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Reynolds number effect on the concentration and preferential
orientation of inertial ellipsoids
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Using direct numerical simulation, the dynamics of ellipsoidal particles in a turbulent
channel flow is examined at three values of the friction Reynolds number, Reτ = 180, 400,
and 550. Once the flow has reached a statistically steady state, the Lagrangian tracking of
300 000 prolate ellipsoids, modeled as point particles, is conducted. A global parameter
based on entropy is used to follow the evolution of the particle concentration and reveals
that, when expressed in wall units, the duration of the transient period increases with the
Reynolds number. Once the particle distribution has reached a statistically stationary state,
the distribution is closer to the uniform distribution for high values of Reτ , with a small
influence of the aspect ratio, but a noticeable effect of particle inertia. In the viscous
sublayer, where the mean velocity gradient causes Jeffery-like orbiting of the ellipsoids,
preferential orientation is affected by Reτ . The stronger fluctuations of the fluid vorticity
occurring at higher Reτ are responsible for a destabilization of the weakly stable rotation
orbits of the spheroids. Spinning particles are more likely to align with the fluid seen
vorticity and spend less time aligned with the mean flow, while tumbling particles are
more likely to be found out of the mean velocity-gradient plane.

DOI: 10.1103/PhysRevFluids.6.114305

I. INTRODUCTION

The dynamics of particles in turbulent flows is of interest for a wide variety of applications,
from the dispersion of plastic particles [1] and plankton [2] in the marine environment to industrial
applications such as papermaking [3]. Nonspherical particles can be modeled by spheroids and
provide a better understanding of the two-phase flow characteristics than a spherical model, as
described by Voth and Soldati [4]. The challenge encountered in predicting the behavior of such
flows is linked to the particle shape, whose interaction with the fluid velocity gradient produces a
complex orientational dynamics, which in turn modifies particle dispersion. Theoretical formulas
allowing the computation of the hydrodynamic actions (force and torque) applied by the flow on
ellipsoids at small particle Reynolds numbers (creeping flow regime) were derived by Happel and
Brenner [5] and Jeffery [6]. They have been used to explain laboratory results tied to the dynamics
of such particles. Krushkal and Gallily [7] observed preferential orientation of Brownian fibers due
to the shear magnitude when this parameter is greater than the particle Brownian diffusivity. In a
laminar duct flow, Bernstein and Shapiro [8] found preferential orientation of fibers along the mean
velocity, but no alignment if the flow is turbulent. Analogous experiments conducted by Newsom
and Bruce [9] and Parsheh et al. [10] showed that the turbulent intensity of the flow makes the
particle orientation uniform. This is closely linked to the ellipsoids’ rotation rate, which is modulated
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by the particle length and by their orientation relative to the fluid vorticity, as described by Parsa
et al. [11], Hoseini et al. [12], and Sabban et al. [13].

As a complement to experiments, numerical simulation has proved to be a convenient tool
for studying the dynamics of ellipsoidal particles. In a simple shear, Lundell and Carlsson [14]
showed that there is a strong effect of ellipsoid inertia on the rotation orbits predicted by Jeffery [6].
Einarsson et al. [15] performed the stability analysis of the rotation equations and concluded that
particle inertia increases the stability of the rotation orbits, which results in different preferential
orientation. In a turbulent channel flow, the effect produced by particle shape and inertia on various
statistics has also been extensively studied. At Reτ = 125 (based on the wall shear velocity uτ and
the channel half-width δ), Zhang et al. [16] quantified the deposition of fibers modeled as prolate
ellipsoids by using point-particle direct numerical simulation (DNS). Marchioli et al. [17] worked
with a somewhat similar Reτ = 150 and provided orientation and velocity statistics. Mortensen
et al. [18] compared the effect of the particles characteristics on orientation and velocity statistics at
Reτ = 180 and found a strong effect of the particle shape and inertia on the preferential orientation.
This was further studied by Zhao et al. [19], who mapped the ellipsoids’ rotation mode and found
that in the viscous sublayer, the particles’ favored rotation plane depends on their aspect ratio
and relaxation time. Also at Reτ = 180, Challabotla et al. [20] and Arcen et al. [21] examined
preferential orientation in the presence of gravity. The dynamics of ellipsoidal particles in a channel
for higher values of Reτ remains however largely unknown, and few studies have described the
influence of this parameter. A scaling of the slip velocity statistics of inertial ellipsoids with the
flow Reynolds number was reported by Zhao et al. [22]. They worked at Reτ = 150, 180, and 300
and suggested possibly different outcomes for higher values of this parameter. At Reτ = 1000, Jie
et al. [23] noticed that preferential orientation of inertialess spheroids is similar to that observed
at Reτ = 180. Only Ouchene et al. [24] conducted simulations with inertial ellipsoids at the much
higher Reτ = 1440. However, this work is focused on acceleration statistics and the time interval
used to compute statistics is short (approximately equal to 300 in wall units), which could introduce
a statistical bias in view of the conclusions in Michel and Arcen [25].

