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Shear-induced heat transport and the relevance of generalized Fourier’s law
in granular Poiseuille flow
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It is shown that both normal and tangential heat-flux profiles in acceleration-driven
Poiseuille flow of a granular gas can be qualitatively different from those in a molecular
gas. Comparisons with a generalized Fourier’s law confirm that the cross-thermal conduc-
tivity is responsible for the double-well-shaped profile of the tangential heat flux, and the
net heat-flow rate can be directed along or against the external acceleration, depending
on the value of the restitution coefficient and the Knudsen number (Kn). Collectively,
the tensorial thermal conductivity and the inelasticity-induced clustering of particles can
explain the anomalous behavior of shear-induced heat fluxes in a nonrarefied (Kn → 0)
granular gas. The importance of the heat-flux terms driven by the density gradient and the
kinetic-stress gradient is discussed in the context of both molecular and granular gases.
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I. INTRODUCTION

The plane Poiseuille flow of molecular gases, confined between two “isothermal” walls and
driven by a constant body force, or a pressure gradient, served as a prototype to understand
various noncontinuum effects (e.g., temperature and velocity slip, thermal creep, Knudsen paradox,
temperature bimodality, tangential heat flux, etc.), with seminal works of Maxwell [1], Knudsen
[2], Burnett [3], and others [4–10] that spans over a century; the related noncontinuum effects
and heat transport are currently being pursued to understand thermo-hydrodynamics of electron
flows in graphene [11]. This prototypical flow [see Fig. 1(a) for a schematic] is characterized
by inhomogeneous hydrodynamic fields with unidirectional velocity u ≡ [ux(y), 0, 0], temperature
T (y), and density ρ(y), where x and y denote the flow and transverse or wall-normal directions,
respectively. The analogous system of fluidized inelastic grains [12–15] flowing under the action
of gravity in a channel is called “granular” Poiseuille flow (GPF) for which the hydrodynamics
and. rheology were probed recently via simulations [16–18] and theory [19,20], confirming the
nontrivial roles of inelastic dissipation and wall conditions (thermal or athermal walls) on (i)
the Knudsen paradox [2,11,16], (ii) the bimodal shape [6,7,16,19] of the temperature profile and
(iii) the shear viscosity and the normal-stress differences [17,19]. The related flow-induced heat
transport phenomenon has not received much attention, except the kinetic theory analysis [19,20] of
a “heated” granular gas flowing under gravitational acceleration in a channel. For the latter case, the
dependence of the temperature bimodality, viscosity, and normal-stress differences on the restitution
coefficient was found to be nonmonotonic [19,20], in contrast to their monotonic dependence in
“unheated” GPF [16,17]. The underlying differences have been attributed to the stochastic bulk
heating (due to Gaussian white noise) that renders the heated granular gas [19,20] to stay in a state
of nearly uniform density at any value of the restitution coefficient unlike in its unheated counterpart
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FIG. 1. (a) Schematic of the Poiseuille flow in a channel of width W , bounded by two isothermal walls at
T = Tw; the flow is driven by gravitational acceleration g along the x direction and the wall-normal coordinate
is denoted by y; see the Supplemental Material [33] for other details. [(b) and (c)] Transverse profiles of
(b) tangential heat flux qx (y) and (c) normal heat flux qy(y) in a molecular gas undergoing Poiseuille flow:
Kn = 0.1 and ĝ = 0.3. The circles represent the DSMC data of Ref. [8] and the lines denote the present data.

in which the density gradient across the wall-normal direction increases with increasing collisional
dissipation [16,17]. The latter effect is likely to bring in certain non-Fourier contributions to heat
flux, for example, a Dufour flux term (∝∇ρ), the importance of which will be demonstrated here.

In this work we report the role of collisional dissipation on heat transport in GPF via simulations
and contrast its behavior with that in a molecular gas. The dissipation-induced signatures of heat
fluxes are explained by considering nonlinear effects resulting in a generalized Fourier law, with
the latter having relevance in diverse fields encompassing inhomogeneous fluids under extreme
deformation [21,22], rarefied gases [3,6,10,23], granular gases [19,24,25], polymeric fluids [26,27],
and relativistic fluids [28].

