce the number of dimensions of the accessible discretized state space. The above described
DNS setup has N0 = 3 × (2Nx/3) × Ny × (2Nz/3) ≈ 3.3 × 106 degrees of freedom, corresponding
to three velocity components on a dealiased grid. In the following, the N0 = 3.3 × 106 degrees of
freedom are reduced by more than one order of magnitude.

The governing equations (1) and (2), complemented by periodic boundary conditions and
imposed wall velocity at θs = 0◦, are equivariant under reflections and translations in the x and
z directions,

πxy[u, v,w](x, y, z, t ) = [−u,−v,w](−x,−y, z, t ), (3)

πz[u, v,w](x, y, z, t ) = [u, v,−w](x, y,−z, t ), (4)

τ (ax, az )[u, v,w](x, y, z, t ) = [u, v,w](x + axLx, y, z + azLz, t ), (5)
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with continuous real-valued shift factors ax, az ∈ [0, 1). Symmetry transformations (3)–(5) generate
a symmetry group SPCF = 〈πxy, πz, τ (ax, az )〉, where 〈〉 denotes all products between the listed
transformations. For tilted domains with wall velocities at θs �= 0 and −90◦ < θs < 90, the reflec-
tions πxy and πz are broken. Only their product πi = πxyπz, the inversion symmetry

πi[u, v,w](x, y, z, t ) = [−u,−v,−w](−x,−y,−z, t ) (6)

remains a symmetry of PCF in the considered domain. To impose a particular symmetry σ ∈ SPCF

on a velocity field u = [u, v,w] simulated with CHANNELFLOW, the projection (σu + u)/2 is
applied at regular time intervals. Such a projection requires the additional property σ 2 = 1. Once u
is σ symmetric, the time evolution of u will remain σ symmetric because the governing equations
are equivariant under σ [45]. Thus, imposing symmetries on a flow confines the flow and its
time evolution to a symmetry subspace containing only flows that are invariant under the imposed
symmetries.

For some DNS runs presented in the following, we impose inversion symmetry πi and shift-
inversion symmetry πsi = πiτ (0.5, 0.5). Like πi, τ (0.5, 0.5) corresponds to a reflection since
τ 2(0.5, 0.5) = 1. Consequently, τ (0.5, 0.5) also commutes with πi which does not hold for abritrary
shift symmetries (5). Changing the spatial extent of a double-periodic domain imposes discrete
translation symmetries with different periods on the flow. Together with discrete symmetries,
the periodic boundary conditions define the symmetry subspace of the flow. Previous numerical
studies have systematically varied the domain size to investigate turbulent-laminar patterns in
different symmetry subspaces [4,18]. Here we aim for reducing the complexity of the spatiotemporal
dynamics of a sustained oblique stripe pattern while trying to preserve the pattern characteristics of
a large-scale wavelength and an oblique orientation. Starting from a regular stripe pattern in a large
domain we systematically impose additional discrete symmetries in SPCF or reduce the domain size.
We consider simulations of oblique stripe patterns in four different symmetry subspaces, A–D, of
PCF at Re = 350:

A: Inversion symmetry πi is imposed on PCF in the large periodic domain [Lx, Lz] =
[197, 87.5] with x-aligned wall velocities, θs = 0◦. The number of degrees of freedom is NA =
N0/2 = 1 686 960. A snapshot of a regular stripe pattern with pattern wavelength λ = 40 and
orientation at θ = 24◦ along the domain diagonal is shown in Fig. 2(a). Imposing πi prohibits drift
of the large-scale pattern by fixing the pattern’s spatial phase in x and z. In this case, the center of a
laminar region coincides with the center of the domain [Fig. 2(a)].

B: We impose the periodicity of a tilted periodic domain of extent [Lx, Lz] = [10, 40] and
orientation θs = 24◦. The grid resolution is [Nx, Ny, Nz] = [64, 33, 256]. No reflection symmetry is
imposed. The number of degrees of freedom is NB = 3 × (2Nx/3) × Ny × (2Nz/3) = 706 860. The
tilted domain allows to simulate a single spatial period of turbulent-laminar stripes whose geometry
matches the boundary conditions of the domain with λ = Lz = 40 and θ = θs = 24◦. The domain
is identical to the one used in Ref. [11]. A snapshot from the simulation is periodically repeated in
Fig. 2(b).

C: Again, a single stripe period is simulated in a tilted domain like for subspace B but with
additionally imposed πi symmetry. The corresponding symmetry subspace, resolved with NC =
NB/2 = 353 430 degrees of freedom, contains the mean flow of the stripe pattern in a tilted domain
of size [Lx, Lz] = [10, 40] [11] and also the stripe equilibrium reported in Ref. [24]. The emerging
oblique stripe pattern is shown in Fig. 2(c).