To better understand how Reτ influences the dynamics of inertial spheroids, we perform direct
simulations of the turbulent flow in a channel at Reτ = 180, 400, and 550. Prolate ellipsoidal
particles are then introduced in the flow and their motion is tracked by the Lagrangian method. To
ensure that the particle distribution reaches a statistically steady state, the evolution of the particle
distribution is tracked by means of an entropy parameter, originally proposed by Picano et al. [26],
and long-time statistics are computed. The present study focus on the effect of Reτ on two aspects
of the particle dynamics: the particle distribution and the preferential orientation.

II. GOVERNING EQUATIONS

A. Fluid phase

The turbulent flow is described by the continuity and momentum conservation equations for a
Newtonian, incompressible, and isothermal fluid:

∂ui

∂xi
= 0, (1)

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ f

∂ p

∂xi
+ ν

∂2ui

∂x j∂x j
, (2)

where ui is the component of the velocity field in the direction xi, p the pressure, ρ f the fluid density,
and ν the fluid kinematic viscosity.

B. Lagrangian particle tracking

Particles are modeled as prolate spheroids of aspect ratio λ = a/b > 1, a and b being the lengths
of the semimajor and semiminor axes. Particles are treated as material points; therefore, the coupling
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between the fluid and particle phases is modeled and not directly solved. The particle position and
orientation are obtained by solving the sets of equations:

dxp

dt
= up, mp

dup

dt
= F, (3)

dqp

dt
= 1

2
qpω

′
p, II

dω′
p

dt
+ ω′

p × (IIω
′
p) = T′, (4)

where xp and up are the particle position and velocity, qp and ω′
p are the unit quaternion describing

the orientation of the particle and particle rotation vector, respectively, mp = ρp( 4
3 )πab2 is the

particle mass, ρp denotes its density, II is the particle inertia tensor. F is the fluid force and T′
is the torque acting on the particle. Note that translation equations are solved in the Eulerian frame
(x, y, z), while rotation equations are solved in the frame linked to the particle’s principal axes
(x′, y′, z′). In this frame, the particle’s major axis is aligned with x′.

In the present study, F is modeled by the formula from Happel and Brenner [5]:

F = νρ f (A−1KA)ur, (5)

where ur = ũ − up is the relative velocity between the particle and the fluid, ũ = u(xp, t ) being
the fluid velocity at the particle position. A is the direction cosine matrix which is used to express
vectors and tensors from the Eulerian frame in the particle frame. This matrix is computed knowing
the particle orientation, as described in Zhang et al. [16]. K is the translational resistance tensor,
which describes the influence of particle shape on its translational motion. It is diagonal in the
particle frame (x′, y′, z′), and for prolate spheroids the components can be found in Gallily and
Cohen [27]:

Kx′x′ = 8πb(λ2 − 1)[
ln(λ + √

λ2 − 1) 2λ2−1√
λ2−1

] − λ
, (6)

Ky′y′ = 16πb(λ2 − 1)[
ln(λ + √

λ2 − 1) 2λ2−3√
λ2−1

] + λ
, (7)

Kz′z′ = Ky′y′ . (8)

In the general case, due to the product A−1KA, F can be decomposed as F = FD + FL, where FD

is the drag force, the component of F collinear to ur , while FL is the lift force, the component
of F orthogonal to ur . This lift force appears purely as a consequence of particle anisotropy and
orientation and it is not related to the shear-induced lift, for which an expression was recently
proposed by Cui et al. [28].