For the canonical problem of the gravity-driven Poiseuille flow [see Fig. 1(a) and the related
analysis in Appendix], a simple way to demonstrate the importance of nonlinear effects is to
rationalize the appearance of finite streamwise heat flux (qx �= 0), see Fig. 1(b). In the absence of
any temperature gradient along the flow direction (dT/dx = 0), the Fourier’s law of heat conduction
asserts that qx = 0. Let us consider a tensorial description of the heat-flux vector [21,22,24],

q = −κ·∇T, (1)

with κ = [καβ] being the (second-rank) thermal conductivity tensor that reduces to an isotropic
tensor κ = κδi j , yielding the well-known Fourier’s law of heat conduction q = −κ∇T , that holds
at Navier-Stokes (NS) order. For unidirectional flows, there can be only two nonzero components
of q ≡ (qx, qy, 0) given by:

qx = −κxy
dT

dy
and qy = −κyy

dT

dy
. (2)

Therefore a nonzero value of qx [such as in Fig. 1(b)] is tied to nonzero values of the “cross”
thermal conductivity coefficient κxy �= 0. The latter transport coefficient scales like κxy ∝ σxy ∝ γ̇ (y)
[3,24,29], where σxy is the shear stress and γ̇ (y) = dux/dy is the local shear rate. Since the cross
thermal-conductivity scales as σxy ∝ γ̇ , the tangential heat flux qx = O[γ̇ × (dT/dy)] is a Burnett
order (i.e., second order in the gradients of hydrodynamic fields) effect. Although qx vanishes at
Navier-Stokes (NS) order O(γ̇ ), we need to incorporate Burnett-order terms to correctly model the
heat-flux variations in a rarefied gas undergoing Poiseuille flow.

Equation (2b) asserts that the origin of the normal heat flux qy(y) across two isothermal walls
in a gravity-driven Poiseuille flow is the shear-induced temperature gradient (dT/dy). In general,
the shear-induced heat transport in a rarefied gas, Eqs. (1) and (2), is anisotropic in nature, and
deciphering the role of inelasticity on it is the primary focus of the present paper. Note that the
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“rarefaction” of a molecular gas is characterized in terms of the Knudsen number (Kn = λ/W ).
However, the underlying classification is rather empirical [30,31]: (i) continuum flow (Kn � 0.001)
that can be described by NS equations with “no-slip” boundary conditions, (ii) slip flow (0.01 <

Kn � 0.1) that can be modelled by NS equations with “slip” boundary conditions, (iii) transition
flow (0.1 < Kn < 10) and (iv) free molecular flow (Kn � 10). Collectively, the slip-flow and
transition-flow regimes are called “rarefied” flows for which the extended hydrodynamic equations
are recommended. Our work demonstrates that the above classification or suggestion does not
strictly hold in a granular or dissipative gas; in particular, we raise questions about the validity
of the standard Fourier’s law in the continuum limit (Kn → 0) of a granular gas.

With a brief description of the simulation method in Sec. II, the results on heat fluxes in GPF are
contrasted with those in a molecular gas in Sec. III. The anomalous shape of the tangential heat flux
is explained in Sec. IV, using two variants of Eq. (1) that also incorporates (i) the Dufour flux and
(ii) the stress-driven heat flux.

II. SIMULATION METHOD

The inelastic Boltzmann equation is solved by employing the “direct simulation Monte Carlo”
(DSMC [31,32]) method, the details of which can be found in the Supplemental Material [33]. The
global Knudsen number, a measure of the degree of rarefaction of the gas, is defined as Kn = λ/W ,
where W is the channel width and λ = (

√
2πnd2)−1 is the equilibrium mean free path of the system

at an average number density n = nav. The dimensionless acceleration, defined as

ĝ = gW

2kBTw/m
, (3)

quantifies the strength of the body force acting on a particle traveling a distance W ; for example, ĝ
is a measure of the strength of the body force between two successive collisions of particles at Kn ∼
O(1) (i.e., when the mean free path is comparable to the channel width W ∼ λ). The dimensionless
acceleration is set to ĝ = 0.5 in most simulations, and the width of the channel is fixed at W/d =
1860 and the Knudsen number,

Kn = (
√

2πn∗
av)−1/(W/d ) ∈ (0.025, 10), (4)

is changed by varying the average reduced density n∗
av = navd3 over a range of 10−5 < n∗

av < 10−3

that represents a “dilute” gas. The main control parameter to characterize a granular gas is the
normal restitution coefficient en ∈ (0, 1), with en = 1 denoting the case of a molecular gas. In the
following, the density is normalized by the average density ρR = ρav = mnav, the temperature by
its wall temperature TR = Tw and the velocity by uR = √

2kBTw/m. Without loss of generality, we
set the particle mass (m = 1), particle diameter (d = 1), Boltzmann constant (kB = 1) and wall
temperature (Tw = 1) to unity.