D: In the final step of reducing the complexity of the dynamics, we impose a shift-inversion
symmetry πsi = πiτ (0.5, 0.5) in addition to the symmetries of subspace C. The number of degrees
of freedom is ND = NB/4 = 176 715. The πsi symmetry changes the wavelength of the emerging
oblique stripe pattern from λ = 40 to λ = 20. Oblique stripe patterns with πsi symmetry and
wavelength λ = 20 have been observed in the bifurcation sequence toward the stripe equilibrium
solution [24] but are typically not naturally selected in less confined domains.

Note that subspace A is chosen to accommodate a pattern of orientation angle θ = 24◦ and
wavelength λ = 40 but does not contain the subspaces B-D. Subspace B however contains C and
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FIG. 2. Imposing symmetries reduces the complexity of the oblique stripe pattern at Re = 350 from (a) to
(d). The contours indicate streamwise velocity at midplane (y = 0). (a) Snapshot from a DNS in a periodic
domain of extent [Lx, Lz] = [197, 87.5] with additionally enforced πi symmetry. (b) Periodically repeated
snapshot from a DNS in a periodic domain of extent [Lx, Lz] = [10, 40] and tilted at θ = 24◦ against the
streamwise direction. (c) Like in (b) but with inversion symmetry πi imposed additionally. (d) Like in (c) but
with shift-inversion symmetry πsi = πiτ (0.5, 0.5) imposed additionally. This symmetry enforces a pattern
wavelength of λ = 20, while cases (a)–(c) have a pattern wavelength of λ = 40. White lines outline the spatial
extent of the periodic tilted domain. White dots mark the reference points for discrete inversion.

D. Including the subspaces B-D, corresponding to the tilted domain, into a subspace corresponding
to a nontilted domain requires to choose a nontilted domain with at least [Lx, Lz] = [98.5, 394]. The
geometric condition to make the flow in tilted and nontilted domains commensurable is discussed
in Ref. [24].

In the four simulated cases, robust oblique stripe patterns are observed in all four DNS runs
over a time interval of 	t = 1500. At some point beyond this time interval, we observe that stripes
typically either break up, leading to defects in the large-scale pattern (observed for DNS in A), or
decay to laminar flow (observed for DNS in B–D). The exact time interval for which robust stripe
patterns can be observed is subject to statistical fluctuations. We have not evaluated the distribution
of pattern lifetimes. All preliminary DNS runs performed within this study suggest however a
significant dependence of the lifetime on the domain size, which has also been demonstrated for
channel flow recently [46]. In the time interval over which the pattern characteristics are robust, the
domain averaged velocity norm

||u||2(t ) = 1

(2LxLz )1/2

(∫ Lz

0

∫ 1

−1

∫ Lx

0
u2(x, y, z, t ) dx dy dz

)1/2

(7)

shows chaotic oscillations around its mean of different oscillation amplitude (Fig. 3). In the
higher-dimensional subspace A, temporal velocity fluctuations at different uncorrelated locations
in the domain statistically compensate each other more than in the lower-dimensional subspace D.
There, the imposed symmetries lead to spatial correlations that reduce the number of independently
fluctuating modes. This induces larger fluctuations. Thus, the fluctuation amplitude of norm ||u||2(t )
around its mean is a proxy for the spatiotemporal complexity of the pattern dynamics at equal Re.

The temporal average of ||u||2(t ) over 	t = 1500 is approximately identical for oblique stripes
in subspaces A–C (red lines in Fig. 3), suggesting that the imposed symmetries do not change the
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(a)

(b)

(d)

(c)

FIG. 3. Time series from DNS in four different symmetry subspaces corresponding to the four snapshots
in Figs. 2(a)–2(d) showing instance t = 0 in panels (a)–(d) of the present figure. While the amplitudes of the
temporal fluctuations differs significantly between the cases (a)–(d), the mean values of ||u||2(t ) (horizontal red
lines) is approximately equal in the symmetry subspaces of cases (a)–(c). Case (d) has a different mean because
the imposed shift-inversion symmetry disallows the oblique stripe patterns at wavelength λ = 40◦, present in
(a)–(c), and enforces a pattern wavelength of λ = 20.

pattern’s mean flow. In subspace D, however, the shift-inversion symmetry πsi enforces a pattern
wavelength of λ = 20. This increases the temporal mean from ||u||2 = 0.26, observed for stripes
with λ = 40, to ||u||2 = 0.33. Thus, the stripe pattern in symmetry subspace D is qualitatively and
quantitatively different from the stripe patterns in A–C. All stripe patterns are however obliquely
oriented at θ = 24◦ and periodic at wavelength λ = 40.

There is no obvious additional symmetry to further reduce the complexity of the spatiotemporal
dynamics of oblique stripe patterns beyond subspace D.