With F known, the particle relaxation time can be obtained. It is the characteristic time required
for a particle to adjust to a change in the flow characteristics. This time is not unique and several
definitions are summed up by Siewert et al. [29]. We use the definition from Shapiro and Goldenberg
[30], obtained by averaging K over an isotropic orientation distribution:

τp = 2ρpb2

9ρ f ν

ln(λ + √
λ2 − 1)√

λ2 − 1
. (9)

When expressed in wall units (using uτ and ν), this is the particle Stokes number: the ratio of the
particle relaxation time to the viscous timescale of the flow (ν/u2

τ ).
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TABLE I. Number of mesh points, grid spacings, and temporal increment.

Reb Reτ Nx Ny Nz 	+
x 	+

y 	+
z 	t+

2820 179 288 128 160 7.85 0.98−4.44 4.67 0.11
7100 396 320 256 300 7.85 1.08−4.94 5.45 0.09
10050 543 450 352 400 7.68 1.08−4.94 5.62 0.08

The torque is modeled with the formula from Jeffery [6]:

T′ = 16πμab2

3

⎛
⎜⎜⎜⎜⎜⎝

1

β0
[(�′

zy − ω′
px )]

1

β0 + λ2α0
[(1 − λ2)S′

xz + (1 + λ2)(�′
xz − ω′

py)]

1

λ2α0 + β0
[(λ2 − 1)S′

yx + (λ2 + 1)(�′
yx − ω′

pz )]

⎞
⎟⎟⎟⎟⎟⎠

, (10)

where μ is the fluid dynamic viscosity, ω′
px, ω′

py, and ω′
pz are the components of the particle angu-

lar velocity. S′
i j = 1

2 (∂u′
i/∂x′

j + ∂u′
j/∂x′

i ) is the fluid rate-of-strain tensor and �′
i j = 1

2 (∂u′
i/∂x′

j −
∂u′

j/∂x′
i ) is the rate-of-rotation tensor at the particle location. The components of both tensors

are given with respect to the particle frame (x′, y′, z′). The coefficients α0 and β0 are provided
by Oberbeck [31] as integrals and their explicit expressions are given by Gallily and Cohen [27].

These formulas are valid if the particle Reynolds number Rep = deq‖ur‖/ν � 1, where deq =
2b 3

√
λ is the diameter of the volume equivalent sphere. In this study, Rep is typically less than 1 and

the formulas from Happel and Brenner [5] and Jeffery [6] are valid within this range of Rep.

III. SIMULATION SETUP

The turbulent flow in a channel of width 2δ is computed at three different Reynolds numbers
by a finite-difference DNS solver. More details on this solver can be found in Michel and Arcen
[25]. Periodic boundary conditions are applied in the x and z directions (statistically homogeneous
directions) and a no-slip–no-penetration condition is enforced at y = ±δ. Similarly to the finite-
difference code used by Vreman and Kuerten [32], the spatial derivatives appearing in Eqs. (1) and
(2) are approximated using fourth-order schemes in the streamwise and spanwise directions, while
second-order schemes are used in the wall-normal direction. The time advancement is performed by
a fully explicit third-order low-storage Runge-Kutta scheme [33] and the time step is obtained by
fixing a constant Courant-Friedrichs-Lewy number of 0.5. At each Runge-Kutta stage, the pressure-
velocity coupling problem is solved using the pressure-correction method proposed by Timmermans
et al. [34].

The mean flow is directed along x and the flow rate is kept constant. In our simulations, the bulk
Reynolds number Reb = Ubδ/ν, based on the mean bulk velocity Ub, is thus directly specified. In
the present study, three target Reynolds numbers, based on the wall-shear velocity, are considered:
Reτ = 180, 400, and 550. A preliminary study of the flow statistics has shown very good agreement
with the statistics provided by Vreman and Kuerten [32], Moser et al. [35], and Lee and Moser [36],
respectively. The relative error on the mean and rms velocity and vorticity profiles did not exceed
1.5%. The input parameters Reb as well as the number of mesh points, grid spacings, and averaged
time step are summed up in Table I.