III. RESULTS AND DISCUSSION

The heat flux is calculated from

qα (y) = m

2
〈(vα − uα )|v − u|2〉 ≡ (qx, qy, 0), (5)

where vα is the instantaneous particle velocity and uα = 〈vα〉 is the coarse-grained or hydrodynamic
velocity. The present calculations of (b) tangential (qx) and (c) normal (qy) components of the heat
flux are validated in Fig. 1, with excellent agreement with previous DSMC data [8] for a molecular
gas (en = 1); note that qα (y) is made dimensionless by qR = ρavu3

R/2, with uR being the reference
velocity. As explained in Eq. (2), the nonzero values of qx and qy in Fig. 1 are tied to nonequilibrium
shearing effects: while the normal heat flux qy originates from shear-induced temperature gradients
that appear at the NS-order O(γ̇ ), the origin of qx is tied to rarefaction effects that appear at the
Burnett-order O(γ̇ 2) [3,4].
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FIG. 2. (a) Effect of restitution coefficient on the tangential heat flux qx for Kn = 0.05: en = 1 (dashed
line), en = 0.99 (dot-dashed line), en = 0.9 (solid line), and en = 0.7 (thin dotted line). (b) Phase diagram in
the (Kn, 1 − en) plane delineating regions of “double-well” shape qx (i.e., �qx > 0) and “unimodal” shape qx

(i.e., �qx = 0). [(c) and (d)] Variations of �qx with (c) Kn at en = 0.7 and (d) en at Kn = 0.05. For all cases,
ĝ = 0.5.

The effect of restitution coefficient (en < 1) on the tangential heat flux qx(y) is shown in Fig. 2(a)
for Kn = 0.05 and ĝ = 0.5, with the dashed line representing the case of a molecular gas (en =
1). The corresponding profiles at Kn = 1 (i.e., in a rarefied granular gas) look similar to those in
Fig. 1(b), with a minimum in qx(y) at the channel centerline (y = 0), representing a molecular gas.
Interestingly, in the near-continuum limit (Kn ∼ 0), a “double-well”-shaped qx profile emerges in
a granular gas, with a local minimum at y = 0 and two-symmetric global minima at y = ±λm

qx
(see

the lower-most dotted curve for en = 0.7), in contrast to its “unimodal” shape in a molecular gas,
with qmin

x = qx(0) and its maxima being located at two walls (the dashed line for en = 1). We define
the relative depth of the double well with respect to its centerline value,

�qx ≡ qx(0) − qmin
x , at y = ±λm

qx
, (6)

as marked in Fig. 2(a).
The phase diagram in Fig. 2(b) demarcates the boundary between �qx > 0 (double well) and

�qx = 0 (single well) in the (Kn, 1 − en) plane. It is clear that the double-well-shaped qx(y) profile
is a small-Kn phenomenon that occurs at any en �= 1. Figures 2(c) and 2(d) display the variations of
�qx with Kn and en, respectively. While the increased rarefaction [Kn > 0.1 in Fig. 2(c)] diminishes
�qx, making the qx profiles of unimodal shape at large-enough values of Kn, the inelastic dissipation
[∝ (1 − e2

n)] increases �qx in Fig. 2(d). Therefore, the genesis of the double-well-shaped qx profiles
[such as in Fig. 2(a)] is tied to inelastic dissipation, and there is a threshold value of Kn = Knc,
depending on en, above which rarefaction dominates over inelastic dissipation, resulting in the well-
known unimodal-shaped qx profiles [viz. Fig. 1(b)] in a molecular gas.

Figures 1(b) and 2(a) indicate that the tangential heat flux around the channel center is directed
opposite to the gravitational acceleration (i.e., qx < 0), while it is directed vertically downward
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FIG. 3. (a) Phase diagram of the heat-flow rate Qqx , Eq. (7), in the (Kn, 1 − en) plane; the thick black
contour demarcates the regions of positive and negative Qqx . (b) Variations of Qqx with Kn for different
restitution coefficients: en = 1.0 (red diamonds), 0.99 (brown stars), 0.9 (blue triangles), and 0.7 (black circles).
For all cases, ĝ = 0.5.

(qx > 0) near the walls for both molecular (en = 1) and granular gases. A global measure of qx can
be estimated via

Qqx =
∫ 1/2

−1/2
qx(y)dy, (7)

called the “heat-flow rate” [9]. Note that Qqx = 0 at Navier-Stokes order [O(γ̇ ), or, Kn → 0]; the
more rarefied the flow is (Kn ↑), the larger is the nonequilibrium effect and hence a larger net
tangential heat flux.

