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Ionic liquids have remarkable properties and are commonly harnessed for green chem-
istry, lubrication and energy applications. In this paper, we study a thermoresponsive ionic
liquid (IL) solution which has the property of phase separating above a critical temperature,
an interesting feature for the recovery of the IL-rich phase. For this purpose, we generate
a temperature gradient in a microfluidic cavity where the confinement strengthens wetting
effects and enhances the demixing. In this experimental configuration, we report the
separation patterns along the phase diagram of the binary mixture composition. Three
separation dynamics regime are identified that may display complex three-dimensional
flows. In spite of this complexity, we rationalize all the observed regimes. Only two regimes
lead to a complete spatial separation of the two phases. Interestingly, one is reminiscent of
a Marangoni instability in radial geometry, even at confinement below 100 μm. We believe
this work will find applications in the recycling of ILs.

DOI: 10.1103/PhysRevFluids.6.114203

I. INTRODUCTION

Since the 2010s, thermoresponsive binary systems made of water and ionic liquids (ILs) have
proved useful for several applications such as protein stabilization [1–3], catalytic synthesis [4],
metal and rare-earth extraction [5–7], forward osmosis water desalination [8–10], and low-grade
heat valorization [11,12]. For all these techniques the temperature is used as a control parameter to
trigger the phase separation and recover on demand the IL-rich phase of interest. This separation can
be managed in bulk using commercial centrifugation techniques or more simply by letting the two
liquids separate by density [13]. Yet ILs are still costly and generally available in limited volumes,
thus the aforementioned macroscopic techniques may not be adapted for the extraction of the IL-
rich phase. For that purpose, microfluidics-based liquid-liquid separation is a promising alternative
since wetting effects, which are marked in binary mixtures [14–16], are known to boost the phase-
separation kinetics of binary systems [17–23]. It has been demonstrated that a confinement gradient
helps to segregate two immiscible liquids according to their respective affinities for the walls of
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FIG. 1. (a) Phase diagram of the IL-water mixture. The weight fractions in IL of both water-rich and IL-rich
phases obtained after separation at 32 ◦C and 45 ◦C are indicated. (b) Sketch of the binary mixtures samples in
bulk at different temperatures. The interfacial tension γ between the two phases increases with the temperature
as our system is LCST. ILW indicates the IL-rich phase, WIL the water-rich phase. The IL-rich phase is dyed in
blue.

the cavity: the most wetting phase is dragged toward the wedge, i.e., toward the thinner part of the
cavity [24]. Another possibility lies in the temperature-induced interfacial tension gradients, which
are known to cause an interfacial stress generating thin film flow [25–28] and droplets or colloids
motion [29–36], thereby affecting the phase separation pattern, as demonstrated by Beysens et al.
in 2002 with pure CO2 [37,38]. More recently, we showed with a binary mixture how the use of a
temperature gradient allows one to selectively accumulate the entire wetting phase at the warmer
side of the cavity by taking advantage of Marangoni effects at small scales [39].

In this paper, by heating locally the center of a cylindrical cavity, we report the separation
patterns along the phase diagram of a binary mixture composition. More precisely, using a mixture
composed of water and IL, the coupling of Marangoni strains and selective wetting leads to three
characteristic separation patterns. As for the dynamics of binary mixtures under homogeneous
temperature, the initial composition of the solution imposes the phase separation pattern [40,41].
Each pattern is obtained for a certain range of composition and interestingly two of them yield a
selective accumulation of the IL-rich phase at the hotter part of the cavity. We present successively
the three separation patterns in ascending order of IL mass fraction. The first regime, in which water
is the main component, has been reported and rationalized in a previous work, and for sake of clarity
the main mechanisms are briefly recalled [39]. The second regime, beyond the consolute point of
the mixture, generates an unexpected Bénard-Marangoni-like periodic pattern. We interpret this
regime as a thermocapillary driven instability, whose mechanisms involved are actually different
from the classical Bénard-Marangoni instability. This regime is analyzed in detail and constitutes
the main part of the paper. The third regime, far beyond the consolute point of the mixture, is quickly
explained as it presents less interest for the selective separation. At the end we discuss the pertinence
of the three regimes for IL recovery applications.

II. MATERIAL AND METHODS

The thermosensitive binary system of interest is a mixture of MilliQ water with the IL tetra-
butylphosphonium trifluoroacetate (P4444CF3CO2) [42,43] already used in different applications
[9–11], at an IL mass fraction comprised between 15% and 60% (separation temperature Tsep = 30
to 39 ◦C). This system is known as a lower critical solution temperature (LCST) binary solution,
i.e., it phase separates above a critical temperature. Figure 1(a) displays the phase diagram of this
binary mixture. In order to understand how flows can be generated by a temperature gradient in
such a binary system, it is necessary to understand the physicochemical response of the system to
two different temperatures T1 < T2; see Fig. 1. At the temperature T1, e.g., T1 = 32 ◦C, the binary
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FIG. 2. (a) Top view of the microfluidic cavity 1 cm in diameter. The gold connectors are in dark grey, and
the chromium resistor in red (50 × 500 μm2). (b) Radial cut of the temperature profile in the cavity around
t = 70 s. Inset: temperature gradient derived from the temperature profile fitted with 1/r. (c) Interfacial tension
between the two separated phases versus temperature, measured by rising drop method. (d) Viscosity of the IL
solution as a function of its concentration at 25 ◦C.

system is composed of two phases, one rich in IL with a mass fraction of 56% and the other rich
in water with a mass fraction in IL of 21%. We thus obtain two phases more or less rich in ILs,
but not pure in either of the two components. The surface tension between these two solutions is
noted γ1. Let us now consider that the temperature of the system is increased to T2, e.g., T2 = 45 ◦C.
At this temperature, the binary system is composed of a phase rich in IL with a mass fraction of
67%, and the other phase rich in water has a mass fraction in IL of 12%. Thus the two phases are
now respectively richer in IL and in water. This results in a surface tension γ2 > γ1. The interfacial
tension of LCST mixtures thus increases with temperature; see Fig. 2(c). Note that the surface
tension is 0 at the consolute point; see Fig. 2(c). Such interface placed in a temperature gradient
generates a Marangoni stress ∂γ /∂τ , where τ is the dimensional unit element along the tangent to
the interface, oriented from cold to hot.