Particles are modeled as prolate spheroids. Three aspect ratios λ = 1, 3, and 10 are investigated
as well as three relaxation times in wall units τ+

p = 1, 5, and 30. Particle geometry was chosen
so that the volume equivalent sphere diameter remains constant and a+ remains of the same order
of magnitude as Kolmogorov’s length scale. The particle parameters are provided in Table II. To
focus on the effect of turbulence on the particle dynamics, the particle-fluid coupling is one way:
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TABLE II. Characteristics of prolate spheroids. The volume equivalent sphere diameter is constant and
equal to d+

eq = 1.

ρp/ρ f

λ a+ b+ τ+
p = 1 τ+

p = 5 τ+
p = 30

1 0.50 0.50 18 90 540
3 1.04 0.35 20 100 601
10 2.32 0.23 27.8 139 833

the effect of the particle on the fluid is supposed negligible as well as the interparticle interactions.
Periodic boundaries are applied in the streamwise and spanwise directions. Wall-particle collisions
are treated as elastic when the distance between the particle center of mass and the wall is smaller
than deq/2. The equations governing the ellipsoidal translational and rotational motions are solved
with the same third-order low-storage Runge-Kutta scheme as used in the fluid solver. The fluid
velocity and velocity gradient necessary to compute the hydrodynamic actions on each particle
are interpolated at the particle’s position using a tricubic Hermite interpolation and a trilinear
interpolation, respectively.

300 000 prolate spheroids are seeded uniformly in the turbulent flow field. The particle transla-
tional and rotational velocities are initially equal to that of the fluid at their position, while their
orientation is randomized. Particles are tracked for 50 000 viscous time units and the instantaneous
metrics of the particles are collected every 200 iterations over the interval t+ ∈ [30 000, 50 000] to
produce statistics. For all particles sets, the distribution in the channel has reached a statistically
steady state before t+ = 30 000 and consequently no bias is introduced in the statistics.

IV. RESULTS AND DISCUSSION

A. Temporal evolution of the particle distribution

One of the well-known characteristics of particle flows is the gradual accumulation of the
particles at the wall; thus we start by investigating the temporal evolution of the particle distri-
bution. The distribution can be more easily understood by means of the parameter S proposed by
Picano et al. [26], based on the entropy defined by Shannon [37]. At a given time t+, S(t+) =
−∑M

i=1 pi(t+) ln[pi(t+)]/ ln(NT ), where pi(t+) = Ni(t+)/NT , M is the number of wall-parallel
slabs used to uniformly split the domain, NT is the total number of particles tracked, and Ni(t+) is
the number of particles in the ith slab at a given t+. The value of the parameter S is 1 if the particles
are uniformly distributed and 0 if they are all in the same subvolume. Knowing that particles tend to
accumulate in the viscous sublayer, this parameter offers a good overview of the particle distribution.
The present results have been computed with M = 100 for each Reτ .

The evolution of the entropy parameter is presented in Figs. 1(a)–1(c). The constant unit-valued
entropy attests that the distribution of τ+

p = 1 particles remains uniform at all Reτ . In contrast, a
clear effect of the Reynolds number is visible for inertial particles and the evolution of the particle
distribution is affected in two ways. First, the time required for the distribution to reach steady state
increases as Reτ increases. This is very pronounced for τ+

p = 30 particles, which require about
twice as much time to reach steady state at Reτ = 550 compared to Reτ = 180, and similarly for
all the aspect ratios. For τ+

p = 5 particles, the increase is less significant for spheres and λ = 10,
but remains visible for λ = 3 ellipsoids. These (λ = 3) are the particles whose entropy reaches the
lowest value; therefore, many particles have to reach the sublayer for S to stabilize. Due to the
stronger velocity fluctuations, this likely takes a longer time at higher Reynolds number. Another
visible effect is that a high value of Reτ increases the steady-state value of the entropy parameter,
whatever the particle inertia and aspect ratio. The increase of the entropy indicates that the particle
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FIG. 1. Temporal evolution of the entropy parameter S for ellipsoids of different aspect ratios (a) λ = 1,
(b) λ = 3, and (c) λ = 10 for relaxation times τ+

p = 1 (solid lines), τ+
p = 5 (dotted lines), and τ+

p = 30 (dashed
lines).