Figure 3(a) displays the color map of Qqx , Eq. (7), in the (Kn, 1 − en) plane; the thick black
contour marks the loci of Qqx = 0, to the left and right of which Qqx is negative and positive,
respectively. Note that the positive or negative values of Qqx indicate the direction of the net
tangential heat flow along or against the gravitational acceleration. The effect of inelasticity on Qqx

is quantified in Fig. 3(b), which confirms that the magnitude of Qqx increases with decreasing en at
Kn → 0. The latter behavior is in stark contrast to the well-known result of Qqx → 0 at Kn → 0
(for ĝ → 0) in a molecular gas. On the other hand, the variation of Qqx at Kn → ∞ mirrors that in a
molecular gas due to the insignificant amount of particle collisions at large values of Kn > 5 where
the rarefaction is solely responsible for the overall behavior of Qqx which is directed along the flow
direction (irrespective of the value of the restitution coefficient).

Moving onto the normal heat flux, Figs. 4(a) and 4(b) illustrate the effect of en on qy(y) at
(a) Kn = 0.05 and (b) Kn = 1, with the dashed curve in each panel representing the case of a
molecular gas (en = 1). For both values of Kn, the qy profiles for en < 1 differ qualitatively from
those in a molecular gas. In particular, for the case of Kn = 0.05 [Fig. 4(a)], while qy(y > 0) > 0
and qy(y < 0) < 0 in a molecular gas, even a tiny amount of dissipation (en = 0.99, marked by
dot-dashed line) makes the heat flux to be of the opposite sign compared to that in a molecular gas
(en = 1) over a range of the channel width −λm

qy
< y < λm

qy
. These overall observations hold also

in the rarefied regime (at Kn = 1) if the inelastic dissipation is sufficiently large as confirmed in
Fig. 4(b).

The differences in qy profiles between molecular and granular gases can be quantified in terms
of two parameters: (i) the height of the local maxima or minima in qy(y),

�qy ≡ qmax
y − qy(0) = qy(0) − qmin

y , (8)

and (ii) the distance of this local extrema from the channel centerline, y = ±λm
qy

, as marked in
Fig. 4(a). Figures 4(c) and 4(d) display the variations of (c) �qy and (d) λm

qy
with Knudsen number at

en = 0.9 and 0.7. It is seen that increasing Kn reduces �qy at any en �= 1 and the inelastic dissipation
magnifies its magnitude at any Kn; both �qy and λm

qx
approach zero at large-enough values of Kn >
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FIG. 4. [(a) and (b)] Effect of restitution coefficient on normal heat flux profiles qy(y) at (a) Kn = 0.05
and (b) Kn = 1; en = 1 (dashed line), en = 0.99 (dot-dash line), en = 0.9 (solid line) and en = 0.7 (thin dotted
line). [(c) and (d)] Variations of (c) �qy [marked in panel (a)] and (d) λm

qy
with Kn for en = 0.9 (triangles) and

en = 0.7 (circles). For all cases, ĝ = 0.5.

1. Therefore, we conclude that the nonmonotonic characteristics of qy profiles are solely driven by
inelasticity and the rarefaction helps in reducing the magnitude of �qy. The contrasting shapes of
qy profiles between en = 1 and en < 1 in Fig. 4(a) can be explained from the standard Fourier’s law
if we analyze the corresponding temperature profiles in Fig. 5(a). It is seen that T (y) at en = 0.9
(dotted line) is of “bimodal” shape, with a temperature minimum at the channel center (y = 0)
and two local maxima near the walls. Therefore, the positive and negative values of dT/dy [see
Fig. 5(b)] on the right and left sides of the channel centerline yield negative and positive values of
qy(y) ∝ −dT/dy, respectively, resulting in asymmetric qy profiles in Figs. 4(a) and 4(b).

The origin of the bimodal shape of T (y) in a granular gas [Fig. 5(a)] is tied to the clustering
of particles [13,15–17] near the low-shear region around the channel centerline, leading to strongly
inhomogeneous density profiles, see Figs. 5(c) and 5(d). Hence, the dissipation-induced temperature
bimodality in GPF is responsible for the contrasting qy profiles between molecular and granular
gases in the “nonrarefied” regime [Kn → 0, Fig. 4(a)]. In the rarefied regime ([Kn = 1, Fig. 4(b)],
however, a related effect of the rarefaction-driven temperature bimodality [6,20] takes over with
increasing Kn, resulting in “anomalous” heat transfer from a colder region to a hotter region as
explained in Ref. [33].

