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Spatiotemporal evolution of evaporating liquid films sheared by a gas
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We study the spatiotemporal evolution of an evaporating liquid film sheared by a gas
considering both inertial and thermal instabilities, the latter arising from a combination of
evaporation and Marangoni effects. The shearing gas is modeled by imposing a constant
shear stress applied along the liquid’s interface. Following in the footsteps of Joo et al.
[S. W. Joo et al., J. Fluid Mech. 230, 117 (1991)], long-wave theory is used to derive a
Benney-like equation governing the temporal evolution of the liquid interface under the
effects of inertia, hydrostatic pressure, surface tension, thermocapillarity, evaporation, and
gas shear. Linear stability theory is used to investigate the temporal and spatiotemporal
characteristics of the flow, where it is found that the evaporation of the film promotes
absolute instabilities and can cause convective-absolute transitions of the perturbations.
It is also found that a strong enough counterflowing shearing gas can suppress the in-
ertial instability, commonly known as the H mode, affirming similar conclusions found
by previous studies for a strongly confined isothermal film. Additionally, our temporal
stability analysis indicates that the thinning of the film reduces the phase speed of thermal
perturbations, due to the increasing dominance of viscosity. However, our spatiotemporal
analysis shows that the thinning of the film actually results in the growth of additional
modes with higher group velocities resulting in faster contamination of the flow field.
Moreover, the interface evolution equation is solved numerically to (i) simulate the film’s
interface evolution subject to finite perturbations and (ii) compare to the results of the
linear stability analysis. We find qualitative agreement between the temporal dynamics of
the linear and nonlinear instabilities. Our subsequent numerical nonlinear spatiotemporal
stability analysis demonstrates that for weaker thermal instabilities, the wave-front dy-
namics are imposed by the nonlinearly saturated wave packet, while for stronger thermal
instabilities, the wave-front dynamics are dictated by the linear dispersion relationship.
We also study the effects of the dimensionless parameters on the rupture location and the
time it takes for the fluid film to rupture. Finally, the shear stress’s effect on the rupture
mechanics of the film is studied using self-similarity analysis, where we identify the fate
of the evolution equation’s solutions.
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I. INTRODUCTION

Liquid films are utilized across a wide range of technologies, including rocket engine noz-
zle protection, the cooling of electronics, coating processes, and postcombustion carbon dioxide
capture. In numerous applications the liquid film is volatile and subject to a shearing gas such as
in distillation columns [1], structured packings [2], gas scrubbers [3], and airblast atomizers [4].
The spatiotemporal evolution of the liquid films’ interfaces is tied directly to the performance and
efficiency of the systems they are in; for instance, a shear instability akin to the Kelvin-Helmholtz
type has been shown to be the mechanism by which the fluid interface is initially destabilized in
airblast atomization devices [5]. Consequently, the evolution of a liquid film’s interface has garnered
significant attention, particularly investigating the domains for which it is stable or unstable to
disturbances by means of stability theory. The importance of these studies is further enhanced by the
fact that they can shed light on the origins of turbulence in liquid films since some finite turbulent
structures can be traced back to specific linear instabilities [6].

The dynamics of thin liquid films has been studied extensively since the early pioneering
theoretical and experimental work of Kapitza [7,8], who first identified the hydrodynamic instability
mode known as the Kapitza mode or H-mode instability. These early works on isothermal films were
followed by studies conducted by Benjamin [9] and Yih [10], who proved that a vertical liquid film
is always unstable to long-wave perturbations and identified the critical Reynolds number at the
onset of the instability. Benney [11] used a long-wave expansion to formulate a temporal evolution
equation accounting for the different forces governing the flow. The validity of this long-wave
approximation was significantly extended by Ruyer-Quil and Manneville [12,13] by integrating a
systematic gradient expansion with weighted residual techniques. Notably, Kapitza’s explanation of
the instability mechanism to be driven by the balance between viscous dissipation and the work of
gravity was erroneous and was corrected by Smith [14], who determined the instability mechanism
to be driven by inertia. Further arguments regarding inertia’s role were made by Kalliadasis et al.
[15] and Dietze [16].

Thermocapillary forces along with gravity were first considered by Sreenivasan and Lin [17] in a
linear stability study on a film flowing down an inclined surface held at a constant temperature. They
found that including the stabilizing effects of gravity resulted in a nonzero critical Marangoni num-
ber. Kelly et al. [18] later applied long-wave theory to find two critical Reynolds numbers associated
with the thermocapillary instability and the modified H-mode instability. This thermocapillary
instability was later classified into two distinct modes by Goussis and Kelly [19]. They identified
(i) the long-wave S-mode instability driven by changes in surface tension across the interface and
(ii) the short-wave P-mode instability driven by the interaction between the perturbation velocity
and the base state temperature gradient.