distribution is closer to uniform. During the steady state, particle wall-normal motion is controlled
by the cycle of turbulent events (sweeps and ejections) generated by coherent streamwise vortices
[38]. These fluctuations are stronger at higher Reτ , and more particles are likely to be ejected out
of the sublayer because of the intensity of these events. A quadrant analysis of the fluid velocity
sampled at the particle position (not shown here) confirmed that the particle fraction in sweeps and
ejections events remains independent of Reτ and that only the intensity of the events increases with
the flow Reynolds number.

The influence of the flow Reynolds number on the steady-state concentration is now examined.
In the ith slab used to compute entropy, the concentration is obtained by Ci = Ni/Vi, where Ci is
the concentration, Ni the number of particles, and Vi the slab volume. It is normalized by C0 =
NT /(LxLyLz ), the average concentration in the channel. The concentration profiles averaged over
the range t+ ∈ [30 000, 50 000] are presented in Figs. 2(a)–2(c) as a function of y∗ = y/δ. As noted
from S, the distribution of τ+

p = 1 spheres and ellipsoids is nearly uniform, with a slight increase
in the near-wall region. This is due to the small (but nonzero) value of the relaxation time, which
is sufficient to observe an effect of inertia. Note that the nonuniformity of the concentration profile
was barely visible on the entropy plot in Figs. 1(a)–1(c), as the value of S remains near 1. As the
particle relaxation time increases, the near-wall concentration increases while the core concentration
decreases. This is consistent with the decrease of the entropy parameter previously noted. Figure 2
also shows that there is a strong effect of the particle shape on the concentration profile, especially
for τ+

p = 5, for which the concentration of ellipsoids is higher than spheres near the wall. This
increased segregation has been attributed to the additional lift force induced by the coupled effect of
particle shape and orientation [25]. Also, this is less pronounced for τ+

p = 30 and was anticipated
from the value of S.
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(a)
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FIG. 2. Average concentration profile as a function of y∗ for ellipsoids of different aspect ratios (a) λ = 1,
(b) λ = 3, and (c) λ = 10 for relaxation times τ+

p = 1 (solid lines), τ+
p = 5 (dotted lines), and τ+

p = 30 (dashed
lines).

Very close to the wall, for a given aspect ratio and relaxation time, the concentration is unaffected
by the Reynolds number. While moving away from the wall, an effect of the Reynolds number
is visible for τ+

p = 5 and 30. The concentration profile decreases more quickly for higher values
of Reτ . A parallel can be drawn between this observation and the results reported by Bernardini
[39], who noticed that in wall units, the concentration profile of spheres scaled with Reτ in the
viscous sublayer. When expressed in bulk units, the size of this region decreases with Reτ and the
profile exhibits a more negative slope. For a given τ+

p , this results in a more important concentration
for small values of Reτ up to y∗ ≈ 0.1. From this location, the concentration is higher for higher
Reτ , and this explains the more important value of the entropy observed in Figs. 1(a)–1(c). We
conclude by remarking that the conclusions drawn for ellipsoids are in qualitative agreement with
the ones reported for spheres by Bernardini [39]. Nonetheless, significant quantitative differences
can be observed due to the particles’ shape, which affect the dispersion through their orientational
dynamics.