The present results on both tangential [Fig. 2(a)] and normal [Fig. 3(a)] heat fluxes in a granular
gas (en �= 1) are qualitatively different from the theoretical predictions of Ref. [19,20] which can
be tied to an ansatz in the theory. In particular, the Boltzmann equation was augmented by adding
a white noise term that thermalizes the inelastic particles and the strength of this noise is chosen
to compensate for the collisional dissipation; this yields a state of uniform density and temperature
(called a heated granular gas, with the adjective “heated” referring to the fact that the energy is
continuously fed by stochastic heating of particles) about which a perturbation expansion was
sought in terms of a small parameter proportional to the acceleration (i.e., a Froude number or
Knudsen number [20]). It was demonstrated that the transverse profiles of qx(y) (viz. Fig. 10(a)
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FIG. 5. Transverse profiles of (a) temperature T (y)/Tw , (b) temperature gradient T ′ = dT/dy ≡
(W/d )dT/dỹ, (c) density ρ(y)/ρav, (d) density gradient ρ ′ = dρ/dy ≡ (W/d )dρ/dỹ, (e) streamwise velocity
ux (y)/uR and (f) velocity gradient u′

x = dux/dy ≡ (W/d )dux/dỹ for en = 1 (dashed line) and en = 0.9 (solid
line), where ỹ = y/d . For all cases, the Knudsen number is Kn = 0.05 and the dimensionless acceleration is
ĝ = 0.5.

and Eq. (80) in Ref. [20]) and qy(y) (viz. Fig. 11(a) and Eq. (81) in Ref. [20]) in a heated granular
gas are of similar shape to those in a molecular gas (en = 1). Indeed, such bulk stochastic forcing
maintains the density field in a nearly homogeneous state at any value of en in the limit of small Kn;
other hydrodynamic fields and transport coefficients also behave in a similar manner to those in a
molecular gas. A theory, that does not make a priori assumptions on the hydrodynamic state of the
granular gas, is therefore needed for the present unheated granular gas undergoing Poiseuille flow.

IV. GENERALIZED FOURIER’S LAW FOR A GRANULAR GAS AND ITS PREDICTIONS

To explain the results on (i) the double-well-shaped qx(y) profiles [Fig. 2(a)] and (ii) the sign of
the tangential heat-flow rate Qx (Fig. 3), we consider an extended version [24,25] of the generalized
Fourier’s law, Eq. (1),

q = −κT ·∇T − κρ·∇ρ, (9)
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where κT and κρ are the thermal and Dufour conductivity tensors, respectively. For the unidirec-
tional Poiseuille flow, the tangential heat flux follows from Eq. (9):

qx = −κT
xy

dT

dy
− κρ

xy

dρ

dy
≡ qT

x + qρ
x , (10)

that contains only the “cross” thermal- and Dufour-conductivity coefficients (κT
xy, κ

ρ
xy).

A. Extended hydrodynamic theory of Reddy and Alam (2020)

The expressions for (κT
xy, κ

ρ
xy) are taken from the recent theory of Reddy and Alam [29] who

derived “regularized” constitutive relations for a rarefied granular gas. This theory is based on
the Grad-moment expansion [4] of the nonequilibrium distribution function, in terms of Hermite
polynomials, around the rest state, resulting in three sets of constitutive relations for (i) 14, (ii)
13, and (iii) 10 hydrodynamic-like field variables. Considering their regularized 10-moment theory
[29] and retaining terms that are second order in the gradients of hydrodynamic fields, the explicit
expressions for the cross-conductivity coefficients are given as

κT
xy = 5

2

τr

α(en)
σxy ≡ −cT

x

(
1

ρd4

dux

dy

)
and κρ

xy = −T

ρ

τr

α(en)
σxy ≡ cρ

x

(
T

ρ2d4

dux

dy

)
, (11)

where τr = 1/(nd2√πT/m) is the relaxation time, α(en) = (1 + en)(49 − 33en)/15 and σxy =
−2μ(dux/dy) is the shear stress, with μ = 5

√
T /[4d2√πm(1 + en)(3 − en)] being the shear vis-

cosity of a dilute granular gas. In the final expressions in Eq. (11), two constants (cT
x , cρ

x ) are given
by

cT
x = 375

4π (1 + en)2(3 − en)(49 − 33en)
and cρ

x = 2

5
cT

x . (12)

It is clear from Eq. (11) that both transport coefficients (κT
xy, κ

ρ
xy) are driven by the shear stress,

thus tying their origin to “shear-induced” heat transport. Note further that the Dufour contribution
qρ

x could be of the same order of its Fourier or thermal contribution qT
x (since cT

x /cρ
x = 2/5) if the

“shear-induced” density gradient is comparable to (or, larger than) the temperature gradient.
By inserting Eq. (11) into Eq. (10) and using the reference heat flux as qR = ρavu3

