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Oscillations of a flexible filament under surface gravity waves
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This paper reports an experimental and theoretical investigation of the hydrodynamic
interaction of a deformable structure with gravity waves. High-speed imaging and particle
image velocimetry measurements were employed to analyze the oscillation characteristics
of a cylindrical filament placed transversely in the flow generated due to gravity waves in
a water channel. Based on the Euler-Bernoulli equation, we derive and solve a theoretical
model to predict the oscillation dynamics of the elastic structure in two limiting cases:
the inertia-dominated regime and drag-dominated regime. In the inertia-dominated regime
the system exhibits resonance, while the frequency response of oscillations in the drag-
dominated regime shows no resonance. Our results from experiments carried out on aquatic
plants and silicone rubber fibers further corroborate the findings from the model in the
inertialess regime. The quality factor of the oscillation response is used to explain the
absence of resonance in the drag-dominated regime. We also address the question as to
when the inertial effects can be neglected from the analysis.
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I. INTRODUCTION

Flexible structures embedded in a relatively moving fluid are encountered in many applications,
e.g., the paper industry [1], energy harvesting [2], and processing of composite materials [3]. In
nature, the basilar membrane in the inner ear [4], cilia in the mammalian trachea [5], and bioloco-
motion [6] are a few examples. Understanding the complex multiscale nonlinear coupling between
compliant biological structures and fluid motion is key to describing the underlying biophysical
phenomena. For instance, vegetation plays a major role in the generation of wind turbulence [7],
and in turn, wind affects the plant growth via inducing external mechanical forces on the plant [8]
and the dynamics of seed dispersal [9].

Coupled dynamics of elastic-fluid systems has been the topic of many studies. Zhang et al. [10]
observed that the response of an elastic filament embedded in a flowing soap film becomes unstable
as the filament length is increased. Shelley et al. [11] studied the flapping behavior of a flaglike body
in a water tunnel flow. Eloy et al. [12] investigated the flow-induced instability of a flexible plate
in a wind tunnel. The results of Jung et al. [13] show that the wake structure behind an oscillating
elastic loop in a fast-flowing soap film is akin to that of an oscillating bluff body. The flapping
instability observed in these studies is a manifestation of the complex interplay among pressure
forces, structural inertia, and rigidity.

A particular example of biological structures interacting with wavy fluid motion is aquatic
plants, e.g., macrophytes (submergent, emergent, or floating water plants). They are vital to the
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aquatic ecosystem, because they act as a habitat and food and oxygen source for fishes and aquatic
insects. The relative motion of the water exerts fluid stresses on the plants, especially for sessile
plants, causing hydrodynamic forces to act on the plant. The plant, in turn, makes morphological
adaptations to decrease the drag force to avoid its uprooting [14]. Motivated by such applications, a
number of recent studies have investigated the oscillations of elastic structures, induced by unsteady
fluid flow. The flexible structures studied include blades [15,16], rectangular filaments [17], or
flexible aquatic plants [18]. In experiments, the unsteady flow could be realized by support vibration
of the structure [16], using wave generators [15,17] or in natural aquatic systems [18].

Luhar and Nepf [15] proposed that plant movement in a wave-induced unsteady flow is governed
by the following two dimensionless parameters: (1) Cauchy number, Ca (ratio of the hydrodynamic
forcing to the restoring elastic force), and (2) the ratio of blade length to the wave orbital excursion,
L̃. They showed that for Ca < 1 (stiff stem), the plant exhibits oscillatory movement. On the other
hand, for Ca > 1 (flexible stem), plants tend to bend, leading to reduction in flow resistance. For
L̃ > 1 (small wave excursions), plants exhibit a swaying motion, while the opposite regime of
L̃ < 1 (large excursions) leads to canopy flattening. Leclercq and de Langre [16] investigated the
reconfiguration and the resulting internal stress of two-dimensional polymer blades in a flow field
that is sinusoidally varying in time but spatially uniform. They delineated four different kinematic
regimes of the structure response, depending on the amplitude and frequency of the oscillating flow
relative to the dimensions and the natural frequencies of the blade, respectively. The internal stresses
were observed to reduce in the drag-dominated region (when the drag dominates the fluid inertia).
They also discussed the resonant excitation of the blade in fluid inertia-dominated regime, in the
absence of the structural inertia. Mullarney and Henderson [18] developed a theoretical model based
on Euler-Bernoulli formulation of a cantilever beam to analyze the motion of single stem vegetation
and tested the model with motion of the sedge Schoenoplectus amaricanaus in natural salt marshes.
They estimated that wave height attenuation due to flexible vegetation is nearly 30% of that due to
rigid stem vegetation.