The microfluidic system that is used to generate a temperature gradient is sketched in Fig. 2(a).
The polydimethylsiloxane (PDMS) cavity is replicated from a micromilled brass mold, and bonded
on a glass coverslip with oxygen plasma treatment. The most wetting phase is the IL-rich phase, an
important consequence in the following is that the IL-rich phase can form a wetting film while the
water phase will display nonwetting droplets. The cavity is a cylinder of diameter 1 cm whose height
ranges from 20 to 200 μm. The bottom surface is sealed onto a glass wafer with micropatterned
resistance (50 × 500 μm2), electrically isolated by spincoating a 30 μm PDMS layer [44]. The
potential applied to the heating resistor can be tuned up to 10 V. The temperature profile generated
by the local resistance is isotropic and its radial dependency is shown in Fig. 2(b); the methodology
allowing to measure this profile is reported in our previous work [39]. This gradient is well modeled
by a 1/r decrease as shown in insert of Fig. 2(b). By increasing locally the temperature, we expect
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(a) (b) (c)

FIG. 3. Phase diagram of the IL-water mixture with the three phase separation patterns observed experi-
mentally. The transition from first to second regime is indicated by the vertical dashed line centered on the
consolute point. These two regimes selectively accumulate the wetting phase (IL-rich here) above the heating
resistor. The transition from second to third regime is given by the dark gray area, when the composition is
between 55 and 60 wt% in IL. The third regime does not yield a selective separation.

the mixture to phase separate, whose consequence is the generation of interfaces. Placed in a
temperature gradient, these interfaces will be subjected to an interfacial stress proportional to the
temperature gradient. Thus, the thermocapillary stress is radial, directed toward the warmer region,
i.e., toward the center of the cavity. Finally, the last physicochemical parameter characterizing the
system is the viscosity, which is displayed as a function of the IL mass fraction in Fig. 2(d) at 25 ◦C.

Once the voltage is applied, the temperature suddenly increases at the resistor location and
diffuses radially along the cavity. This diffusion triggers the phase separation, which propagates
from the center towards the edges, which is observed using bright-field transmitted light video
microscopy. The signature of the separation temperature (Tsep) isotherm can be captured typically in
in Figs. 4 and 5 below, at the front of the dark cloud stemming from the light scattering of the dense
two-phase system, whose droplets sizes are much smaller than the cavity thickness. The temperature
steady state is reached after 5 to 10 min depending on room temperature.

III. PATTERNS OF SEPARATION

By scanning the dynamics of separation as a function of composition, different patterns are
observed, which can be brought together in three different regimes summarized in Fig. 3. The
dynamics of these three regimes are qualitatively described below (see Supplemental Movie 1
showing the phase separation in both three regimes [45]):

(1) Below 35 wt% of IL (consolute point), the dynamics is associated with a complex three-
dimensional flow generated by the combination of thermocapillary effects and sedimentation (see
regime A in Fig. 3 and Supplemental Movie 1 [45]). This regime was published in [39] and is
summarized in Sec. IV.

(2) Between 35 wt% and 55 wt%, the flow turns to an instability pattern driven by thermocapil-
larity (see regime B in Fig. 3 and Supplemental Movie 1 [45]). This regime is rationalized using a
linear stability analysis in Sec. V and is the core of the paper.
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(a)

(b)

FIG. 4. (a) Top view of the separation dynamics at 7 V (80 mW) at different times. The mass fraction in
IL is 25% and the cavity height is H = 60 μm. The separation dynamics can be divided into four regions,
clearly visible at t = 5 s in the top view: (I) IL-water nonseparated mixture, (II) separation of the two phases,
the droplets are mostly pushed outwards, (III) some IL-rich droplets are dragged inward across the water-rich
phase, and (IV) IL-rich sessile drop. At t = 60 s when steady state is reached, an IL-rich drop is accumulated
above the heating resistor. (b) Cross-sectional sketch of the phase separation dynamics. The tread-milling
wetting film induces a radial Couette-Poiseuille flow. Inset: within region III, domain 1 indicates the IL-rich
wetting film and domain 2 the water-rich phase above. The orange arrows indicate the interfacial stresses.

(3) Above ∼55 wt%, the solution is composed essentially of IL. There is therefore a dispersed
phase of water in IL in the form of drops which are expelled outwards by thermocapillary migration
(see regime C in Fig. 3 and Supplemental Movie 1 [45]). This regime is described in Sec. VI.

The transition from regime 1 to 2 is governed by the transition of composition at the critical
point of the binary mixture at 35 wt% in IL. On the left of this point, i.e., for lower IL mass fraction,
the emulsion is composed of IL droplets into water and water is the continuous phase. On the
right of this point, i.e., for higher IL mass fraction, the emulsion is inversed, we thus obtain water
droplets and the IL is the continuous phase. Since both phases have similar dynamical properties, the
separation line between the two demixing regimes is almost vertical [46]. Transition from regime 2
to 3 is less obvious because in both cases water droplets are produced in a continuous IL solution. We
notice experimentally a transition of the separation pattern from a flower shape to a fireworks-like
around 55–60 wt% in IL. Qualitatively, this corresponds to the transition from a regime within
which water droplets coalescence are observed, to a regime in which such events are not observed
anymore. This is in agreement with what is observed in static experiments for which there is no
coalescence events above this concentration [41].