R/2, the
dimensionless form of the tangential heat flux (qx → qx/qR) can be written as

qx = qT
x + qρ

x , (13)

where

qT
x = cT

x

(
1

n∗
av

)2( d

W

)2( 1

ρ

dux

dy

)
dT

dy
, (14)

qρ
x = −cT

x

(
1

n∗
av

)2( d

W

)2( T

ρ2

dux

dy

)
dρ

dy
. (15)

In the above expressions, n∗
av = navd3 is the reduced density and we have used y → y/W , ux →

ux/uR, T → T/Tw, and ρ → ρ/ρav for nondimensionalization of remaining variables.

B. Comparison with theory and the stress-driven heat flux

Without solving the complete boundary value problem for the granular Poiseuille flow that
requires boundary conditions, here we restrict to verifying whether Eqs. (9) and (13)–(15) are able
to reproduce the heat flux profiles in a granular gas undergoing Poiseuille flow. By plugging the
simulation data on dux/dy, dT/dy, and dρ/dy [see Figs. 5(b), 5(d) and 5(f)] into Eqs. (14) and
(15), we have calculated the transverse profiles of qT

x (y) and qρ
x (y), see Figs. 6(a) and 6(b) for

Kn = 0.05. It is clear from Figs. 6(a) and 6(b) that while both qT
x (y) and qρ

x (y) are of “double-well”
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FIG. 6. Variations of (a) qT
x (y) [Eq. (14)], (b) qρ

x (y) [Eq. (15)], and (c) qT
x + qρ

x [Eq. (13)] for en = 1 (dashed
line) and en = 0.9 (solid line) at Kn = 0.05. Panel (d) is the same as panel (c), except that the DSMC data for
qx , marked by triangles (en = 1) and circles (en = 0.9), are superimposed in panel (d).

shape at en = 0.9, they are of unimodal shape in a molecular gas (en = 1); the former profiles
look qualitatively similar to those in Fig. 2(a). Comparing Figs. 6(a) and 6(b), we find that the
Dufour-contribution to the tangential heat flux (qρ

x ) is comparable to its Fourier contribution (qT
x ) in

a dissipative or granular gas for the specified parameter set.
Figure 6(c) displays the transverse profiles of (qT

x + qρ
x ) and its comparison with the DSMC data

is shown in Fig. 6(d). The agreement between theory and simulation is only qualitative for both
en = 1 and 0.9; there are quantitative differences in the bulk of the channel (around the channel
centerline where the rarefaction effects are likely to be small at Kn = 0.05) even for a molecular
gas (en = 1). For example, the theoretical predictions of Eqs. (14) and (15) yield qT

x = 0 = qρ
x at

the channel centerline (y = 0), irrespective of the value of (en, Kn), whereas the simulation data
in Fig. 6(d) confirm qx(y = 0) < 0. The latter discrepancy can partly be resolved if we consider
stress-driven heat flux as demonstrated below.

A more general form of Eq. (9) can be derived from the Boltzmann equation [24,25,29] in
which the heat flux is also driven by the gradients in the deviatoric stress that have been omitted
in Eq. (9). The leading-order expression for the deviatoric-stress-driven tangential heat flux is taken
from Reddy and Alam [29]:

qS
x = − τr

α(en)

T

m

(
1 − σxx

nT

)dσxy

dy
∝ dσxy

dy
∼ O(γ̇ 2), (16)

that includes all terms up to second order in gradients, same as in its Fourier [qT
x , Eq. (14)] and

Dufour [qρ
x , Eq. (15)] contributions; note that there are additional terms in Eq. (16) that depend on

the deviatoric normal stresses (σii) but they are of higher order in gradients and hence neglected.
The dimensionless form of Eq. (16) is given by

qS
x → qS

x /qR = − 15√
2π (1 + en)(49 − 33en)

(
1

n∗
av

)(
d

W

)(√
T

ρ

)(
1 − 2σxx

nT

)
dσxy

dy
, (17)
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FIG. 7. Variations of (a) qs
x (y) [Eq. (17)] and (b) total qT

x + qρ
x + qs

x [Eq. (13)] for en = 1 (dashed line) and
en = 0.9 (solid line) at Kn = 0.05. The DSMC data for qx , marked by triangles (en = 1) and circles (en = 0.9),
are superimposed in panel (b). The “wiggles” on curves in panel (a) are due to the calculation of derivatives
(see Fig. 6(b) in Ref. [33]) from the “discrete” DSMC data.

in which we have used σi j → σi j/ρavu2
R for dimensionless deviatoric stress (see Sec. II C in

Ref. [33]), with σi j = pi j − pδi j and p = pii/3. The variations of the shear stress σxy, its derivative
dσxy/dy and the deviatoric normal stress can be found in the Supplemental Material [33].