Finally, it should be noted that for weakly inertial fibers, a slight increase of the near-wall
concentration was measured experimentally by Alipour et al. [40] and numerically by Do-Quang
et al. [41] using particle-resolved simulations. This trend is similar to what we observe for λ = 10
and τ+

p = 1 ellipsoids. Consequently, one-way coupled point-particle simulation seems appropriate
to estimate the concentration of such particles. For more inertial particles, the high near-wall
concentration noted in the present study should be taken with care since the collisions between
particles as well as the influence of the dispersed phase on the carrier flow were not accounted for.
These two mechanisms are expected to attenuate the near-wall accumulation, as it was observed by
Costa et al. [42] for spherical particles.
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FIG. 3. Comparison of the average absolute direction cosine obtained from DNS at Reτ = 400 for τ+
p = 1

and λ = 10 with experimental data provided by Shaik et al. [43] at Reτ = 435. Present study: 〈|cos(θx )|〉 (solid
line), 〈|cos(θy )|〉 (dotted line), and 〈|cos(θz )|〉 (dashed line). Shaik et al. [43]: 〈|cos(θx )|〉 (×), 〈|cos(θy )|〉 (©),
and 〈|cos(θz )|〉 (+).

B. Particle orientation

The absolute value of the direction cosine |cos(θi )| provides information on the orientation of
the particle’s major axis relative to the Eulerian frame. In the three-dimensional case, a value
close to 1 indicates a strong alignment of the particle with the ith axis of the Eulerian frame,
while a value near 0 reveals an orientation orthogonal to this axis. A value around 0.5 indicates
a uniform orientation. We first examine the agreement between our DNS computed orientation and
experimental measurements and then the effect of the flow Reynolds number will be studied.

The DNS results at Reτ = 400 for λ = 10 and τ+
p = 1 ellipsoids are compared with the mean

orientation of weakly inertial and long fibers (λ = 30 and τ+
p = 0.22) measured by Shaik et al. [43]

at Reτ = 435 in Fig. 3. They already conducted a comparison with existing point-particle and finite-
size DNS data; nevertheless, these data were obtained at a much lower Reτ . From Fig. 3, quantitative
differences are noticed for y+ < 40 but there is good qualitative agreement between the DNS and
experiment. We notice a maximum of 〈|cos(θx )|〉 and a minimum for 〈|cos(θz )|〉 in both studies,
but these are shifted about 30 viscous units towards the channel center in the experiment. This is
about the same as the fiber length used by Shaik et al. [43] and it indicates a likely consequence of
particle-wall interaction. In the channel core, there is very good agreement between the DNS and
experimental data, and only the DNS results for 〈|cos(θx )|〉 are slightly lower than the experimental
data.

To examine the influence of the Reynolds number on the orientation, the three components
of the averaged direction cosines are plotted in Fig. 4 for the three values of Reτ considered.
The most obvious effect of increasing Reτ is that it decreases the fraction of the channel over
which preferential orientation occurs. Bernstein and Shapiro [8] showed that preferential orientation
is a consequence of the organizing effect of the mean velocity gradient. Preferential orientation
was further studied by Zhao and Andersson [44], who showed that inertialess prolate spheroids
preferentially align with the direction of the maximum Lagrangian stretching. They emphasized that
in the viscous sublayer, the strongest Lagrangian stretching is oriented in the streamwise direction,
and this corresponds to the preferential alignment of weakly inertial particles in this region. As
Reτ increases, the size of the viscous sublayer, expressed in terms of the channel half width (δ),
diminishes and preferential orientation is visible in a narrower region of the channel. Particles
located farther from the wall exhibit a lower degree of organization, because the effect of the mean
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FIG. 4. Average absolute direction cosine for spheroids of different aspect ratios (a)–(c) λ = 3 and (d)–(f)
λ = 10 and relaxation times (a) and (d) τ+

p = 1, (b) and (e) τ+
p = 5, and (c) and (f) τ+

p = 30: |cos(θx )| (solid
lines), |cos(θy )| (dotted lines), and |cos(θz )| (dashed lines).

gradient is overcome by the randomizing effect of the vorticity fluctuations. In the channel core,
particle orientation is almost uniform, independently of Reτ .