III. EDGE OF CHAOS IN SYMMETRY SUBSPACES

Despite reducing the number of degrees of freedom to the presumable minimum for supporting
oblique stripe patterns, the dynamics in the symmetry subspaces remains chaotic. To identify
periodic orbits, we follow the established approach to confine the dynamics to the edge of chaos.
Using the edge-tracking algorithm implemented in CHANNELFLOW 2.0 [44], we follow two
trajectories inside the edge of chaos in symmetry subspace C and D, respectively. The Reynolds
number is again fixed at Re = 350. The initial condition was chosen arbitrarily from the DNS in
C and D. We confirmed that the state approached by edge tracking does not depend on the initial
condition in these two cases. Edge tracking in C follows a chaotic trajectory indicating a chaotic
edge state [Fig. 4(a)]. Chaotic edge states have been described previously for pipe flow [38] and
PCF [47]. Subspace C also contains periodic orbits with a pattern wavelength of λ = 40 but those
can apparently not be identified using edge tracking (see Appendix). In D, the trajectory approaches
a near-periodic edge state [Fig. 4(b)].

The chaotic edge state in C differs clearly from the chaotic state found by DNS in C [Fig. 3(c)].
The trajectory in the edge of chaos in C has a mean L2 norm of ||u||2 = 0.18 which is significantly
smaller than the mean of the trajectory in the DNS, ||u||2 = 0.26. Likewise, the near-periodic edge
state in D has an L2 norm of ||u||2 = 0.24, lower than the simulated state in D with ||u||2 = 0.33
[Fig. 3(d)].
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(a) (b)

FIG. 4. Time series of edge tracking at Re = 350 in different symmetry subspaces. Both results are
computed in a periodic domain of extent [Lx, Lz] = [10, 40] and tilted at θ = 24◦ against the streamwise
direction. In addition, centroinversion πi is imposed in (a), and shift inversion πsi is imposed in (b). The mean
values of ||u||2(t ) (horizontal red lines) differ like in DNS in the same two symmetry subspaces [Figs. 3(c) and
3(d)]. Only when imposing πsi the edge-tracking approach yields a simple edge state.

In summary, a chaotic edge state is found in C. By additionally imposing the shift-inversion
symmetry πsi, a much simpler, near-periodic edge state is found in D.

IV. UNSTABLE PERIODIC ORBITS

The near-periodic oscillations in the edge of chaos in symmetry subspace D suggest the presence
of an UPO. Periodic orbits satisfy the recurrency condition

FT (u(x, y, z, t ); Re) − u(x, y, z, t ) = 0. (8)

The operator FT (u; Re) evolves PCF according to the Navier-Stokes equations at a specific Re
from the initial velocity field u over time period T . A velocity field solving (8) can be found via
Newton-Raphson iteration. Equation (8) is solved with a matrix-free Newton-Krylov method. We
use the Newton-Krylov method implemented in the nonlinear solver library of CHANNELFLOW
2.0 [44] to converge and numerically continue invariant solutions under changing Re or domain size.
In order to converge the periodic orbits discussed here, a multi-shooting method with two shots is
required [44].

Using a velocity field obtained from edge tracking in subspace D at Re = 350 as initial state
for the Newton-Krylov iteration yields a UPO with period T = 225.4. The UPO is composed
of wavy velocity streaks whose amplitude is modulated in space and oscillates in time along the
orbit. To clearly distinguish signals in time and space, we use “modulation” for spatial signals and
“oscillation” for temporal signals. The oscillating amplitude modulation represents a standing wave
with a dominant pattern wavelength of λ = 20 along the z direction of the tilted domain (Fig. 5). The
standing wave has antinodes at z ∈ {0, 10, 20, 30, 40} the points about which inversion symmetries
are imposed. The locations of these symmetry points are marked by black dots in midplane sections
showing velocity and vorticity contours in Figs. 5(c) and 5(d). Instances t = 7 and t = 109 along
the orbit show spatially localized regions of high velocity and vorticity fluctuations. These localized
regions are centered around the symmetry points (see blue and red contours in Figs. 5(c) and 5(d).
Regions of high velocity and vorticity fluctuations have also a large x-y–averaged velocity norm
[Fig. 5(b)] and coincide with velocity streaks that are more wavy than outside these regions where
streaks are more straight [Fig. 5(c)]. Thus, the UPO is a standing wave that along a temporal
cycle periodically exchanges regions of high-amplitude wavy velocity streaks and low-amplitude
near-straight velocity streaks. The evolving oblique amplitude modulation represents a large-scale
pattern at half the wavelength of previously studied oblique stripes [24], as visualized in the
supplemental video highlighting the UPO’s dynamics [48]. We name this UPO “oblique standing
wave” and denote it by OSW1. A file with the fully resolved velocity field of OSW1 is also included
in the Supplemental Material.
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(b)(a)