However, many of these works focus on investigating the hydrodynamic forces induced on the
structure and the effect of fluid-structure coupling on the flow field itself. The goal of the present
study is to investigate the interaction of surface gravity waves with cylindrical filaments and single-
stem aquatic plants and address the possibility of resonant excitation. The major contribution of the
present work is a theoretical model that describes the dynamics of a deformable cylindrical fiber
fixed transversely in a flow field which exhibits single-tone periodicity in both space and time. We
predict the response of the fiber in two limits: the inertialess (drag-dominated) oscillations and the
inertia-dominated oscillations. Note that the resonance discussed here is due to structural inertia
and not due to fluid inertia as in Ref. [16]. Also, Mullarney and Henderson [18] consider a random
velocity field existing in a natural salt marsh and do not discuss resonance. In the inertialess regime,
the amplitude of the fiber remains bounded (even in the absence of structural damping), precluding
the existence of resonant oscillations. In the inertialess regime, the theoretical results are validated
numerically and by experiments carried out on aquatic plants and synthetic fibers submerged in a
surface gravity wave flow field generated in a water channel. High-speed imaging and particle image
velocimetry (PIV) techniques were used to analyze the filament dynamics and fluid velocity field.
Waves at different frequencies, wave numbers, and amplitudes were generated.

II. EXPERIMENTAL SETUP

A water channel (1500 mm long, 240 mm wide, and 240 mm high) made of glass sheets was
equipped with a rectangular wave-generator plate at one end. The frequency and amplitude of
the stroke of the plate was controlled using a servo-actuator [see Fig. 1(a)]. The rotary motion
of two Nema 17 motors, each having a holding torque of 4.2 kgcm, was converted to reciprocating
motion of the wave generating using a rack and pinion arrangement. A damper, made of stone
pellets, was installed at the other end of the tank to minimize the wave reflections, ensuring the
generation of traveling surface waves. The flexible filament of length L = 12 cm and diameter
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FIG. 1. (a) Schematic of the experimental setup showing the water channel with the wave generator.
(b) Photographs of the aquatic plant (left), aquatic plant without leaf (center), and silicone rubber fiber (right).
The microscopic images of their respective cross sections are provided at the bottom. (c) Experimental image of
silicone rubber fiber submerged under the water wave. The equations of the wave profile and the displacement
of the fiber tip and the various parameters of the problem are shown. Inset and the bottom image show the
binary images of the fiber tip and water wave, respectively, obtained after thresholding the original images. (d)
FFT spectrum of the displacement of the tip of the fiber (blue solid curve) and the height of the water wave
(red dashed curve). Insets show the corresponding time-series data. Since the amplitude and frequency of the
oscillations are of interest, the data are measured from arbitrary reference points in the image. � = 18.38 rad/s,
k = 29.42 m–1, A = 8.03 mm.

d = 2.90 mm was fixed at the center of the tank vertically. Experiments were carried out on silicon
rubber fibers (density, ρ ≈ 800 kg/m3; Young’s modulus, E ≈ 2.9 × 105 ± 1.1 × 105 N/m2) and
one specimen of the aquatic plant, Bacopa caroliniana (ρ ≈ 750 kg/m3, E = 7.51 × 106 Pa [19]).
They are referred to as simply fiber and plant, respectively, hereafter. The Young’s modulus for the
fiber was measured by conducting tensile tests on the specimens. Bacopa caroliniana [see Fig. 1(b)]
is an aquatic plant found in marshy areas in the southern region of the United States and the southern
region of Korea.

A high-speed camera (Phantom v7.3) acquired the images of the water wave and the fiber motion
at 250 frames per second. Image analysis was carried out using in-house MATLAB scripts to
determine the displacement of the fiber and water wave features such as wave number (k = 2π/λ;
λ is the wavelength), angular frequency (� = 2π f , with f denoting the frequency), and amplitude
(A). Each grayscale frame of the videos captured was converted to a binary image using a gray
threshold [see Fig. 1(c)]. The MATLAB scripts extract the time-series data of the desired parameters
from consecutive frames of the video. Images were captured at a spatial resolution in the range
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TABLE I. Experimental and theoretical results for the silicone rubber fiber.