In the prospect of separating a water-rich phase and a phase rich in IL, only the first two regimes
were able to achieve this objective.

IV. IONIC LIQUID MASS FRACTION BELOW 35%

For sake of clarity, we describe shortly in this section the first separation regime already reported
in [39]. This separation pattern is witnessed for an IL mass fraction range of 10 to 35 wt%, i.e.,
when the IL phase is the minority phase in volume. Hence, during the separation the IL-rich phase
is the dispersed phase while the water-rich phase is the continuous phase.

Figure 4(a) displays a temporal evolution of the separation pattern. When the heating resistor
is switched on, the temperature increases in the cavity and expands radially producing an opaque
cloud of IL-rich droplets. The front of this cloud indicates the position of the phase separation
isotherm (31 ◦C at 25 wt%). Surprisingly, the cloud opens up in its center to reveal an IL-rich drop.
Moreover, a fraction of droplets emanating from the cloud are coming back to the center in an

114203-5



PASCUAL, AMON, AND JULLIEN

FIG. 5. Time lapse of the IL-water phase separation for 7 V (80 mW). The IL mass fraction is 45%, and
the cavity height is H = 80 μm. Water droplets nucleate, coalesce and get expelled outward. Once they cross
the separation temperature isotherm (spotted as the outer radius of the darker circular zone) they stop and sit
still on the periphery forming a crown of drops. This crown is delimited by its inner radius rc and its outer
diameter R. Due to high enough water fraction, those drops remain side by side, and their adjoining interfaces
oriented radially are submitted to thermal interfacial gradients. Thus, these interfaces drain the outer liquid
inward, making the central drop (rich in IL) to expand over time.

accelerated radial motion. This behavior results from the existence of a micrometer-thick wetting
film covering the bottom of the cavity, as sketched in Fig. 4(b). This film is a consequence of the
sedimentation from the cloud’s droplets (the IL is denser than water) which spread completely when
impacting the bottom wall. The free interface of the film is submitted to thermocapillary stresses
directed toward the center of the cavity, hence the IL within the film is drained toward the center
where it accumulates to produce a bigger drop. Above the film the momentum diffusion drags along
the water-rich phase and the neighboring droplets from the cloud. The water phase converging to
the center is sent back outwards by mass conservation and pushes away the cloud of droplets. This
complex three-dimensional flow has been rationalized and reported in [39]. In the end we recover
an IL-rich drop in the center of the cavity surrounded by a water-rich liquid as seen at t = 60 s in
Fig. 4(a).

V. IONIC LIQUID MASS FRACTION INBETWEEN 35% AND 55%

A. Description of the phase separation pattern

Beyond the consolute point (35 wt% in IL), the IL-rich phase becomes the continuous phase
while the water-rich phase is the dispersed one. Figure 5 represents the typical dynamics of
phase separation. At early time water droplets nucleate in the center and form an opaque cloud
that expands isotropically in the horizonthal plane with the Tsep isotherm diffusion. These water
droplets grow under coalescence events and are submitted to two moving mechanisms both driving
the droplets outward: thermocapillary and thermomechanical migration. We recall briefly that the
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(a) (b)

FIG. 6. (a) Spontaneous formation of Marangoni jets resulting from the thermocapillary runaway of small
instabilities developing on the outer interface of the water drops. The initial positions of the perturbations are
indicated by red arrows. (b) Zoom on the black dashed box of the picture t = 5 s. The temperature gradient as
well as the interfacial tension gradient are indicated along the finger interface.

thermomechanical effect is associated to the propulsion of droplets, squeezed by both the bottom
and top walls of a cavity, towards the cooler region due to a thinning of the cavity height in the
warmer region [47]. The pattern of Fig. 5 is also observed in additional experiments performed
in glass microcavities, in which the thermomechanical deformation is negligible. This observation
thus allows us to disregard the thermomechanical mechanism in the following. Once the droplets
reach the Tsep isotherm, their migration ceases and they sit on the isotherm circular line forming a
flower-like pattern, recalling similar experiments involving Marangoni effects [48–52]. This crown
of nonwetting water-rich drops delimits a central wetting drop enriched in IL. When steady state
is reached, we end up with an IL-rich drop in the hot central region surrounded by a water-rich
phase, similarly as in previous section. The initial shape of the flower-like pattern is governed by
the initial water droplets that form the external crown. Between drops, the liquid is drained from
the outer unseparated region towards the center IL-rich region, and its gradual opacification is a
result of the phase separation. We call those fingers “Marangoni jets,” as we assume their active
pumping coming from the thermocapillary stress sustains the expansion of the pattern. Inside the
water drops, this flow induces convection cells that are made visible by the swirling plumes of small
IL-rich droplets produced by the double phase separation (see inset of Fig. 5 at t = 15 s) [53,54].
We believe that the very low interfacial tension inherent to near-critical binary mixtures is a key to
the formation of such pattern [55–57].

Interestingly, the initial flower-like pattern evolves due to the spontaneous formation of jets
during the expansion of the global pattern thus increasing the total number of petals. These jets
usually appear when the interjet distance is much bigger than the recirculating plumes width (in
other words when the water drop’s azimuthal extent is at least twice as big as the jets length); see
Fig. 6 and Supplemental Movie 2 for a movie showing the spontaneous generation of new jets [45].
We believe that this digitation mechanism plays a major role in the regularity of the pattern. This
observation leads us to rationalize this problem through an instability approach. After discussing
the instability mechanism we propose two approaches to model this instability. First, we derive a
scaling analysis that recovers the general trend of wavelength as a function the geometrical and
physicochemical parameters. In a second approach, a stability analysis inspired by the work of
Nagel and Gallaire [58] is performed.