The study of the stability of fluid films was also expanded to include the effects of phase change.
Under some of the models developed, the evaporation of the liquid film is limited by the molecular
transfer rate, as determined by the divergence from thermodynamic equilibrium at the interface.
Studies focusing on this limiting case include that of Burelbach et al. [20], who investigated
the stability of evaporating and condensing films by formulating a one-sided evaporation model
decoupling the liquid and vapor dynamics and subsequently utilized long-wave theory to study the
effects of evaporation and condensation on the stability of the liquid film. This model was extended
by Joo et al. [21], who considered a flowing film subject to gravitational effects, but neglected
disjoining pressure forces. Both of these works found evaporation to be a destabilizing effect.
Recently, Mohamed and Biancofiore [22] derived the Orr-Sommerfeld system from the one-sided
model of Burelbach et al. [20] to investigate the evaporation-induced instability in falling liquid
films without the limitations of long-wave theory. They referred to the evaporative instability as the
E-mode; we use the terminology E mode herein. Other sophisticated one-sided evaporation models
focused on accounting for the interaction between evaporation effects and disjoining pressure forces,
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such as those developed by Ajaev and Homsy [23–25]. Following a similar approach, the contest
between the effects of weak phase change and dewetting in thin liquid films was examined by Ji and
Witelski [26], who observed the emergence of rich transient behavior encompassing the dynamics
of both uniform films and droplets. Other notable contributions to the stability of volatile films
include the work of Howison et al. [27], who investigated the problem of a nonhomogeneous fluid
consisting of a volatile solvent and a nonvolatile resin, e.g., a drying paint layer. They derived a
governing system of equations which accounted for variable solvent evaporation rates and solvent
diffusivity and which captured flow reversals and the appearance of perturbations in the flat layer
due to concentration gradients. Furthermore, Shklyaev and Fried [28] used a newly developed set of
interface boundary conditions [29] based on the balance of configurational momentum instead of the
conventional Hertz-Knudsen-Langmuir equation. On the other hand, the evaporation of the liquid
film can be limited by the diffusion rate into the neighboring phase due to the saturation of the layer
of gas immediately above the liquid interface, especially where there is no gas convection above
the liquid [30–32]. Sultan et al. [32,33] derived a general model accounting for both transfer-rate-
limited and diffusion-limited evaporation. Notably, they found evaporation in the diffusion-limited
case to actually be a stabilizing effect.

Accounting for the presence of a gas layer adjacent to the liquid film greatly increases the
complexity of the problem and due to its significant practical applications has been a subject of
particular interest. Early experimental works made in this regard include the works of Hanratty and
Engen [34], who demonstrated the various wave transitions in air-water flows, and Craik [35], who
detected waves which travel faster than the interface and others that travel slower than it in film
flows inside horizontal channels. More recently, O’Náraigh et al. [36] formulated a single equation
accounting for interfacial turbulence and found that the wave-induced Reynolds stresses do not
play an important role in the growth of interfacial waves. Dietze and Ruyer-Quil [37] formulated
a low-dimensional model based on a weighted-residual integral boundary layer approach to study
the interaction between the gas and liquid phases for horizontal pressure-driven and gravity-driven
liquid films, in the cases of both co- and counterflowing gas phases. Their model successfully
predicted the instability onset, phase speed, and growth rate in the long-wave limit. Lavalle et al. [38]
found that the effect of the counterflowing gas can be stabilizing or destabilizing or cause harmonic
changes in the cutoff wave number and temporal growth rate depending on the level of confinement
of the liquid film. Notably, they found that the H-mode instability can be completely suppressed by
a counterflowing gas given sufficient confinement. Due to the complexity of the coupled gas-liquid
problem, a common approach is to simplify the problem by imposing the gas stress at the liquid-gas
interface and solving for the liquid phase only. King et al. [39] considered a thin isothermal film
flowing down an inclined plane subject to a counterflowing steam of air. The shear stress applied
by the airflow onto the liquid interface was prescribed via a constant drag coefficient, while its
normal stress was variable and related to the constant shear stress by thin-airfoil theory. Moreover,
Sivapuratharasu et al. [40] considered the same problem and in similar fashion assumed the airflow’s
shear stress to be constant along the liquid interface but neglected its contribution to the normal
stress balance.