Exp. no. � (rad/s) k (1/m) A (mm) L (m) H (m) aExp(mm) aTheory (mm)

1 14.99 24.15 7.57 0.12 0.17 3.82 1.80
2 12.60 16.88 7.40 0.12 0.17 5.89 3.12
3 14.73 18.45 12.44 0.12 0.17 4.34 4.77
4 16.10 21.47 16.42 0.12 0.17 4.08 4.98
5 16.75 25.28 7.21 0.12 0.15 2.05 2.71
6 19.86 34.46 7.21 0.12 0.15 2.20 1.70
7 15.01 21.49 9.07 0.12 0.15 5.39 4.21
8 18.38 32.15 5.10 0.12 0.15 2.51 1.33
9 14.89 19.56 13.33 0.12 0.15 6.92 6.97
10 16.16 23.85 10.49 0.12 0.15 5.26 4.29
11 14.40 20.38 5.75 0.12 0.15 3.70 2.80
12 16.67 25.08 9.05 0.12 0.15 1.79 3.45
13 19.83 35.17 8.16 0.12 0.15 1.75 1.86
14 14.99 20.11 15.30 0.12 0.15 4.85 7.74
15 18.38 29.91 7.89 0.12 0.15 2.06 2.33
16 14.86 19.81 11.70 0.12 0.15 6.21 6.01
17 19.31 33.82 7.15 0.12 0.15 2.21 1.74
18 16.06 23.39 12.43 0.12 0.15 4.03 5.21
19 19.41 39.28 5.73 0.125 0.15 2.17 1.28
20 16.33 29.52 6.87 0.125 0.15 2.89 2.36
21 13.56 23.18 7.09 0.125 0.15 5.50 3.32

of 3.5 × 10−5 to 4.9 × 10−4 m/pixel for measuring the tip deflection. However, for wave surface
elevation, the experiments had to be recorded at spatial resolution in the range of 2.9 × 10−4 to
4.9 × 10−4 m/pixel, in order to obtain a bigger field of view.

Instantaneous 2D velocity field of the fluid, U (x, y, t ) ≡ uî + v ĵ, was measured using the PIV
technique. Here î represents the unit vector in the x direction (direction of traveling wave) and ĵ
represents that in the y direction (measured from the bottom of the liquid layer). The fluid (water)
was seeded with silver-coated neutrally buoyant tracer particles (diameter 14 μm), and the vertical
longitudinal plane (field of view 228.8 mm × 228.8 mm) containing the fiber was illuminated
using a double-pulsed Nd-YAG laser (pulse frequency 15 Hz). A charge-coupled device camera
(resolution 2048 × 2048 pixels) recorded the particle images. Subsequently, the fluid velocity
field was obtained using INSIGHT 4G (TSI Inc.) PIV software with interrogation windows of
104 pixels × 104 pixels. The average wavelength of the surface wave observed in the experiments
is of the order of 10 cm, which is much larger than the capillary length scale. Hence, the waves
observed in the present study are indeed gravity waves [20]. Experiments were carried out with
different values of λ, �, A and the height of the water layer H . Experimental conditions and results
are presented in Tables I and II.

The range of the parameters was selected so that linear, travelling, sinusoidal gravity waves could
be realized in the experiments, as shown in Fig. 1(c). In order to ensure that the waves are linear,
only waves with A/H < 0.10 are considered. However, very low wave amplitudes were avoided as
they resulted in insignificant response of the fiber. Also note that since A

L < 1 in our experiments,
according to the amplitude-frequency space of [16] the fiber response is expected to be in the
static reconfiguration regime. The data acquisition was started after the transients have decayed.
In the steady-state conditions, the filament was observed to oscillate in its first mode. Fast Fourier
transform (FFT) spectra of the measured water wave height and the displacement of the free tip of
the fiber show that both data have exactly the same dominant frequency [see Fig. 1(d)]. This implies
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TABLE II. Experimental and theoretical results for the plant.

Exp. no. � (rad/s) k (1/m) A (mm) L (m) H (m) aExp(mm) aTheory (mm)

1 16.72 23.23 6.16 0.12 0.15 2.57 2.61
2 19.97 34.03 5.25 0.12 0.15 3.83 1.27
3 15.06 22.56 8.75 0.12 0.15 3.76 3.85
4 12.50 19.08 4.15 0.12 0.15 3.28 2.17
5 18.44 29.47 7.00 0.12 0.15 3.38 2.13
6 14.70 21.76 11.00 0.12 0.15 5.32 5.06
7 19.32 37.07 9.16 0.12 0.15 3.45 1.92
8 16.20 25.59 10.31 0.12 0.15 4.15 3.85

that the oscillatory velocity field induced by the traveling water wave exerts a periodic force on the
filament, and thus the filament can be modeled as a forced harmonic continuous system.