Near the wall, preferential orientation stems from the periodic rotation of the particles induced
by the mean velocity gradient. This mechanism depends strongly on particle shape and inertia.
For instance, Zhao et al. [19] showed that inertialess particles of high λ spin in the (x, z) plane.
This is similarly observed for τ+

p = 1 particles, for which low values of 〈|cos(θy)|〉 at the wall in
Fig. 4(d) confirm that the particle’s major axis lies in the (x, z) plane. To identify the rotation mode,
we present in Figs. 5(a) and 5(b) the probability density function (PDF) of |cos(β )| in the slab
1 < y+ < 2, β being the angle between the particle’s major axis and its rotation vector. Figure 5(b)
shows that the PDF of |cos(β )| has a peak near 1 for λ = 10 and τ+

p = 1. This implies alignment
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FIG. 5. PDF in the slab 1 < y+ < 2 of the absolute direction cosine of β, the angle between the particle
major axis and its angular velocity, and of the absolute direction cosine of θz, the angle between the particle
major axis and spanwise direction, for (a) and (c) λ = 3 and (b) and (d) λ = 10 and relaxation times τ+

p = 1
(solid lines), τ+

p = 5 (dotted lines), and τ+
p = 30 (dashed lines).

of the particle’s major axis with their rotation vector, which corresponds to spinning. In addition,
these particles spend long periods of time nearly aligned with the mean flow since high values of
〈|cos(θx )|〉 are noticed. A somewhat similar behavior is observed for λ = 3 and τ+

p = 1, as well as
for λ = 10 and τ+

p = 5, but a significant part of these particles is also aligned with y. In comparison,
τ+

p = 30 as well as τ+
p = 5 and λ = 3 ellipsoids orient in the plane (x, y), since values of 〈|cos(θz )|〉

near 0 are noted in Figs. 4(b), 4(c), and 4(f). From the peak near zero in the PDF of β [Figs. 5(a) and
5(b)], we notice that these particles rotate with their major axis orthogonal to the rotation vector.
This rotation mode is referred to as tumbling. We also remark that the values of 〈|cos(θx )|〉 and
〈|cos(θy)|〉 are both equal to 0.634 at the wall for τ+

p = 30. This particular value can be compared to
the mean absolute direction cosine obtained for a particle rotating with a constant angular velocity in
the plane (x, y). For such a uniform circular motion, the mean absolute direction cosines 〈|cos(θx )|〉
and 〈|cos(θy)|〉 are equal to (1/T )

∫ T
0 |cos[θx(t )]|dt , with θx(t ) = ωpz t and T = 2π/ωpz the rotation

period. The exact solution of this integral is 2/π ≈ 0.636; this value is nearly identical to the one
provided by our computations. Therefore, this implies that τ+

p = 30 particles rotate with a nearly
constant angular velocity in the near-wall region. This rotation mode appears due to the stabilizing
effect of the mean velocity gradient.

Comparison of the near-wall orientation results reveals a notable influence of Reτ . Figure 4 shows
that the value of 〈|cos(θz )|〉 at the wall increases with Reτ for all the relaxation times. This indicates
a decrease of preferential orientation for tumbling particles, which are more likely to be found out
of the (x, y) plane, while spinning particles spend less time nearly aligned with the mean flow. We
can observe these trends by means of the PDF of |cos(θz )|. From Figs. 5(c) and 5(d) we note that the
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FIG. 6. PDF in the channel core of the absolute direction cosine of β, the angle between the particle major
axis and its angular velocity, and of the absolute direction cosine of α, the angle between the particle major
axis and the fluid vorticity, for (a) and (c) λ = 3 and (b) and (d) λ = 10 and relaxation times τ+

p = 1 (solid
lines), τ+

p = 5 (dotted lines), and τ+
p = 30 (dashed lines). The channel core is defined as 170 < y+ < 180 for

Reτ = 180, 380 < y+ < 400 for Reτ = 400, and 520 < y+ < 550 for Reτ = 550.

PDF of |cos(θz )| has a peak near 0 for tumbling particles. The peak magnitude is less important for
higher Reτ ; this clearly shows that more particles are found outside the (x, y) plane. Comparatively,
spinning particles (λ = 10 and τ+

p = 1) have a stronger alignment with the spanwise direction.
Higher Reτ induces larger values of the PDF of |cos(θz )| near 1, hence indicating a more pronounced
alignment with z. This trend is consistent with the decrease of the streamwise orientation observed
in Fig. 4. A similar influence of Reτ is observed on particles whose rotation cannot be characterized
as pure tumbling or pure spinning (τ+

p = 5 and λ = 10, and τ+
p = 1 and λ = 3). For these ellipsoids,

Figs. 5(a) and 5(b) indicate that higher Reynolds number enhances spinning and reduces tumbling.
In addition, preferential particle alignment shifts towards the spanwise direction. We can link these
results to the stability analysis from Einarsson et al. [15], who showed that prolate spheroids rotation
orbits are weakly stable. Fluctuations of the vorticity field increase with Reτ [45], and these are
sufficient to destabilize the ellipsoids rotation orbits. This results in a substantial modification of the
near-wall preferential orientation, regardless of particle inertia.