Another important phenomenon associated with countercurrent gas flow over a liquid film is
flooding, which refers to the appearance of large-amplitude standing waves in the fluid film at a
critical shearing gas flow rate [41,42]. Additional increases in the gas flow rate beyond the flooding
limit lead to the instabilities traveling in the upstream direction and possibly the complete reversal
of the liquid flow direction, which can have severe consequences on the performance of systems
such as plate heat exchangers, reflux condensers, and nuclear reactor cooling systems. This sudden
onset of flooding is associated with a transition in the flow dynamics from convectively unstable to
absolutely unstable [43].

The distinction between convective and absolute instabilities was first made by Briggs [44]
in the field of plasma physics and later introduced into fluid stability theory by Huerre and
Monkewitz [45]. In this framework, flows are classified by examining their long-time response
to an infinitesimal impulse source. If the disturbance grows but is convected away by the flow,
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then the flow is classified as convectively unstable. On the other hand, if it grows at its origin and
proceeds to contaminate the entire flow field, then the flow is classified as absolutely unstable.
The spatiotemporal characterization of a falling liquid film was first performed by Brevdo et al.
[46], who, by solving the Orr-Sommerfeld eigenvalue problem, found the instabilities to be of the
convective type, a result identical to that found by Joo and Davis [47], who had used a model
based on Benney’s long-wave approach. O’Náraigh et al. [48] employed Orr-Sommerfeld stability
theory along with a combination of linear modal analysis and ray analysis to study the problem
of two-phase stratified flow of a laminar liquid phase and a fully developed gas phase which
can be either turbulent or laminar. Using this model, they identified the regimes that produce
absolute instabilities and compared their results to experimental flow-regime maps. In order to
investigate the flooding phenomenon, Tseluiko and Kalliadasis [49] treated the liquid interface as a
solid wall which permitted obtaining closed-form solutions for the pressure and tangential stresses
imposed by the gas. The same model was applied by Vellingiri et al. [43] to investigate the linear
spatiotemporal stability of an isothermal liquid film flowing down an inclined plane and subject to
a counterflowing turbulent gas. They proceeded to identify the relationship between the gas flow
rate and inclination angle, and the convective-absolute transitions in the flow’s stability character.
Additionally, they conceived a generalized methodology for identifying the type of instability when
the flow is described by nonlocal equations.

A notable property of thin liquid films has been their tendency to spontaneously rupture once
the film thickness reaches a critical value depending on the different forces competing within the
film, such as disjoining pressure and surface tension [50]. Burelbach et al. [20] and Joo et al. [21]
predicted the occurrence of film rupture due to long-wave instabilities driven by vapor recoil and
thermocapillarity. The occurrence of film rupture was confirmed by the direct numerical simulations
of nonvolatile films performed by Krishnamoorthy et al. [51], whose results showed good qualitative
agreement with those of long-wave theory. Boos and Thess [52] demonstrated that the rupture
caused by the long-wave Marangoni instability occurs via an an infinite cascade of increasingly
smaller structures. Shklyaev et al. [53] considered a generalized one-dimensional Cahn-Hilliard
equation suited for modeling the dynamics of a thin liquid film heated from below and subject
to the Marangoni instability. They constructed self-similar solutions corresponding to the film
dynamics and defined a power law governing their evolution. Wei and Duan [54] considered a
liquid film undergoing quasiequilibrium evaporation and identified a set of self-similar solutions
along with the power laws governing their behavior. Dallaston et al. [55] demonstrated that the
formation of iterated structures as the film ruptures is due to a bifurcation of the continuous
self-similar solution set into a discrete one occurring periodically over a logarithmic timescale.
Another recent effort is that of Ji and Witelski [56], who investigated the evaporation-driven rupture
of thin films using an elaborate evaporation model, which they used to examine the balance between
conservative restoring forces and the nonconservative flux term. They found several categories of
finite-time singularities including self-similar and non-self-similar behavior, which were studied
both analytically and numerically.

In this work we consider an evaporating liquid film flowing down an inclined plane driven by
gravity while being sheared by a gas. We prescribe the shear stress imparted on the free interface
by the gas through the introduction of a constant value into the interface’s shear stress balance and
we neglect its normal stress since we assume it to be much less significant than the shear stress at
the leading order [39]. In this model, the role of the shearing gas is confined to modifying the fluid
base flow. Investigations of the effect of a shearing gas on thermal instabilities, i.e., those driven by
thermocapillary and evaporation forces, are lacking. Therefore, our goal is to fill this gap. We also
investigate the effects of surface shear on the self-similar solutions of the evolution equation close
to film rupture.