III. THEORETICAL DISCUSSION

The fiber deflection in the transverse direction X (y, t ), where y ε [0, L], is modeled as a cantilever,
using the Euler-Bernoulli beam equation. Balancing the inertial, Froude-Krylov [15], added-mass,
elastic, buoyancy, and drag forces acting per unit length of the filament we get

(ρs + ρ f )Ã
∂2X

∂t2
− ρ f CmÃ

∂Ur

∂t
= −EI

∂4X

∂y4
− (ρ f − ρs)gÃ

∂X

∂y
+ CDρ f r

2
utip

(
u − ∂X

∂t

)
. (1)

Here ρs is the density of the filament material, ρ f is the fluid density, Ã is the cross-sectional area
of the fiber, Cm is the added mass coefficient, Ur is the relative velocity of the fluid with respect to
the fiber, E is Young’s modulus of the fiber material, I = πd4/64 is second moment of area of the
fiber, CD is the drag coefficient, r is the radius of the fiber, and d is the diameter of the fiber. Since
the cross section of the plant is observed to be not fully solid [see Fig. 1(b)], the second moment of
the area for the plant was calculated numerically from the microscopic images. The linearized drag
term (last term) is similar to that used in Ref. [18], except that the characteristic velocity is taken
as the maximum fluid velocity at the tip of the fiber, utip. The average Reynolds number (based on
fiber diameter and utip) observed in the experiments is of the order of 100, and hence we put CD = 3
[18,21]. Axial tension in the beam is neglected, as the major motion is in the transverse direction
and buoyancy is found to be negligible (shown later).

u in Eq. (1) is taken to be that of the potential flow velocity field induced in a layer of fluid due to
the surface gravity wave, described by y = H + A cos(kx−�t ), where y is from the bottom of the
liquid layer and H is the depth of the liquid layer. This represents a wave traveling in the positive x
direction, and in the limit of small A/H (i.e., linear wave), it can be shown that [20]

u = A� cosh(ky) cos(kx − �t )

sinh(kH )
. (2)

Also note that utip = A� cosh(kL)
sinh(kH ) . The potential flow approximation is justified, because the viscous

effect is dominant within a fluid layer of thickness δv near the bottom wall of the tank [20]. The
thickness of the Stokes layer δv ∼ √

ν
�

, where ν ∼ O(10−6 m2/s) is kinematic viscosity of the fluid,
and � ∼ O(10 s−1) is the wave frequency. Thus δv ∼ O(10−2 m), which is small compared to H ;
thus, most of the fluid layer thickness may be assumed to be in the inviscid region. The comparison
of PIV measurements with the potential flow results further confirm this [see Fig. 2(c)].

Another critical assumption involved is that the interaction between the fluid and fiber is modeled
using a one-way-coupling approach. In other words, the fluid flow field affects the fiber, but not vice
versa, due to the small size and deflection of the fiber. This is corroborated by the PIV measurements,
showing that the velocity field around the fiber agrees reasonably well with the theoretical one [see
Fig. 2(a) vs Fig. 2(b)]. Further, absence of any noticeable vortex shedding around the fiber shows that
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FIG. 2. (a) Instantaneous 2D velocity field and streamlines measured using PIV technique. � = 15.01
rad/s, k = 21.49 m–1, A = 9.07 mm. The camera was focused on the vertical plane containing the fiber. For
clarity, the surface wave and the fiber (the vertical magenta line at x ≈ 100 mm) at the same instant have been
superimposed. (b) Corresponding velocity field and streamlines predicted by the theory. The color map shows
the magnitude of velocity in units of m/s. (c) Comparison of experimental and theoretical flow velocity profiles
at different times at a fixed x. � = 15.01 rad/s, k = 21.49 m–1, A = 9.07 mm (d) Comparison of theoretical
wave number vs experimental wave number.

the presence of the fiber does not disturb the velocity flow field. The time-series data of measured
and predicted velocities at a fixed point in the flow field [see Fig. 2(c)] further corroborate the fact
that the experimentally realized velocity field agrees with the theoretical velocity field induced by
the gravity wave. An additional check is possible by comparing the measured wave number with
the theoretical wave number predicted by the dispersion relation for gravity waves given by

� =
√

gk tanh(kH ). (3)

For all the experiments performed, tanh(kH ) ≈ 1, i.e., the waves are deep-water waves. There-
fore, the above formula can be further simplified to �2 = gk, which enables us to predict the
theoretical values of k for the different set of experiments. The comparison is presented in Fig. 2(d).