In order to look at the effect of wetting properties, additional measurements are made with a
lutidine-water mixture which is also an LCST system. We recover the same demixing patterns
proving that this behavior is not specific to ILs. More details are given in Appendix A.

B. Instability mechanism

We consider first the interface formed by the water-rich phase with the binary mixture placed
at r = R. For a perfectly circular interface, the temperature field being radial, the surface tension
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is constant along the interface and is therefore stable. Let us now consider a radial fluctuation of
this interface such that r′ = R − δr. The temperature is higher in r′ than in r, and so is the surface
tension. This results in a surface tension gradient δγ = γ + − γ − oriented from the larger r to the
smaller r; see Fig. 6(b). In this way, the fluctuation is amplified and leads to the formation of what
we have called the Marangoni jets. By conservation of momentum, these jets generate a flow within
the water phase, visible as recirculating zones in inset of Fig. 5. The driving mechanism is thus
mediated by the viscous dissipation in the water phase.

At first sight, it could be legitimate to associate this pattern with the Bénard-Marangoni in-
stability. This instability is due to temperature fluctuations of the interface, at a given constant
radius, which is maintained by the generated interfacial flow. The existence of this instability is
in general conditioned by the Marangoni number which describes the ratio between the thermal
diffusion time tκ = d2/κ , where d is a characteristic length scale, and a transport time linked
to the Marangoni stress tM = μ/(∂γ /∂r). The instability is generally observed for Marangoni
numbers Ma � 102 [60]. The difference with our experiment is that our Marangoni number is
small, Ma � 20, so the temperature fluctuations at a given r are negligible. Strictly speaking,
what we observe is not a Bénard-Marangoni instability. Indeed, in our system it is a radial flow
stemming from the interface radius fluctuations, thus exploring isothermal lines, that are amplified
by the Marangoni stress, and not an orthoradial one as it would be the case in a Bénard-Marangoni
instability. The fact that diffusion of heat does not come into play is reinforced by comparing the
transport of heat by advection and diffusion, i.e., by estimating the thermal Péclet number in the
water phase given by Pe = [(R − rc)vr]/κ � 0.5 with R − rc � 500 μm the characteristic crown
extent, κ = 1.5 × 10−7 m2s−1 the water thermal conductivity and vr = 150 μms−1 the typical fluid
velocity induced by thermocapillary forces [39]. As such, the temperature profile in a cross section
of the cavity is thus little affected by the flow. Consequently, the temperature fluctuations will not
be considered in the following as we consider that heat is released faster by diffusion than by
advection.

C. Wavelength of the pattern

In this subsection we study the influence of both the geometrical and the physicochemical
parameters on the pattern’s wavelength and extension. We propose a scaling analysis rationalizing
the observed dependency of the pattern wavelength.

Figure 7 displays snapshots of the phase separation pattern at t = 70 s for three cavity heights and
three compositions. Qualitatively, the wavelength seems to increase with the thickness of the cavity
at a given composition; on the other hand, it decreases when the composition increases in IL at a
given cavity height. At 20 μm, we see that the patterns begin to be less well defined. This probably
results from the important confinement which may limits the velocity field and promote the stability
of the filament, as evidenced by the absence of recirculation in the drops forming the crown. For the
other confinements, the Marangoni jets show a well-defined periodic distribution which depends at
a given time on the cavity height H and on the mixture composition which signature is the crown
extent R − rc.

The number of jets n j are plotted as a function of 1/H in Fig. 8(a) and display a linear-like
behavior (excluding the data at H = 20 μm) for the different compositions. More interestingly
all the data collapse on a single curve by plotting the cell wavelength λ ∝ 1/nj as a func-
tion of the cross section of the pattern H × (R − rc). We now propose a qualitative description
of this instability in order to recover this dependency, based on a similar approach as de-
scribed in [59]. First, due to the confinement, two length scales have to be considered: H
and R − rc. The destabilizing thermocapillary action across a cell writes as a force per unit
length:

Fγ ≈ dγ

dr
(R − rc). (1)
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FIG. 7. Phase separation pattern at t = 50 s, for three heights of cavity H = 20, 80, and 150 μm (from
left to right) and three compositions 40, 45, and 50 wt% (from top to bottom). The voltage is 7 V (80 mW).

This force is mediated by a stabilizing one stemming from viscous dissipation along the smallest
length scale of the cavity: the height H . Hence, introducing λ the wavelength instability (azimuthal
length of a recirculating cell), the viscous force per unit length writes

Fμ = μ1
vθ

H2
(R − rc)λ. (2)

Incompressibility of the flow yields vθ (R − rc) ∝ vrλ, and using the thermal Péclet number, this
leads to

Fμ = μ1
κPeλ2

H2(R − rc)
. (3)

The threshold of the instability is estimated at Fγ � Fμ, yielding

λ2 ∝ 1

μ1κPe

dγ

dr
(R − rc)2H2. (4)

FIG. 8. (a) Number of jets nj measured at t = 70 s for six heights H = 20, 40, 60, 80, 150, 200 μm and
three compositions: 40, 45, and 50 wt% in IL. The dark cross and the dark star symbols are the number of jets
from the lutidine-water experiments (see Fig. 12 in Appendix A). (b) 1/nj (proportional to the wavelength) vs
H (R − rc ).
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FIG. 9. Sinusoidal perturbation of the circular interface in r = R. The amplitude of the perturbation is ζ .
The central drop is the light blue disk of radius rc.