(d)(c)

FIG. 5. Unstable periodic orbit OSW1 in the edge of chaos in subspace D describes a standing wave
modulation. (a) Velocity norm ||u||2 oscillations over period T = 225.4 with two local maxima and minima.
The local minima correspond to the instances of large-amplitude modulations as indicated by the x-y–averaged
root-mean-square velocity modulation |u|(z) = (2Lx )−1/2(

∫∫
u2 dxdy)1/2 in (b). These instances are further

illustrated by midplane contours of streamwise velocity (c) (solid at us = 0.45, dashed at us = −0.45) and
midplane contours of streamwise vorticity (d) (solid at ωs = 0.11, dashed at ωs = −0.11). The gray grid
indicates the streamwise and the spanwise directions, tilted at θ = 24◦ against the domain dimensions. The
black contours in (c) mark the critical layer with streamwise velocity us = 0. Black dots mark the eight
symmetry points of inversion. Locally in space, the UPO oscillates between high-amplitude wavy velocity
streaks generating much vorticity and low-amplitude near-straight velocity streaks generating little vorticity.

When OSW1 is numerically continued up in Re, the amplitude at which the orbit’s total dissipa-
tion D oscillates in time reduces. The reduced oscillation amplitude remains approximately constant
for 450 < Re < 700 [Fig. 6(a)]. For decreasing Re, the oscillation amplitude increases and the
solution branch undergoes a sequence of two smooth folds at Re = 327 and Re = 367, respectively.
Further along the branch a succession of sharp folds emerges in the interval 300 < Re < 330
[Fig. 6(a)]. We have observed such sharp and irregular folds previously along branches of equilib-
rium solutions underlying stripes [24]. The folded solution branches connect three periodic orbits
at Re = 350 [Fig. 6(a)]. We index these orbits according to the order at which they are encountered
along the branch, OSWi with i = 1, 2, 3.

The period T of OSW1 shows little variation when Re is changed. The largest variation in the
period occurs across the second fold from OSW2 to OSW3 where the period drops from T = 225
to T = 215 [Fig. 6(c)]. In contrast to changes in Re, the period of OSW1 depends significantly on
changes in the pattern wavelength λ and the orientation angle θ [Fig. 6(d)]. In a tilted minimal
domain, the boundary conditions control λ and θ . For λ continuation at constant θ , we vary
the domain diagonal at fixed aspect ratio Lx/Lz. For θ continuation at constant λ, we adjust Lx

according to Lx(θ ) ∼ Lz/ tan(θ ) at fixed Lz. Orbit OSW1 is continued in values of λ and θ until
fold bifurcations are encountered along the branches. These folds mark the limits of existence of
OSW1. For Re = 350, the orbit OSW1 exists within the intervals 18 < λ < 33 and 16◦ < θ < 35◦
[Fig. 6(d)].
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(b)(a)

(d)(c)

FIG. 6. (a) Bifurcation diagram of the unstable periodic orbit OSW1 along Re, computed via numerical
continuation. The two curves indicate maximum and minimum of the velocity norm (7) over one period.
Toward high Re, the oscillation amplitude reduces. Toward low Re, the branch undergoes folds leading to three
periodic orbits, OSW1 (•), OSW2 (×), and OSW3 (©), coexisting at Re = 350. (b) Spectrum of eigenvalues
of the three unstable periodic orbits at Re = 350: OSW1 (•), OSW2 (×), and OSW3 (©). The spectrum
is calculated in the symmetry subspace D. (c) Bifurcation diagram as in (a) but indicating period T of the
continued periodic orbits. (d) Existence range of OSW1 at Re = 350 under changing orientation angle θ and
pattern wavelength λ. Existence boundaries coincide with fold bifurcations. Colored contours indicate period
T . Black contour lines with numbers indicate phase velocity c defined in (9).

The periodic orbit OSW1 exhibits a standing wave modulation. The standing wave can be
decomposed into two counterpropagating traveling waves with a streamwise phase velocity of
absolute value

c = λ

T sin(θ )
. (9)

Based on the numerical continuation of OSW1 in both, the pattern wavelength λ and the orientation
angle θ , the functional form c(λ, θ ) is calculated and visualized in Fig. 6(d). Despite the significant
changes in λ, θ , and period T , the combined ratio (9) varies only in the interval 0.21 < c < 0.27.
The approximately constant phase velocity c suggests a scaling relation. Hence, we can use linear
extrapolation to predict the approximate period of oblique wave solutions that are analogous to
OSW1 but have a pattern wavelength of λ = 40. A wavelength of λ = 40 is typically observed for
self-organized oblique stripes in less constrained domains. Linear extrapolation of T along λ for
θ = 24◦ and c = 0.24 predicts a period of T = 410 for oblique standing waves with λ = 40. Note
that the discussed oblique standing waves have slow temporal dynamics with periods on the order
of the viscous diffusion timescale, T ∼ h2/ν = 350.
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(b)(a)