In the channel core, the effect of the mean velocity gradient is dominated by the vorticity
fluctuations and particle orientation is nearly isotropic. The PDF of β shown in Figs. 6(a) and 6(b)
reveals that particles in this region favor spinning regardless of their characteristics. The particle
aspect ratio has a weak influence on the PDF of β, but increasing the relaxation time decreases
alignment between the particle’s major axis and its angular velocity vector. To highlight the link
between particle dynamics and the vorticity, we also present the PDF of α, the angle between the
major axis and the fluid seen vorticity. Figures 6(c) and 6(d) show the PDF of α and reveal that
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particle alignment with the fluid seen vorticity occurs in the channel core, whatever λ and τ+
p .

This phenomenon is similar to that noted by Pumir and Wilkinson [46] for tracer spheroids in
homogeneous isotropic turbulence. Increasing Reτ strengthens this preferential alignment as well
as the spinning rotation mode for all particles. It appears that the isotropiclike turbulence in this
region causes universal rotational dynamics of the ellipsoids.

V. CONCLUSION

The effect of the flow Reynolds number on the concentration and orientation of inertial ellipsoidal
particles has been investigated by means of a DNS coupled with a Lagrangian particle tracking.
The turbulent flow was simulated at three different Reynolds numbers Reτ = 180, 400, and 550.
Particles were modeled as ellipsoids with aspect ratios λ = 1, 3, and 10 and relaxation times
τ+

p = 1, 5, and 30 and treated as material points under one-way coupling assumption. First, the
dynamics of the particle distribution was examined using an entropy parameter S. The evolution of
this parameter indicates that increasing the Reynolds number increases the duration of the transient
when expressed in wall units, and this effect is stronger when the particle steady-state distribution is
highly nonuniform. For particles of the same characteristics, the steady-state concentration increases
in the channel core as Reτ increases, while the concentration in the buffer region decreases. We
believe that this is a consequence of the stronger intensity of the turbulent events experienced by
the particles at higher Reτ , which eject particles deeper into the channel core. No changes were
observed in the near-wall concentration. While quantitative differences were observed between the
different particle sets, the overall picture remains independent of the particle shape. Following
this, the effect of the flow Reynolds number on the particle orientation was described by the
average absolute direction cosines. Particle orientation in the channel core is nearly uniform and
preferential orientation occurs in the viscous sublayer, regardless of the flow Reynolds number.
When compared to the channel width, the size of the viscous sublayer decreases when Reτ increases
and causes preferential orientation to be restricted to a narrower region of the channel. In this region,
Jeffery-like orbiting of the particles, caused by the mean velocity gradient, induces preferential
orientation, which is modified by Reτ . For low inertia particles, which favor rotation in the (x, z)
plane, alignment with the mean flow vorticity increases. For more inertial particles, which tumble
in the (x, y) plane, the vorticity fluctuations cause a drift of the particle orbits out of this plane. The
increase of the vorticity fluctuations taking place at higher Reτ is sufficient to reduce preferential
orientation caused by the weakly stable Jeffery orbit in the near-wall region. In the channel core,
particle orientation is isotropic, but alignment with the fluid seen vorticity occurs regardless of
particle characteristics. Finally, increasing Reτ promotes spinning rotation mode while decreasing
tumbling.

The trends observed in this study indicate that increasing the value of Reτ homogenizes the
particle distribution and promotes spinning of ellipsoids in the channel core, whatever τ+

p . In the
viscous sublayer this rotation mode is also enhanced for particles of moderate inertia. At higher
values of the Reynolds number, these effects are expected to be more pronounced.
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