This simple analysis allows to recover the correct scalings. The experiments using lutidine
confirm this approach as shown by the black cross and black star in Fig. 8 collapsing on the same
curve. We will now check the order of magnitude of the prefactor of this scaling law.

Equation (4) can be written in terms of n j :

1

n j
∝ 1

2πR

(
1

μ1κPe

dγ

dr

)1/2

(R − rc)H. (5)

Assuming that R = 1.5 × 10−3 m, μ1 = 1 × 10−3 Pa s, κ = 1.5 × 10−7 m2 s−1, and dγ /dr =
dγ /dT × dT/dr ≈ 2 × 10−1 N m−2, the prefactor of Eq. (5) is of order

1

2πR

(
1

μ1κPe

dγ

dr

)1/2

∼ 6 × 10−6μm−2. (6)

This value is of the same order than the slope obtained from Fig. 8(b) of value 10−6 μm−2. This
fair agreement between our scaling and the experimental observations makes one confident in the
analysis that has been done.

D. Thermocapillary-driven fingering instability

In this section, we present an analytical model for the growth rate of the thermocapillary
instability. Rather than using a Darcy-type approach typical of these confined systems, we have
been inspired by the work of Nagel and Gallaire based on Brinkman’s approach which takes into
account in-plane shear stress [58]. The main difference between their model and our situation is
that we replace a bulk driving mechanism by an interfacial driving mechanism (thermocapillary
pumping).

A sinusoidal perturbation of the interface is considered, which is amplified by the radial inter-
facial tension gradients (see Fig. 9). A linear stability analysis is performed in polar coordinates
(O,−→er ,−→eθ ,−→ez ). We assume that the liquid composition is at equilibrium regarding the temperature
at all time and that the volume variation due to the phase transition is negligible. The full calculation
is provided in Appendix B, only the main steps and results are provided in this section.
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The interface position is given by R(θ, t ) and the sinusoidal perturbation writes

R(θ, t ) = R0(t ) + εζ (θ, t ), (7)

where

ζ (θ, t ) = ζ0eβt einθ (8)

with β the growth rate that depends on nj . In practice, R0 varies slowly in time compared to ζ .
The interfacial tension depends on the perturbation as follows:

γ = γ0 + αζ (9)

with α = dγ

dT
dT
dr < 0 the interfacial tension gradient and γ0 ≈ 10−4 N m−1. The value of γ0 is

estimated from our interfacial tension measurements from Fig. 2(d). However, we acknowledge
that the position of the interface in r = R regarding the separation temperature isotherm is not
obvious and that the existence and the value of an interfacial tension in this zone can be subject to
discussion. Furthermore, the interface driven toward the center sees its temperature rising up and so
its interfacial tension, such that ζ < 0 implies �γ = αζ > 0.

Following Nagel and Gallaire [58] methodology, we solve the dimensionless Brinkman equation
to get a dispersion relation of the instability. This equation is obtained provided a typical length
scale R, a typical velocity U , and a typical pressure P are introduced with P = μ2U/R where μ2 the
viscosity of the outer fluid. The dimensionless Brinkman equation writes

η j (�
−→u j − k2−→u j ) − −→∇ p j = 0 (10)

with j = 1 for the inner fluid (the water-rich phase) and j = 2 for the outer fluid (the homoge-
neous phase). The viscosity ratio η j is defined as η1 = μ1/μ2 = η and η2 = 1. The parameter
k2 = 12R2/H2, linked to the aspect ratio, comes from depth averaging (along z direction). In this
framework, the velocity −→u j and the pressure p j fields are two-dimensional.

By introducing the stream function ψ and by taking the curl of Eq. (10), the authors derive a
more compact form: (

∂

r∂r
r

∂

∂r
+ 1

r2

∂2

∂θ2

)(
∂

r∂r
r

∂

∂r
+ 1

r2

∂2

∂θ2
− k2

)
ψ = 0. (11)

The stream function is expanded as ψ j = ψ0 j + εψ1 j . The general solution for Eq. (11) gives

ψ11 = i

(
an

In(kr)

In(k)
+ bnrn

)
einθ , (12)

ψ12 = i

(
cn

Kn(kr)

Kn(k)
+ dnr−n

)
einθ (13)

with In and Kn the modified Bessel functions of first and second kind, which decay exponentially
away from the interface. The parameters an, bn, cn, and dn have to be determined from the boundary
conditions at the interface: impermeability, continuity of the normal and tangential velocity, and
continuity of the normal and tangential stress.

As already discussed, the driving mechanism stems from the surface tension gradient which is
the key difference with Nagel and Gallaire model. Under this assumption, the dimensionless normal
and tangential boundary conditions of the interfacial stress are, respectively:

[−→n · T · −→n ]2
1 =

(
1

Ca
+ αζ

μ2U

)
RC, (14)

[
−→
t · T · −→n ]2

1 = −→
t · −→∇ γ

R

μ2U
, (15)
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FIG. 10. (a) Mean interfacial tension along a jet for the three compositions. (b) Viscosity ratio between
the two phases: the water-rich μ1 and the nonseparated mixture μ2. (c) Growth rate β calculated with the
Brinkman model for all three compositions at six cavity heights: 20, 40, 60, 80 150, and 200 μm. We use
drT = 3000 K m−1 and the values of γm and η from (a) and (b). (d) Comparison between the number of jets
measured and the prediction given by the Brinkman model. The shaded areas include all wave numbers of the
model where the growth rate is within 1% of the maximal growth rate.