(d)(c)

FIG. 7. Two different projections for a phase portrait of the three unstable periodic orbits OSW1,2,3

underlying slow oblique standing waves. Time series of kinetic energy input I (t ) and dissipation D(t ), defined
in (10) and (11), and of α(t ) and β(t ), defined in (12) and (13) are plotted in in panels (a) and (c), respectively.
The corresponding phase portraits are plotted in (b) and (d). In addition to the trajectories of OSW1,2,3, the
edge-tracking trajectory for 9000 < t < 10 000 in subspace D is shown [gray dots in panel (b)] and clearly
indicates orbit OSW1 as part of the attractor in the edge of chaos. However, the distribution of points along this
trajectory does not exactly coincide with the trajectory of OSW1 [inset in panel (b)]. This suggests that OSW1

is part of a more complex attractor in the edge of chaos.

The dynamical stability in subspace D of each orbit is characterized by calculating the spectrum
of eigenvalues at Re = 350 using Arnoldi iteration. All three periodic orbits are dynamically
unstable and have one dominating purely real unstable eigenvalue of ωr ≈ 0.035. Moreover, all
three periodic orbits have at least one additional unstable eigenvalue in the interval 0 < ωr < 0.01
[Fig. 6(b)]. Consequently, none of the three periodic orbits OSW1,2,3 is an edge state which requires
a single unstable eigenvalue [38,40]. Specifically, OSW1 has in total five unstable eigenvalues. Three
of them are real and the remaining two form a complex pair. OSW2 has in total three unstable
eigenvalues. One of them is real and the remaining two form a complex conjugate pair. OSW3 has
two purely real unstable eigenvalues and thus, has the lowest-dimensional unstable eigenspace of
all three periodic orbits.

None of the three UPOs is an edge state. This raises the question if all of them are part of the
attractor in the edge of chaos. To study the attractor in the edge of chaos, edge tracking is performed
for an additional 10 000 advective time units h/Uw. The state space trajectory over the last 1000
time units is projected onto a plane indicating kinetic energy input I (t ) and dissipation D(t ), where

I (t ) = 1 + 1

2A

∫
A

(
∂us

∂y

∣∣∣∣
y=−1

+ ∂us

∂y

∣∣∣∣
y=1

)
dA, (10)

D(t ) = 1

V

∫
V

|∇ × (u + yês)|2dV, (11)

with the streamwise unit vector ês = cos(θs)êx + sin(θs)êz and the streamwise velocity component
us = u · ês. The quantities are normalized by cross-sectional area A = LxLz and volume V = 2LxLz

of the numerical domain, respectively. In addition to the edge trajectory we show the state space
trajectories of all orbits OSW1,2,3. The projection yields a phase portrait [Fig. 7(b)] that clearly
reveals how the edge-tracking trajectory (gray dots) clusters around OSW1 but not around OSW2

or OSW3. Thus, of the three UPOs only OSW1 is part of the attractor in the edge of chaos. The
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edge-tracking trajectory, even after 9000 time units, does not coincide with OSW1 [inset in
Fig. 7(b)]. This is in line with the above observation that OSW1 is not an edge state and may only
be part of an attractor in the edge of chaos.

For each orbit, its time series for I (t ) and D(t ) almost coincide along the orbits [Fig. 7(a)]. As a
consequence of the highly correlated I (t ) and D(t ), the phase portrait in Fig. 7(b) shows orbits that
are entangled and elongated along the diagonal line D = I . The highly correlated quantities I (t ) and
D(t ) do not provide a good projection to illustrate the oscillatory behavior along the three orbits. A
second projection is defined in terms of the two quantities

α(t ) = R{ũ2
i=0, j=0,k=2}, (12)

β(t ) = R{ω̃s;i=0,k=2}. (13)

Here R{} is the real part of a complex number. Spectral quantities are indicated bỹ . Quantities ũ2 and
ω̃s are the Fourier- and Chebyshev-transformed kinetic energy u2 = u2(x, y, z, t ) and the streamwise
vorticity ωs = [∇ × u(x, y = 0, z, t )] · ês at midplane, respectively. Fourier modes in x and z are
indexed by i and k. Chebyshev modes in y are indexed by j. Thus α(t ) and β(t ) are the time-
dependent real parts of the second Fourier mode along z of the mean kinetic energy and midplane
streamwise vorticity, respectively. This Fourier mode corresponds to the dominant oscillating mode
of the standing wave with wavelength λ = 20, shown by the z profile in Fig. 5(b). Along the orbit
of OWR1 with period T = 225.4, α(t ) and β(t ) oscillate with a phase lag of approximately T/4
[Fig. 7(c)]. In this projection, the phase portrait of OSW1 shows a disentangled elliptical loop along
which the dynamics revolves in a clockwise sense [Fig. 7(d)]. Consequently, the quantities α(t ) and
β(t ) illustrate the oscillatory behavior of the UPO better than I (t ) and D(t ).