Our paper is structured as follows. In Sec. II we introduce the governing equations, dimensionless
parameters, and the modeling of the shear stress. We also derive the nonlinear governing equation
using the same methodology employed by Benney [11] and Joo et al. [21]. We then use long-wave
theory to derive an analytical dispersion relationship governing the dynamics of the film flow. In
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FIG. 1. Schematic illustration of a heated evaporating liquid film flowing under the influence of gravity
while being sheared by a counterflowing gas. The dashed line represents the unperturbed base flow thickness
h̃0, β is the inclination angle from the horizontal, and Tw is the constant wall temperature.

Sec. III we perform a linear temporal stability analysis to study the effects of the shear stress on
the stability of the flow, which is subsequently extended into a linear local spatiotemporal stability
analysis. We further investigate the influence of the film thinning on the stability of the flow and
how it is tied to the shear stress’s role specifically. In Sec. IV we study the nonlinear dynamics
of the flow by solving the governing equation numerically and we compare the temporal and
spatiotemporal dynamics to the results of the linear stability analysis. We also study the influence
of the dimensionless parameters on film rupture location and the time it takes for this rupture to
occur. Moreover, we further investigate the film rupture dynamics via a self-similarity analysis and
analyze the role of different dimensionless parameters on the rupture mechanism. A summary and
our conclusions are presented in Sec. V.

II. PROBLEM FORMULATION

The problem we investigate is an extension of the studies of Burelbach et al. [20] and Joo et al.
[21] to include the effects of a shearing gas. We consider an incompressible, thin, Newtonian,
evaporating liquid film with constant physical properties, driven by gravity down a heated plate
held at a constant temperature. The heated plate is inclined from the horizontal with an angle β as
depicted in Fig. 1. A Cartesian (x̃, ỹ) coordinate system is considered where the x̃ coordinate points
in the streamwise direction and the ỹ coordinate in a direction perpendicular to the heated plate, i.e.,
the cross-stream direction. The liquid film’s interface is defined by the function ỹ = h̃(x̃, t̃ ). Note
that the tilde notation indicates dimensional quantities. The liquid film is sheared at its interface
by a turbulent gas, whose effects are accounted for by a constant quantity denoted by τ̃ . This
variable represents a constant shear stress applied along the entire interface and is derived in detail
in Sec. II B. The liquid film is subject to two instability modes depending on the value of the flow’s
Reynolds number; for relatively small Reynolds numbers we consider a thermal instability mode
resulting from the combination of the thermocapillary S-mode and the evaporative E -mode [22]
instabilities. At larger Reynolds numbers the film is destabilized by the H-mode instability, modified
by thermocapillarity and evaporation.
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A. Governing equations

The liquid film is governed by the continuity equation, Navier-Stokes momentum equations, and
the energy equation, which in vector form read

∇ · ũ = 0, (1a)

∂t̃ ũ + ũ · ∇ũ = − 1

ρ
∇ p̃ + ν∇2ũ + F̃, (1b)

∂t̃ T̃ + ũ · ∇T̃ = χ∇2T̃ , (1c)

where ũ = (ũ, ṽ) is the liquid velocity vector, ρ is the liquid density, p̃ is the liquid’s gauge pressure,
ν is the liquid’s kinematic viscosity, F̃ = (g sin β, −gcos β ) is the gravitational body force vector
with g the gravitational acceleration magnitude, T̃ is the liquid temperature, and χ = λ/ρcp is the
liquid’s thermal diffusivity such that λ and cp are the thermal conductivity and constant pressure
heat capacity, respectively. The boundary conditions at the solid wall (ỹ = 0) are the no-slip, no-
penetration condition on the velocity and the constant wall temperature:

ũ = 0, (1d)

T̃ = Tw. (1e)

Our evaporation model is that of Burelbach et al. [20], which is in turn based on the interface
jump conditions derived by Delhaye [57], combined with a constitutive relationship based on kinetic
theory [58]. The presence of gas flow above the liquid interface prevents the saturation of the gas
phase with the liquid’s vapor, and hence the evaporation process is transfer-rate-limited, as opposed
to diffusion-limited evaporation, which would be expected in the case of a stationary fluid [30–32].
Notably, this model can be recovered from the general evaporation model of Sultan et al. [33]
when a limit of no vapor diffusion is considered. Moreover, it has been demonstrated that the heat
transfer from an evaporating liquid film subjected to laminar or turbulent gas flow is dominated by
latent heat transport associated with the evaporation of the film, as opposed to sensible heat transfer,
particularly heat convection due to the gas motion [59,60]. Therefore, we consider the effect of heat
convection on the evaporation process to be negligible. The boundary conditions at the liquid-gas
interface ỹ = h̃(x̃, t̃ ) read