Figure 7(a) displays the transverse profiles of qS
x [Eq. (17)] at en = 1 and 0.9, with Kn = 0.05. It

is seen that the stress-driven tangential heat flux qS
x is a small negative quantity for both molecular

and granular gases; the magnitude of qS
x is larger at en = 1 than that in its dissipative counterpart. The

comparison of the augmented theory (including qS
x ) with the simulation data is shown in Fig. 7(b),

confirming an excellent agreement between simulation and theory at en = 1 within the bulk region
of the channel. In contrast, for the case of a granular gas (en = 0.9), the agreement between theory
and simulation in Fig. 7(b) is only qualitative across the channel width for these parameter values.

The effect of Knudsen number on theoretical predictions can be ascertained from Figs. 8(a)
and 8(b) that represent Kn = 0.1 and 0.025, respectively. Comparing the qx profiles for en = 1
in Figs. 7(b), 8(a), and 8(b), we find that the disagreement between theory and simulation is
confined near two walls which is due to the presence of the “‘Knudsen-layer” [8,9]; the width of the
Knudsen-layer increases with increasing Kn. For the granular case, it is clear from Figs. 7(b), 8(a),
and 8(b) that the theory can indeed capture the qx profile quantitatively near the channel centerline
at en = 0.9 if the Knudsen number is sufficiently small [Kn = 0.025, Figs. 8(b)]; however, the
quantitative disagreement (even in the bulk of the channel) increases with increasing Kn. In
particular, Fig. 8(b) indicates that while the bulk profiles of qx remain unaffected in a mildly rarefied
(Kn = 0.025) molecular gas (en = 1), the “wall effects” seem to be invading the bulk region of the
heat-flux profiles for the dissipative case (en = 0.9). To gain more insight on observed discrepancies
in Fig. 7(b) and Figs. 8(a) and 8(b), it is desirable to solve the extended set of differential equations
[29] for steady, fully developed, granular Poiseuille flow with appropriate boundary conditions. In
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FIG. 8. Analog of Fig. 7(b) for different Knudsen numbers: (a) Kn = 0.1 and (a) Kn = 0.025.
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addition to identifying the range of validity of the higher-order theory [29] in terms of (Kn, en), the
above exercise is likely to shed light on the importance of the Knudsen layer in granular Poiseuille
flow. These issues can be resolved in a future work.

On the whole, the above analysis suggests that the deviatoric-stress-driven heat flux, though of
smaller magnitude compared to (qT , qρ), should be incorporated in a generalized Fourier’s law,

q = −κT ·∇T − κρ·∇ρ − κS:∇σ ≡ qT + qρ + qS, (18)

so as to obtain quantitative prediction of the heat flux for a rarefied molecular gas undergoing
Poisueuille flow. For a granular gas, however, the first two terms are dominant and the magnitude of
qS decreases with increasing inelasticity. Note that Eq. (18) contains all terms that are second order
in the gradients of hydrodynamic fields. Notwithstanding the quantitative differences in Fig. 7(b)
and Figs. 8(a) and 8(b) for the dissipative case, we wish to emphasize that the anomalous shape
of qx profiles in GPF, that appears in the continuum limit (Kn → 0), can be explained only if the
cross-conductivity terms (κxy �= 0) are incorporated, thus revealing the limitations of the “isotropic”
Fourier’s law (κi j = κδi j) for a granular gas at Kn ∼ 0 even in the limit of nearly elastic collisions.

V. CONCLUSIONS

For the gravity-driven Poiseuille flow with isothermal walls, we found that the shear-induced
heat-flux profiles and the tangential heat-flow rate in a granular gas are qualitatively different than
those in a molecular gas even in the “nonrarefied” limit of zero Knudsen number (Kn → 0). The
tangential heat flux can become an order-one quantity even in a nearly elastic (e.g., en = 0.9)
granular gas, signaling the failure of the isotropic Fourier’s law at Kn → 0.