We use L, 1/�, L� as the characteristic scales for length, time, and velocity to nondimensionalize
the beam equation as

ρ̄
∂2X ∗

∂t∗2 − ρ̃

(
∂u∗

∂t∗ − ∂2X ∗

∂t∗2

)
= −∂4X ∗

∂y∗4 − ḡ
∂X ∗

∂y∗ + μ̄

(
u∗ − ∂X ∗

∂t∗

)
, (4)
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where ρ̄ = (ρs + ρ f ) ÃL4�2

EI , ρ̃ = ρ f Cm
ÃL4�2

EI , ḡ = (ρ f − ρs) gÃL3

EI , and μ̄ = CDρ f r�L4utip

2EI , representing
the nondimensional inertia with Froude-Krylov, added mass, buoyancy, and drag forces, respec-
tively. The asterisk superscript on a variable indicates the corresponding dimensionless variable.
Note that the nondimensional group, μ̄, has been identified in previous studies. Its definition is
qualitatively similar to the Cauchy number described by Leclercq and de Langre [16], the inverse
of dimensionless stiffness defined by Mullarney and Henderson [18], and CaL̃ of Luhar and Nepf
[15]; the exact expression is different due to the differences in the geometry of the structure and in
the velocity scales employed in the present study.

IV. RESULTS AND DISCUSSION

A. Comparison of viscous theory and experiment

For the present experiments, ρs ∼ O(103 kg/m3), ρ f ∼ O(103 kg/m3), Ã ∼ O(10–6 m2), � ∼
O(10 s–1), L ∼ O(10–1 m), E ∼ O(105 N/m2), I ∼ O(10–12 m4), and Cm ∼ O(1) [15]. Thus, ρ̄

μ̄
∼

O( r
A ) ∼ O(0.1), indicating that in the present simplified model, we can neglect the inertia term

(including Froude-Krylov force), the effect of which will be discussed later. Note that μ̄

ρ̄
can be

considered as the equivalent Keulegan-Carpenter number [22] in the problem. Further, ρ̃

μ̄
∼ O(0.1)

and ḡ
μ̄

∼ O(0.001); hence we can neglect the added mass effect and buoyancy term from Eq. (4) to
obtain

μ̄
∂X ∗

∂t∗
= −∂4X ∗

∂y∗4 + μ̄u∗ = −∂4X ∗

∂y4
+ μ̄

A∗ cosh (k∗y∗) cos (k∗X ∗ − t∗)

sinh (k∗H∗)
. (5)

The boundary conditions are X ∗(0, t∗) = 0, ∂X ∗
∂y∗ (0, t∗) = 0, ∂2X ∗

∂y∗2 (1, t∗) = 0, ∂3X ∗
∂y∗3 (1, t∗) = 0. The

first two conditions describe the zero-deflection and zero-slope conditions at the fixed end of the
beam, while the last two conditions describe the zero shear force and bending moment condition
at the free end of the beam. The problem is solved by using the finite difference method with the
zero deformation initial condition. An analytical solution is possible by assuming that the transverse
deflection X ∗ is small, so that in the last term in Eq. (5) we can use the following approximation:

cos(k∗X ∗ − t∗) ≈ cos(t∗). (6)

The validity of this assumption will be examined later. Thus, we have

μ̄
∂X ∗

∂t
+ ∂4X ∗

∂y∗4 = F (y∗) cos(t∗), (7)

where F (y∗) = μ̄
A∗ cosh(k∗y∗ )

sinh(k∗H∗ ) .
The associated homogeneous boundary value problem admits a separable solution of the form∑∞
j=1 Yj (y∗)Tj (t ), where Yj (y∗) represents the jth mode shape of the transverse vibration of the

beam and can be derived as (see Ref. [23] or the appendix of Ref. [18])

Yj (y
∗) = [sin η jy

∗ − sinh η jy
∗ + Dj (cos η jy

∗ − cosh η jy
∗)]. (8)

Here Dj = cos η j+cosh η j

sin η j−sinh η j
and the eigenvalue η j satisfies the characteristic equation

cos(η j ) cosh(η j ) = −1. The first root of this equation is η1 = 1.875.
Subsequently we seek the harmonic response solution to Eq. (7) of the form