where Ca = μ2U/γ0 is the capillary number, C is the curvature of the interface,
−→
t · −→∇ γ = α 1

R
∂ζ

∂θ

is the linearized thermocapillary stress, and T is the stress tensor. At first order in ε, the tangential
stress continuity equation becomes similar to the one of Nagel and Gallaire with an additional term
on the right-hand side:

η

(
2ann2 + 2bnn2 + ank2 − 2ank

In+1(k)

In(k)
− 2ann − 2bnn

)

− 2cnn2 − 2dnn2 − cnk2 − 2cnk
Kn+1(k)

Kn(k)
+ 2cnn − 2dnn = n

α

μ2U
ζ . (16)

In the same way, the normal stress jump at first order in ε writes

7η

(
bnk2 − 2ann − 2bnn + 2annk

In+1(k)

In(k)
+ 2ann2 + 2bnn2

)
+ dnk2 + 2cnn + 2dnn

+ 2cnnk
Kn+1(k)

Kn(k)
− 2cnn2 + 2dnn2 = π

4Ca
ζ (n2 − 1) + αR

μ2U
ζ

(
π

4
+ 2R

h

)
. (17)

Considering the full problem, the unknowns an, bn, cn, and dn are calculated and β = 1
ζ

∂ζ

∂t can
thus be determined, assuming that the aspect ratio k and the capillary number Ca do not change
significantly with time. The growth rate β is given at the end of Appendix B.

The growth rate can be computed using the experimental values (temperature gradient, both
surface tension gradient and viscosity as a function of IL mass fraction and temperature) detailed
in Material and Methods. For the compositions of the solutions used in this section it is necessary
to determine the values of the surface tension and viscosity to calculate the growth rate. Since
the length of the Marangoni jets varies with the composition of the mixture, we evaluate a mean
interfacial tension experienced by the jets in the temperature gradient. From the position of the
jets a mean temperature can be extracted and a mean interfacial tension is deduced, plotted in
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Fig. 10(a). The viscosity ratios of the two phases are plotted in Fig. 10(b). These values are injected
to numerically solve β.

Figure 10(c) shows the growth rates for six cavity heights and three IL mass fraction with drT =
3 K mm−1. Remarkably, whatever the H value and the mass fraction, the growth rate displays a
range of unstable modes at large wavelength (small n). The only effect of the composition is a
decreasing of the growth rate with increasing the IL mass fraction. From these curves the wave
number of highest growth rate is extracted allowing to build this wave number as a function of the
cavity height for different IL mass fraction. The sensitivity of the result is evidenced by varying β

by 1% as highlighted by the shaded area around the numerical value plotted in the Fig. 10(d). We
recover qualitatively the right tendencies yet the model overestimates the number of jets by a factor
of two.

In fact, the linear stability analysis allows to obtain the wavelength at the very beginning of the
instability process, i.e., the wavelength of the perturbation that can be observed at the interface in
Fig. 6 (red arrows at 3 s). This wavelength can differ from the one of the fully developed pattern,
which is stabilized by nonlinear effects that are not taken into account in the perturbation analysis.
As the measurements are done on the fully developed pattern, discrepancies between measurements
and prediction of the linear analysis can be expected. In particular, the radial extension of the cells
R − rc appearing in the fully developed pattern does not emerge from the linear stability analysis.
Considering this limitation, it is quite remarkable that we have only a factor of two difference if we
take into account the extreme sensitivity of the model.

VI. IONIC LIQUID MASS FRACTION ABOVE 55%

Above the IL weight fraction of 55% to 60% in IL, the water droplets become so scarce that
the flower-like pattern is lost. The nucleating water droplets are sufficiently distant not to coalesce
during their journey and they migrate outward in a radial motion under thermocapillary actuation;
see Fig. 11(a). The increasing speed of the drops with size is a noticeable feature of this effect. We
emphasize that in this regime the water droplets are smaller than the cavity thickness, hence they do
not experience any thermomechanical effect. Some drops may get pinned on surface defects, grow
in size as the temperature rises in the cavity, and eventually detach when the thermocapillary forcing
is strong enough. Their pace is slowing as the gradient’s slope flattens far from the hot point, and
their run ends shortly after crossing the critical temperature isotherm Tc ≈ 29 ◦C.

The drops also leave a clear trail behind them: their composition equilibrates as the temperature
decreases and the excess of water released by the drops is conveyed at their rear by the interfacial
convection; see inset in Fig. 11(a). The nucleation events fade away after a few minutes as the
temperature profile reaches steady state.

The thermocapillary motion of an initially pinned water droplet is shown in Fig. 11(b). The
droplet grows in size and detaches around t = 23.5 s. Its radius, plotted on the inset, increases until
t = 25 s, and then decreases as the drop gets carried down the temperature gradient, away from
the center. In order to validate the thermocapillary forcing, we compare in Fig. 11(c) the velocity
of the water drop to the prediction given by the following equation [61] (note here that the drop is
considered in an infinite medium, that the Marangoni gradient is purely thermal, and that the thermal
conductivity of both phases are supposed equal):

vT cap = RdropdT γ drT

3ηIL(1 + 3ηw/2ηIL )
. (18)

The drop moves slightly slower than the predicted velocity, however we recover the right trend and
order of magnitude. Since this thermocapillary migration phenomenon has been largely documented
[62–64] and does not lead to a macroscopic phase separation of the binary mixture in our cavity, we
do not further develop the analysis.
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FIG. 11. (a) Time lapse of the phase separation dynamic for an IL mass fraction of 60%. Above 55 wt% in
IL, the water droplets nucleate and migrate radially outward because of thermocapillary actuation. As they go
down the temperature gradient, their size shrinks as they redissolve and eventually vanish. The inset highlights
the clear trails left behind the moving droplets as they release water-rich material in the IL-rich matrix. The
voltage is 7 V (80 mW), and the cavity height is H = 80 μm. (b) Motion of a water drop in the temperature
gradient. The drop is initially stuck at a surface. The black crosses give respectively the drop’s front (+) and
rear (×). Inset: temporal evolution of the drop’s radius. (c) Calculated and measured drop velocity vs time.
We inject the temperature gradient values from Fig. 2(b) inset in Eq. (18). The gray shaded area gives a 20%
variation in the value of drT .