While a generalized Fourier’s law, Eq. (1), is known to correctly describe the anisotropic nature
of heat transport in a rarefied (0.1 < Kn < 10) molecular gas, we demonstrated convincingly that a
correct description of the heat transport in a nonrarefied (Kn → 0) granular gas would also require
a tensorial thermal conductivity, along with (i) a density-gradient driven Dufour flux term [Eq. (15)]
and (ii) a deviatoric-stress-gradient driven heat flux [Eq. (17)], to be applicable over a wide range
of control parameters. The validity of the linear Navier-Stokes-Fourier (NSF) model is therefore
restricted to an arbitrarily small range of (Kn, 1 − en) ∼ (0, 0). Our results point toward the need
for nonlinear constitutive relations for both the stress tensor [24,34–37] and the heat flux vector
[29,36,38], even in the limit of zero Knudsen number of a dilute granular gas.
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APPENDIX: NAVIER-STOKES-FOURIER EQUATIONS
AND THE GRAVITY-DRIVEN POISEUILLE FLOW

The Navier-Stokes-Fourier equations for a compressible gas are given by:(
∂

∂t
+ u·∇

)
ρ = −ρ∇·u, (A1a)

ρ

(
∂

∂t
+ u·∇

)
u = −∇p − ∇·σ + ρg, (A1b)

ρcp

(
∂

∂t
+ u·∇

)
T = −∇·q − p(∇·u) − σ:∇u (A1c)
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that represent the conservation equations for the mass, momentum, and energy, respectively. Here
g = (g, 0, 0) is gravitational acceleration [directed along the streamwise direction, see Fig. 1(a)], p
is the pressure, σ = −μ[∇u + (∇u)†] is the deviatoric stress tensor and q = −κ∇T is the heat-flux
vector; μ and κ represent the shear viscosity and thermal conductivity of a dilute gas.

Referring to Fig. 1(a) for the steady [∂/∂t (·) = 0], fully developed [∂/∂x(·) = 0 = ∂/∂z(·) and
∂/∂y(·) �= 0] plane Poiseuille flow, u = (ux, 0, 0), driven by gravity, the mass balance equation and
the z-momentum equation are identically satisfied. The y-momentum balance simplifies to

d p

dy
= 0 ⇒ p(y) = const = p0, and

dT

dy
= −T

ρ

dρ

dy
, (A2)

with the last expression coming from the equation of state p = ρT . The x-momentum balance yields

dσxy

dy
= ρg ⇒ σxy = ρgy, (A3)

where σxy is the shear stress that varies linearly with the wall-normal coordinate y, as verified in
Fig. 6(a) in the Supplemental Material [33].

Equation (A3) can be rewritten as

dux

dy
= −ρg

μ
y ≡ γ̇ (y), (A4)

and therefore, the local shear rate [see its variation with y in Fig. 5(f)] is proportional to the
gravitational acceleration and inversely proportional to the shear viscosity. The parabolic shape
of the velocity profile ux(y) is evident from Eq. (A4) if the shear viscosity and the density are
assumed to be constant which is, of course, not applicable for a compressible gas. The energy
balance equation simplifies to

dqy

dy
+ σxy

dux

dy
= 0 = d

dy

(
κ

dT

dy

)
+ μ

(
dux

dy

)2

, (A5)

where the last expression follows from the Fourier’s law of heat flux and the Newton’s law of
viscosity. Because of the temperature dependence of both μ(T ) ∝ T α and κ (T ) ∝ T α (with α = 1
and 1/2 for Maxwell molecules and a hard-sphere gas, respectively), the closed-form analytical
solution of (A4) and (A5) does not seem possible. However, some progress can be made if the
strength of the gravitational acceleration ĝ, Eq. (3), is assumed to be small and the analysis is carried
out around the channel centerline [6].

Referring to Figs. 5(a)–5(d), we note that the density and temperature profiles (see the dashed
lines for a molecular gas with Kn = 0.05) are nearly flat (with negligible gradients) around the
channel centerline y = 0. Therefore, as a first approximation, (μ, κ, ρ, T ) in Eqs. (A4)–(A5) are
replaced by their values (μ0, κ0, ρ0, T0) at y = 0. The solutions to the resulting Eqs. (A4)–(A5)
yield the velocity and temperature profiles as

ux(y) = u(0) − ρ0g

μ0
y2, (A6)

T (y) = T (0) − ρ2
0 g2

12μ0κ0
y4. (A7)

Note that the odd-order terms in g contribute to the velocity profile, while the even-order terms in g
contribute to the temperature profile. The expression for the density profile follows from Eq. (A2):

ρ(y) = p0

[
T (0) − ρ2

0 g2

12μ0κ0
y4

]−1

. (A8)

Therefore, the gravity-driven Poiseuille flow does admit steady, streamwise-independent profiles of
hydrodynamic fields [6–10].
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