Having identified a good state space projection to display the intrinsic temporal dynamics of
the three standing waves with oblique amplitude modulation, we investigate the relevance of these
UPOs for the turbulent dynamics and specifically the decay in D. Figure 8(a) shows the turbulent
time series, also plotted in Fig. 3(d), in terms of α(t ) and β(t ). Here the phase lag between α(t ) and
β(t ) is not constant, varying between approximately in phase and out of phase. We have computed
four transiently turbulent trajectories in subspace D that all exceed t = 1000 before decaying to
laminar flow. Projecting them onto α(t ), β(t ), and ||u||2(t ), we find an unstructured cloud of points
[Figs. 8(b)–8(d)]. Yet the phase portraits indicate the role of the three UPOs for the turbulent
dynamics.

In the α-β plane, the orbits are located in the center of the cloud implying that the orbits capture
the turbulent mean of α(t ) and β(t ) [Fig. 8(b)]. A three-dimensional projection with α(t ), β(t ),
and ||u||2(t ) as coordinates shows that the orbits mark the lower bound in kinetic energy of the
turbulent saddle in state space. Prior to decay, the state trajectories pass close by OSW1,2,3 in these
projections [Figs. 8(c) and 8(d)]. However, a two-dimensional projection does not provide sufficient
evidence for a close-by passage in the full state space. To measure how close a turbulent trajectory,
u(x, y, z, t ), passes by one of the three periodic orbits in the full state space, we compute the distance

d (t ) = min
t ′∈[0,T ]

||u(x, y, z, t ) − uOSW(x, y, z, t ′)||2
||uOSW(x, y, z, t ′)||2 , (14)

utilizing the L2 norm (7). For each periodic orbit uOSW(x, y, z, t ′), subspace D contains three
additional equivalent orbits related by discrete translations along the x and z dimensions, uOSW(x +
Lx/2, y, z, t ′), uOSW(x + Lx/4, y, z + Lx/4, t ′), and uOSW(x − Lx/4, y, z + Lx/4, t ′). The distance is
reported only for one of the four symmetry-related orbits, namely the one minimizing d (t ) prior
to an exponential decay to laminar flow. Since no continuous translation symmetries are allowed,
symmetry reduction via the method of slices [49] is neither necessary nor possible. The three time
series of d (t ), measuring the minimal distance between the longest turbulent trajectory and the three
periodic orbits, are visualized in Fig. 8(e). The local minimum in values of d (t ) that corresponds
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FIG. 8. State space projections of turbulent trajectories in subspace D (gray) relative to the three periodic
orbits OSW1,2,3 (black, red, and blue). Panel (a) indicates a time series [also shown in Fig. 3(d)] in terms of
α(t ) (dotted) and β(t ) (solid), defined in (12) and (13), respectively. Four time series decaying after t = 1000
are shown in the phase portraits (b)–(d) and illustrate that the three periodic orbits mark the lower bound of
the turbulent saddle in ||u||2(t ). Panel (e) indicates the distance d (t ) of the trajectory shown in panel (a) to
each of the three periodic orbits, OSW1,2,3 (black, red, and blue). Black arrows in (a)–(e) mark the same time
instance, t = 1653, along the turbulent trajectory shortly before decaying to laminar flow. At the marked time,
the turbulent trajectory appears to be close to OSW1,2,3 in the projections (c) and (d). The instance corresponds
to a local minimum in d (t ) [panel (e)] but the value is not smaller than local minima during the turbulent
evolution. Thus, there is no evidence that the decaying trajectory passes closer to OSW1,2,3 than the turbulent
trajectory. Panel (f) illustrates trajectories starting from two points along each of three periodic orbits OSW1,2,3

that are scaled up and down by 1%. Six trajectories from the up-scaled state vectors enter the turbulent saddle.
Six trajectories from the down-scaled state vectors approach the laminar solution at (0,0). This demonstrates
that all periodic orbits, besides not being edge states, are embedded in the edge of chaos.

to the time-instance of an apparent close-by passage in the two-dimensional projections [Fig. 8(c)
and 8(d)] is marked by black arrows in Fig. 8. The distance d (t ) at the marked instance in time is
not smaller than local minima during the previous turbulent dynamics. Consequently, the decaying
trajectory does not visit a smaller state space neighborhood of OSW1,2,3 than a turbulent trajectory.
When multiplying state vectors along the orbits OSW1,2,3 with factors of either 1.01 or 0.99, the
associated trajectories either intrude the turbulent saddle or decay to laminar flow, respectively
[Fig. 8(f)]. This shows that all periodic orbits are embedded in the edge of chaos, although they
are not edge states.
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V. DISCUSSION AND CONCLUSIONS