VII. CONCLUSION

To conclude, we investigated the temperature gradient influence on the phase separation kinetics
of LCST binary mixtures under confinement in which the volume fraction and wetting behavior
of both constituents drive the dynamics. The thermal interfacial tension gradients are responsible
for the flows that oriented along the temperature gradient drive the thin film drainage, the water
droplet migration, or the spontaneous digitation of one phase into the other. In all cases the resulting
Marangoni strains behave as a pump accumulating the wetting phase in the warmer region and
expelling the nonwetting phase in the cooler region. Thus, tuning the wall surface energy allows us
to select which component is concentrated in the center.

Three regimes are observed as summarized in the diagram of Fig. 3 and have been rationalized.
Briefly, concerning the possibility to separate the two phases, we observe that for IL mass fractions
between 10 and 55 wt% the IL-rich phase is concentrated in the warmer area, beyond 55 wt% none
of the two phases are selectively isolated.

In this article the regime that has attracted the most interest is the regime for which the IL mass
fraction is between 35% and 55%. In this regime, an instability develops that we have been able
to explain as a Marangoni mechanism. A scaling analysis allows us to find the dependence of the
number of jets n j with H × (R − rc). We also derived a model based on Brinkman equations, and we
were able to find an agreement with the experimental results. In perspective, it would be interesting
to look at the role of spatial wetting patterning [65–68]. We hope that this work will open the
possibility of an alternative technique to the recycling of ILs.
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APPENDIX A: LUTIDINE-WATER SYSTEM

In order to tackle the reproducibility of the demixing pattern regarding the role of the wetting
phase, we performed experiments using another LCST binary mixture widely employed in the
literature: the lutidine-water system. The water-rich phase is expected to play the role of the wetting
phase in a hydrophilic cavity, while the lutidine-rich phase wets preferentially a hydrophobic
cavity [69]. Thus we performed the same experiments as previously with two layouts: a 20 wt%
lutidine solution in a hydrophilic cavity and a 40 wt% lutidine solution in a hydrophobic cavity
(the consolute point is around 28 wt% in lutidine). Figure 12 displays the temporal evolution of the
phase separation pattern for both cases, the lutidine-rich phase is made slightly darker by adding
a dye. In the hydrophilic cavity the water-rich phase is accumulated in the central wetting drop,
whereas the lutidine-rich drops distributed around the perimeter give birth to the Marangoni jets. In
the hydrophobic cavity the roles are swapped.

FIG. 12. Time lapse of the phase separation dynamic for two lutidine-water mixtures in two different
cavities: 20 wt% in lutidine for the hydrophilic cavity (oxygen plasma treated) and 40 wt% in lutidine for
the hydrophobic one (pristine PDMS cured at 130 ◦C at least 2 h). The lutidine-rich phase is slightly darker
than the water-rich one. We recover the flower pattern formed by the periodic digitation. In the hydrophilic
cavity the water-rich phase is accumulated at the center and the lutidine-rich phase gives the petals, while in
the hydrophobic cavity roles are swapped. The voltage is 9.2 V (135 mW) and the cavity height is H = 60 μm.
Insets: zoom on the Marangoni jets.
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APPENDIX B: STABILITY ANALYSIS

Details on the stability analysis calculus are provided in this Appendix. We recall that all the
quantities are dimensionless.

The tangential
−→
t and normal −→n vectors to the interface (see Fig. 9) write

−→
t =

[
1 +

(
1

R

∂ζ

∂θ

)2]−1/2(
1

R

∂ζ

∂θ

−→er + −→eθ

)
≈ 1

R

∂ζ

∂θ

−→er + −→eθ , (B1)

−→n =
[

1 +
(

1

R

∂ζ

∂θ

)2]−1/2(
−→er − 1

R

∂ζ

∂θ

−→eθ

)
≈ −→er − 1

R

∂ζ

∂θ

−→eθ . (B2)

In our configuration, the radius of the interface in the absence of perturbation R0 grows slowly
compared to the characteristic time of evolution of the perturbation ζ . Consequently the unperturbed
solution of our problem writes

u0 j = v0 j = 0, ψ0 j = 0, and p0 j = Pj, (B3)

with

P1 − P2 = RC
Ca

= 1

Ca

(
π

4
+ 2R

H

)
. (B4)

At the order ε, the first terms ψ1 j of the expansion of the stream functions are given by Eqs. (12)
and (13) in which the constants an, bn, cn, dn need to be determined. Continuity of radial and
tangential velocity at the interface write

∂ψ11

∂θ
= ∂ψ12

∂θ
and

∂ψ11

∂r
= ∂ψ12

∂r
(B5)

leading, respectively, to

an + bn − cn − dn = 0 (B6)

and to

ank
In+1(k)

In(k)
+ cnk

Kn+1(k)

Kn(k)
+ n(an + bn − cn + dn) = 0. (B7)

At first order in ε, the tangential stress continuity equation (15) becomes for ψ1 j{
η j

[
r

∂

∂r

(
∂

r∂r
ψ1 j

)
− ∂2

r2∂θ2
ψ1 j

]}2

1

= in
α

μ2U
ζ , (B8)

yielding Eq. (16):