X ∗
V (y∗, t∗) = Re

[ ∞∑
j=1

CjYj (y
∗)eit∗

]
, (9)

where i is the complex unit and Re[·] denotes the real part, and the subscript V denotes that it is a
viscous-dominated solution. Substituting this ansatz into Eq. (7) and using orthogonality properties
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FIG. 3. (a) Instantaneous positions of the filament, as predicted by the theory [Eq. (11)] and numerical
solution of Eq. (7), at different time instants in a steady-state oscillation cycle. T denotes the time period of
oscillation. � = 16.66 rad/s, k = 24.66 m–1, A = 9.2 mm. (b) Response curve (numerical and theoretical) for
drag-dominated oscillation at k = 35 m–1, A = 10 mm. (c) Parity plot between the experimentally observed
filament tip amplitude and the corresponding theoretical prediction. See Tables I and II for the data. The
error bars on the experimental values represent two times the spatial resolution employed, while those on
the theoretical results indicate the variation due to uncertainties in the measured wave amplitude and wave
number.

of the eigenfunctions [23], we get

Cj = 1

(iμ̄ + η j
4)

×
∫ 1

0 [F (ξ )Yj (ξ )]dξ∫ 1
0 Yj (ξ )2dξ

(10)

with ξ denoting the dummy variable of integration. Since only the first mode of vibration ( j = 1) is
observed in the experiments, we finally have the solution given by

X ∗
V (y∗, t∗) =

∫ 1
0 F (ξ )Y1(ξ )dξ∫ 1

0 Y1(ξ )2dξ
× Y1(y∗)√

(η1
8 + μ̄2)

cos (t∗ − θ ), (11)

where θ = tan−1( μ̄

η1
4 ).

Figure 3(a) presents the instantaneous positions of the filament predicted by the theory [Eq. (11)]
for a typical case. The numerical solution of Eq. (7) is also presented for comparison, showing that
the theory is able to capture the evolution of the filament oscillations fairly accurately. Subsequently,
Fig. 3(b) presents a typical response curve of the filament, where we have used the ratio of the
amplitude of oscillation of the free end of the filament to the wave amplitude, i.e., a

A , as a measure of
response. The excitation frequency, � on the abscissa is normalized using the first natural frequency
of the cantilever, which will be derived later. Though natural frequency of the beam is irrelevant
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in the inertialess limit, we use it for normalization to demonstrate the absence of resonance. The
numerical and theoretical results agree fairly well with each other, except at large amplitudes of
response. This is expected, as the assumption leading to Eq. (6) is valid only at small deflections.
Note that the amplitude plateaus at large driving frequencies, which is expected due to the diffusion-
like (as opposed to wavelike) nature of Eq. (7).

Since the experiments are carried out at small amplitudes, either theoretical or numerical results
can be compared with the experiments to verify the model. Figure 3(c) shows the parity plot between
the experimentally measured oscillation amplitude of the free end of the filament and the theoretical
prediction [Eq. (11)]. Experimental results on fiber as well as plants are included in the plot. It can
be concluded that the model provides a reasonably accurate prediction of the oscillation dynamics
of the filament. It is worth mentioning that the model involves no fit parameters. Yet the majority
of the data points lie within a tolerance of ±20%. A potential source of error, besides the neglect
of inertia term, is the uncertainty in CD, which is assumed to be a constant (corresponding to a
smooth nonoscillating cylinder in cross-flow). However, in the literature there exists a number of
correlations for CD in terms of the Reynolds number, specifically for moving vegetation [24,25]. The
other sources of error include experimental error in the determination of Young’s moduli, possible
inhomogeneity in the modulus of the aquatic plant, and usage of the linearized Euler-Bernoulli
equation. Note that due to the uncertainty in determining the moment of inertia of the original
specimen, we perform experiments on the plant after removing the leaves, as shown in Fig. 1(b).