We study the spatiotemporal dynamics of oblique stripe patterns in PCF at Re = 350 within a
numerical dynamical systems analysis. Patterns in four different symmetry subspaces are simulated
using DNS in doubly periodic domains of different size and with additionally imposed discrete
symmetries. Imposing symmetries reduces the degrees of freedom in the flow and thereby the
spatiotemporal complexity of the turbulent patterns. It is shown that inversion symmetric oblique
stripe patterns at orientation θ = 24◦ with pattern wavelengths of λ = 40 and λ = 20 are transiently
sustained in a minimal tilted domain. Using edge tracking in the symmetry subspaces allowing
patterns of λ = 40, no steady equilibrium or periodic orbit is approached and edge tracking suggests
a chaotic attractor in the edge of chaos. In the most confined symmetry subspace, edge tracking
approaches a slow periodic orbit with a pattern wavelength λ = 20 and a period T = 225.4. This
unstable periodic orbit represents a standing wave oscillation that modulates wavy velocity streaks
obliquely in space. The oscillation exchanges regions of high-amplitude wavy streaks with regions
of low-amplitude near-straight streaks in time. Numerical continuation of the periodic orbit toward
lower Re indicates a solution branch that undergoes two folds such that three periodic orbits coexist
at Re = 350. All three periodic orbits represent standing waves, are weakly unstable and embedded
in the edge of chaos but have more than one unstable eigenvalue, unlike edge states. Interestingly, the
edge-tracking trajectory approaches the state space neighborhood of the most unstable of the three
discussed periodic orbits. This suggests that OSW1 is embedded in a more complicated attractor in
the edge of chaos, potentially a torus.

Self-organized oblique stripe patterns in experiments or numerical simulations in large extended
domains are observed at larger pattern wavelengths than λ = 20, the wavelength of the three peri-
odic orbits discussed in this paper, OSW1,2,3. The shortest pattern wavelengths are observed when
oblique stripes emerge from uniform featureless turbulence at Re ≈ 400 [9]. The finite wavelength
of the emerging oblique stripes has been rationalized using coupled complex Ginzburg-Landau
equations with added noise term [9], a model which also gives rise to standing wave solutions [50].
We therefore speculate that the oblique standing waves described in the present article are more
likely to be transiently observed in the transition from featureless turbulence to stripes at Re ≈ 400
than at Re = 350 where stripes at λ = 40 dominate. Nevertheless, OSW1,2,3 have features that are
dynamically relevant for oblique stripes at larger pattern wavelengths. We highlight three aspects:

First, the standing wave modulation involves skewing and bending effects of wavy velocity
streaks [Fig. 5(d)]. Such skewing and bending effects are characteristic features that were also found
in the analysis of the recently described stripe equilibrium solution [24] and in the detailed analysis
of snakes-and-ladders bifurcation structures of spanwise localized wavy velocity streaks [22]. The
maximum degree of skewing or bending of wavy velocity streaks against the streamwise direction
is related to the maximum degree to which periodic domains resolving wavy velocity streaks can be
tilted. The angle of tilt of the periodic domain reflects the angle of obliqueness of the stripe pattern.
Thus, the range of skewing and bending of wavy streaks that is observed along the UPOs discussed
here may suggest the range of orientation angles at which stripes can form.

Second, the discussed UPOs demonstrate the existence of large-scale waves that obliquely
modulate the amplitude of wavy velocity streaks. We expect such waves to also exist at a pattern
wavelength of λ = 40. The standing waves show slow dynamics with periods on the order of
the viscous diffusion timescale, T ∼ Td = h2/ν, which due to the nondimensionalization is also
Td = Re. Oblique standing waves with phase velocity (9) that approximately resonate with the
viscous diffusion timescale, T ≈ Td , thus imply the approximate dispersion relation

c ≈ λ

Re sin(θ )
. (15)

Assuming c = π−1 = 0.32, compatible with the observed values [Fig. 6(d)], yields the same
approximate relation that has previously been suggested based on a mean flow analysis of oblique
stripe patterns at a pattern wavelength λ = 40 [11]. The cited relation stems from the observation
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(b) (c)(a)

FIG. 9. A Hopf bifurcation off the unstable equilibrium EQ creates PO, an UPO in the symmetry subspace
C that exhibits oblique stripes at a pattern wavelength of λ = 40. (a) Spectrum of eigenvalues of EQ (×) and PO
(◦) at Re = 350. The leading complex eigenmode of EQ (bold markers) crosses the imaginary axis, ωr = 0, at
a critical Reynolds number of Rec = 218.6 indicating the Hopf bifurcation toward PO. (b) Bifurcation diagram
illustrates the ||u||2 maximum (red) and minimum (blue) over one period of PO under changing values of Re.
(c) Profiles of x-y–averaged root-mean-square velocity modulation of EQ and PO along z [like Fig. 5(b)]. The
two PO-profiles indicate that spatially local temporal oscillations are strongest at the front regions near z = 10
and z = 30. See the Supplemental Material for a video showing the spatiotemporal dynamics of PO.