η

(
2ann2 + 2bnn2 + ank2 − 2ank

In+1(k)

In(k)
− 2ann − 2bnn

)
− 2cnn2

− 2dnn2 − cnk2 − 2cnk
Kn+1(k)

Kn(k)
+ 2cnn − 2dnn = n

α

μ2U
ζ̃ , (B9)

where ζ̃ = ζ0eβt .
Taking into account the additional term due to thermocapillary stress, the normal stress jump

writes

[−→n · T · −→n ]2
1 =

(
1

Ca
+ αζ

μ2U

){
2R

H
+ π

4
[1 − (1 − n2)ζ ]

}
, (B10)
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where the π/4 factor in the curvature term comes from the correction to the in-plane curvature in
the case of perfect wetting [58]. At the first order in ε, we obtain[

−p1 j + 2η j
∂

∂r

(
1

r

∂ψ1 j

∂θ

)]2

1

= − π

4Ca
ζ (1 − n2) + αR

μ2U
ζ

(
π

4
+ 2R

H

)
. (B11)

The pressure perturbation is integrated from the azimuthal part of the Brinkman equation as in [58]:

p11 = ηbnrnk2einθ and p12 = −dnr−nk2einθ . (B12)

Finally, the normal stress jump leads to

η

(
bnk2 − 2ann − 2bnn + 2annk

In+1(k)

In(k)
+ 2ann2 + 2bnn2

)
+ dnk2 + 2cnn + 2dnn

+ 2cnnk
Kn+1(k)

Kn(k)
− 2cnn2 + 2dnn2 = π

4Ca
ζ̃ (n2 − 1) + αR

μ2U
ζ̃

(
π

4
+ 2R

h

)
. (B13)

Finally the kinematic condition at the interface (or impermeability condition) writes

∂R

∂t
+ ε

∂ζ

∂t
= u01 + ε

∂u01

∂r
ζ + εu11, (B14)

which yields at order ε

n(an + bn) + ∂ζ̃

∂t
= 0. (B15)

Combining the boundary condition Eqs. (B6), (B7), (16), (17), and (B15) the unknowns an, bn,
cn, dn, and β = 1

ζ̃

∂ζ̃

∂t can be determined. We display here the growth rate β for wave number n
depending on the parameters of our system:

β = −
[

n

(
8
∂γ

∂r

In+1

In
R2 k2−16

∂γ

∂r

In+1

In
H n3−32

∂γ

∂r

In+1

In
R2 n + 4 π

In+1

In
γ H n+16

∂γ

∂r

In+1

In

Kn+1

Kn
R2k

+ 32
∂γ

∂r

In+1

In
R2 η n + 16

∂γ

∂r

In+1

In
ηH n3 − 4

∂γ

∂r

In+1

In
H k2 n − π

In+1

In
γ H k2 − 4 π

In+1

In
γ H n3

− 16
∂γ

∂r
R2 η k n − 8

∂γ

∂r
ηH k n2 + 8

∂γ

∂r

Kn+1

Kn
R2 η k2 − 2 π η γ H k n3 + π

In+1

In
γ H k2 n2

− 4 π
∂γ

∂r

In+1

In
RH n − 2 π

In+1

In

Kn+1

Kn
γ H k − 4 π

In+1

In
η γ H n − 16

∂γ

∂r

In+1

In

Kn+1

Kn
R2 η k

+π
∂γ

∂r

In+1

In
RH k2 + 2 π η γ H k n + 8

∂γ

∂r

In+1

In

Kn+1

Kn
H k n2 + 4

∂γ

∂r

Kn+1

Kn
ηH k2 n

−π
Kn+1

Kn
η γ H k2 + 4 π

In+1

In
η γ H n3 + π

∂γ

∂r

Kn+1

Kn
R ηH k2 − 8

∂γ

∂r

In+1

In

Kn+1

Kn
ηH k n2

+ 2 π
In+1

In

Kn+1

Kn
γ H k n2 + 2 π

∂γ

∂r

In+1

In

Kn+1

Kn
RH k + π

Kn+1

Kn
η γ H k2 n2 + 4 π

∂γ

∂r

In+1

In
R ηH n

+ 2 π
In+1

In

Kn+1

Kn
η γ H k − 2 π

∂γ

∂r
R ηH k n − 2 π

In+1

In

Kn+1

Kn
η γ H k n2

− 2 π
∂γ

∂r

In+1

In

Kn+1

Kn
R ηH k

)]/[
4UH μ

(
In+1

In
k4 − 8

In+1

In
n2 + 8

In+1

In
n4 + Kn+1

Kn
η2 k4

− 8
In+1

In
η2 n2 + 8

In+1

In
η2 n4 + 4

In+1

In
k2 n2 + 8 η2 k n2 − 8 η2 k n3 − 2 η2 k3 n + 2

In+1

In

Kn+1

Kn
k3
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+ In+1

In
η k4 + Kn+1

Kn
η k4 + 16

In+1

In
η n2 − 16

In+1

In
η n4 − 8 η k n2 + 8 η k n3 + 2 η k3 n

− 4
In+1

In

Kn+1

Kn
k n3 − 4

In+1

In
η k2 n + 4

Kn+1

Kn
η k2 n − 2

In+1

In

Kn+1

Kn
η2 k3 − 4

In+1

In
η k2 n2

+ 4
In+1

In
η2 k2 n − 4

Kn+1

Kn
η k2 n2 − 4
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Kn
η2 k2 n + 4

In+1

In

Kn+1

Kn
k n + 4

Kn+1

Kn
η2 k2 n2

− 8
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η k n + 4
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. (B16)
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