B. Response of the fiber in other regimes

We turn now to discuss the inviscid forced oscillations of the fiber, i.e., Eq. (4) in the limit of
μ̄ → 0. The resulting equation can be solved (by the same procedure as explained above) to get

X ∗
I (y∗, t∗) =

∫ 1
0 P(ξ )Y1(ξ )dξ∫ 1

0 Y1(ξ )2dξ
× Y1(y∗)

(η1
4 − ρ̂ )

sin (π + t∗), (12)

where P(ξ ) = ρ̃
A∗ cosh(k∗ξ )
sinh(k∗H∗ ) and ρ̂ = ρ̄ + ρ̃, which represents the combined effect of inertia and

added mass. Clearly the solution exhibits resonance when η1
4−ρ̂ = 0, or equivalently � = ω1, the

fundamental natural frequency of the system given by

ω1 = η1
2

√
EI

(ρs + (1 + Cm)ρf )ÃL4
. ((13)

For the 0.12-m-long fiber considered in the present study, f1 = ω1
2π

= 0.3 Hz.
We also present the solution of Eq. (4) by neglecting only the buoyancy term. Thus Eq. (4) can

be rewritten as

ρ̂
∂2X ∗

∂t∗2 + μ̄
∂X ∗

∂t∗ + ∂4X ∗

∂y∗4 = μ̄u∗ + ρ̃
∂u∗

∂t∗ . (14)

For small deflections [i.e., using Eq. (6)] the solution is

X ∗
T (y∗, t∗) =

∫ 1
0 F (ξ )Y1(ξ )dξ∫ 1

0 Y1(ξ )2dξ
× Y1(y∗)√

[(η1
4 − ρ̂ )2 + μ̄2]

cos (t∗ − α)

− ρ̃

μ̄

∫ 1
0 F (ξ )Y1(ξ )dξ∫ 1

0 Y1(ξ )2dξ
× Y1(y∗)√

[(η1
4 − ρ̂)2 + μ̄2]

sin (t∗ − α), (15a)

where α = tan−1[ μ̄

(η1
4−ρ̂ ) ]. The first term on the right-hand side of Eq. (15a) is the response to the

viscous forcing, μ̄u∗, and the second term is the response to the added mass forcing, ρ̃ ∂u∗
∂t∗ . The
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FIG. 4. Transfer function vs frequency ratio at different μ̄. (a) ρ̃ = 0.1, (b) ρ̃ = 100.

total response is given by the superposition of these two responses. Equation (15a) can be further
simplified as

X ∗
T (y∗, t∗) =

∫ 1
0 F (ξ )Y1(ξ )dξ∫ 1

0 Y1(ξ )2dξ
× Y1(y∗)√

[(η1
4 − ρ̂ )2 + μ̄2]

√
μ̄2 + ρ̃2

μ̄
cos (t∗ − α + β ), (15b)

where β = tan−1[ ρ̃

μ̄
]. This solution precludes the existence of sharp resonance for any finite value

of μ̄. In order to elucidate this point further we define a transfer function for the system response
using Eq. (13) as follows:

G(μ̄, γ ) = Amp[X ∗
T (y∗ = 1, t∗)]∫ 1

0 F (ξ )Y1(ξ )dξ
= 1∫ 1

0 Y1(ξ )2dξ
× Y1(y∗ = 1)√

[(η1
4 − ρ̂ )2 + μ̄2]

√
μ̄2 + ρ̃2

μ̄
, (16)

where Amp[·] denotes the amplitude of [·]. Note that from Eq. (13), we can express ρ̂ in terms of
ratio of the wave frequency to the natural frequency, γ = �

ω1
as

ρ̂ = η1
4γ 2. (17)

Subsequently Eq. (16) can be rewritten as

G(μ̄, γ ) = 1∫ 1
0 Y1(ξ )2dξ

× Y1(y∗ = 1)√
η1

8(1 − γ 2)2 + μ̄2

√
μ̄2 + ρ̃2

μ̄
. (18)

The transfer function vs the frequency ratio at different values of μ̄ and ρ̃ is shown in Fig. 4.
First, it can be observed that increasing the added mass effect leads to an enhanced response of the
fiber at a given μ̄. On the other hand, increasing μ̄ at a given ρ̃ leads to a diminished response, as
expected. In the present experiments, ρ̃ ≈ 70–800. For a representative value of ρ̃ = 100, as can be
seen from Fig. 4(b), for the values of μ̄ corresponding to the present experiments (μ̄ = 150–850)
the resonance is almost inexistent. It also shows that since the experimental oscillations are in the
viscous-dominated regime, there is no possibility of resonance. On the other hand, at very low μ̄,
say, at μ̄ = 0.01 the resonance is very sharp. From Eq. (12), it can be shown that at μ̄ = 0 the
transfer function is unbounded at the resonance.

This behavior of the response curve can be further corroborated through the estimation of the
quality factor (Q-factor). In order to define the Q-factor we look at the unforced system, namely,
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FIG. 5. Q-factor [Eq. (21)] and error vs ρ̂

μ̄
.