that “a non-trivial [mean] flow is maintained in the laminar regions by a balance between viscous
diffusion and nonlinear advection” [11]. In analogy, dispersion relation (15) describes an approx-
imate resonance between viscous diffusion and nonlinear wave propagation. We find c = 0.22 for
OSW1 with λ = 20 and θ = 24◦. Continuation of OSW1 in λ does not reach λ = 40. However, the
observed function c(λ, θ ) could possibly reach λ ≈ 40 with a phase velocity of c ≈ π−1 [Fig. 6(d)].

Third, the UPOs have the same symmetries as an equilibrium solution with pattern wavelength
λ = 20 that is discussed in Ref. [24]. This equilibrium solution emerges from the Nagata equi-
librium and gives rise to the stripe equilibrium with wavelength λ = 40 via a symmetry-breaking
bifurcation. A similar symmetry-breaking bifurcation may exist along the UPO branches discussed
here. Such a bifurcation would create an UPO with a pattern wavelength of λ = 40, the typically
observed wavelength in experiments.
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APPENDIX: UNSTABLE PERIODIC ORBIT UNDERLYING STRIPES IN
SYMMETRY SUBSPACE C

To find a periodic orbit with pattern wavelength λ = 40 in symmetry subspace C, where edge
tracking yields a chaotic state (Sec. III), we analyze the stability of a known equilibrium solution
in C under changing Reynolds number Re, detect a bifurcation point based on the spectrum of
eigenvalues of this equilibrium, and continue along the emerging branch of the bifurcating solution.
Previously, this approach has been applied successfully to find the stripe equilibrium described in
Ref. [24].

As starting point, we consider an exact equilibrium solution that captures the spatial structure
of oblique turbulent-laminar stripes at a pattern wavelength of λ = 40. This equilibrium, EQ, has
the same large-scale structure but different small-scale structure, compared to the recently reported
stripe equilibrium [24]. EQ can be constructed at Re = 350 using a window function as described
in chapter 7 of Ref. [51]. The spectrum of eigenvalues of EQ in symmetry subspace C indicates 3
purely real and 12 complex eigenvalues with positive real part, ωr > 0 [Fig. 9(a)]. Computing the
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spectrum of eigenvalues while continuing EQ down in Re, we find that the complex pair with the
largest real part at Re = 350, i.e., [ωr, ωi] = [0.0158,±0.0670] [bold markers in Fig. 9(a)], crosses
the imaginary axis at Rec = 218.6 with a critical frequency of ωi,c = 0.0791 indicating a Hopf
bifurcation. Perturbing the velocity field of EQ with a velocity field of the bifurcating normalized
complex eigenmode, uEM(Rec), provides an initial guess for the velocity field of the bifurcating
UPO,

u′(Rec + a) = uEQ(Rec) + b uEM(Rec), (A1)

which for a = 1.4, b = 0.01 and a guessed initial period of T ′ = 2π/ωi,c converges in a Newton
iteration. The converged solution yields a point on the Re-forward bifurcating branch of the emerg-
ing UPO. Continuing this solution up in Re leads to an UPO at Re = 350 with period T = 93.30
to which we refer as PO [Fig. 9(b)]. The spectrum of eigenvalues of PO has 4 purely real and 6
complex eigenvalues with ωr > 0 [Fig. 9(a)]. The dominant signal in the time evolution of PO is
a nontrivial local oscillation of wavy velocity streaks at z = 10 and z = 30. These locations are
associated with the fronts between the turbulent and the laminar regions of oblique stripes with a
pattern wavelength of λ = 40 [Fig. 9(c)]. The time evolution of the large-scale pattern is visualized
in a supplemental video [52]. The Supplemental Material also includes a file of the fully resolved
converged PO at Re = 350 for reproduction purposes using CHANNELFLOW.

The dynamical relevance of PO for turbulent-laminar stripes in symmetry subspace C has not
been studied. Since PO is not an edge state, we expect this UPO to be embedded in a complex
saddle where it is transiently shadowed by the turbulent dynamics. To describe the turbulent statistics
using periodic orbit expansions, more UPOs must be constructed [32]. Constructing more UPOs via
the above outlined bifurcation analysis is possible but tedious as the suitable parameters a and b,
required to successfully “jump” onto the bifurcating branch, are not known a priori and guessed
in a trial-and-error approach. More systematic methods for computing UPOs in PCF would be
preferable.
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