Eq. (14) with u∗ = 0 to obtain

ρ̂
∂2X ∗

∂t∗2 + μ̄
∂X ∗

∂t∗ + ∂4X ∗

∂y∗4 = 0. (19)

Substituting the product solution Y1(y∗)T1(t∗), we obtain

ρ̂
d2T1

dt∗2 + μ̄
dT1

dt∗ + η1
4T1 = 0. (20)

Subsequently, the Q-factor of the system can be defined by drawing analogy of the above
equation with a spring-mass-damper system [23] as follows:

Q =
√

ρ̂η1
4

μ̄
. (21)

The Q-factor is a measure of the damping of the fiber oscillation and is related to the sharpness
of the spectral response of the oscillating fiber. The Q-factor as a function of ρ̂

μ̄
is plotted in Fig. 5.

In the inertia-dominated regime (at large values of ρ̂

μ̄
), the Q-factor is very large indicating a sharp

resonance peak as can be seen in Fig. 4. On the other hand, in the viscous dominated regime (at
small values of ρ̂

μ̄
), we observe a very low Q-factor and hence no discernible peak in the response

curve, as seen in Fig. 4.
Using the in-field experimental conditions used in [18], viz., CD = 3, ρ f = 910 kg/m3, r =

0.0025 m, f = 1.5 Hz, L = 0.8 m, utip = 0.2 m/s, E = 3.9 × 108 Pa, we get μ̄ = 220. This im-
plies that in real-world situations, the oscillations of aquatic plants are in the viscous-dominated
regime. μ̄ = 220 falls within the range of experimental conditions of the present study, as can be
seen in Fig. 4(b). Hence, our results show that the oscillations of sessile aquatic plants in nature,
driven by wavy fluid flow, can never exhibit a resonance-like response. We expect their response
curve to be similar to the curves corresponding to μ̄ in our experiments in Fig. 4. Moreover, while
the viscous forces generate drag on such biological structures, Eq. (15) clearly shows that the same
viscous forces cause a reduction in the amplitude of the oscillation of the structures. Note that the
structural damping is not considered in our model, which further aids in damping the response
and thus decreasing the Q-factor. It is worth mentioning that in real-world situations, the actual
excitation could be random, as shown in [18]. However, since the oscillations are linear, the transfer
function given by Eq. (18) can be easily extended to predict the response to such a broad-band
excitation.

Finally, we estimate the error induced by neglecting inertia and/or added-mass terms in the
analysis, which has usually been done in many previous studies (e.g., Refs. [11], [18], and [26]). The
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error, which is defined as the relative change in viscous solution [Eq. (11)] from the total solution
[Eq. (15b)], is given by

ε = |Amp[X ∗
V (y∗ = 1, t∗)] − Amp[X ∗

T (y∗ = 1, t∗)]|
Amp[X ∗

T (y∗ = 1, t∗)]
× 100%. (22)

Figure 5 shows the error vs ρ̂

μ̄
and shows that ρ̂

μ̄
≈ 0.1 causes an error of 1%. This criterion

could serve as a guideline for the future studies to justify the use of a viscous-dominated theory.
For instance, for the conditions used in [18], ρ̂

μ̄
∼ O(0.1), which justifies those authors’ analysis

omitting inertial effects.

V. CONCLUDING REMARKS

In conclusion, the oscillation of a filament induced by a surface gravity wave is studied exper-
imentally and theoretically. We observe that the filament acts as a continuous system undergoing
harmonic oscillation driven by the oscillating fluid flow field. An extended Euler-Bernoulli beam
model is solved numerically and theoretically. For a wide range of parameters (such as wave
frequency, wave number, amplitude, and fluid layer height), the model agrees with experiment
both qualitatively and quantitatively, without any fit parameters. The results reveal the absence of
resonance in the drag-dominated regime. The response of the fiber with the inclusion of inertia
effects is also presented. Based on the in-field experiments carried out in [18], we conclude that
oscillation of aquatic plants in real flow scenarios is viscous-dominated and hence cannot exhibit a
sharp resonance. The Q-factor of the frequency response of the oscillations further elucidates this
point. We also quantified the error incurred in neglecting inertia terms from the analysis. This will
help future studies to determine whether the inertia can be neglected. We also observe from the
theoretical results that the added mass effect tends to enhance the system response. We hope that
our results will contribute to a better understanding of the survival pathways of aquatic plants.
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