J̃ = ρ(ũ − ũi ) · n = ρv (ũv − ũi ) · n, (1f)

J̃

[
L + 1

2

(
J̃

ρv

)2
]

= −λ∇T̃ · n, (1g)

J̃2

ρv

n + (T̃ − T̃g) · n = 2σ̃ κn + ∇sσ̃ . (1h)

Quantities with the subscript i are at the liquid-gas interface, those with the subscript v are vapor
quantities, and those with the subscript g are associated with the shearing gas. Here J̃ is the
evaporation mass flux, L is the latent heat of vaporization, ∇s is the surface gradient operator,
κ = − 1

2∇s · n is the mean interface curvature, and n is the local interface normal unit vector with
modulus N such that n = 1

N (−∂x̃ h̃, 1). Additionally, σ̃ = σ0 − γ (T̃i − Ts) is the surface tension
function considering σ0 to be the mean surface tension at the saturation temperature Ts, while
γ = −d σ̃ /dT̃ . Further, T̃ = −p̃ + IP̃ is the general stress tensor consisting of the sum of the
normal stress components and the deviatoric stress tensor P̃. Finally, we utilize the constitutive
relationship derived by Palmer [58], which reads

J̃ =
(

αρvL
T 3/2

s

)(
Mw

2πRg

)1/2

(T̃i − Ts), (1i)
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where α is the accommodation coefficient, Mw is the liquid’s molecular weight, and Rg is the
universal gas constant. Other forces such as van der Waals are not considered in our model.

B. Shear stress modeling

We account for the gas’s shear stress at the interface by first expanding T̃ and T̃g in Eq. (1h) to
get

J̃2

ρv

n + P̃ · n − p̃n − P̃g · n + p̃gn = 2σ̃ κn + ∇sσ̃ , (2a)

taking the dot product with n for the normal stress balance

J̃2

ρv

+ (P̃ · n) · n − p̃ − (P̃g · n) · n + p̃g = 2σ̃ κ (2b)

and taking the dot product with the tangent unit vector t = 1
N (1, ∂x̃ h̃) for the shear stress balance in

the (x̃, ỹ) plane

(P̃ · n) · t − (P̃g · n) · t = ∇sσ̃ · t. (2c)

The quantity −(P̃g · n) · n + p̃g in Eq. (2b) is associated with the gas’s normal stress and is
neglected, while the quantity (P̃g · n) · t in Eq. (2c) is replaced with a constant quantity denoted
by τ̃ , whose magnitude represents the strength of the shear gas flowing against the interface. This is
justified by the fact that under the long-wave expansion, the fluid layer’s disruption of the gas flow
is assumed to be minimal due to the fluid interface’s slow variation in space; therefore, when the
normal and shear stresses imparted by the gas on the interface are subjected to small perturbations,
the leading-order normal stress is insignificant, while the leading-order shear stress effect is found
to be quite substantial [39]. Under these assumptions, the role of the shearing gas is confined to
modifying the fluid base flow. This modeling approach has been previously applied in a variety of
fluid problems including droplets [61,62], rivulets [63–66], and thin liquid films [39,40]. Positive
values of τ̃ are indicative of a gas which is adding kinetic energy to the liquid interface by flowing
along it in the same direction with higher momentum, while negative values of τ̃ represent either a
counterflowing gas or a coflowing gas which is taking away energy from the liquid flow by flowing
along it with lower momentum.

C. Scaling and dimensionless parameters

The following scales are introduced into the system of equations (1) (see also Table I):

(x̃, ỹ, z̃) → h̃0(x∗, y∗, z∗), (ũ, ṽ, w̃) → ν

h̃0
(u∗, v∗,w∗), t̃ → h̃2

0

ν
t∗, h̃ → h̃0h∗,

T̃ → Ts + T ∗�T, p̃ → ρν2

h̃2
0

p∗, J̃ → λ�T

h̃0L
J∗.

Here �T = Tw − Ts, h̃0 is the mean film thickness at the initial time and the asterisk de-
notes nondimensional variables. Introducing these scales into Eqs. (1), in component form they
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TABLE I. Set of dimensionless parameters resulting from the scaling of Eqs. (1).

Parameter Expression Physical significance

Reynolds number Re gh̃3
0/ν

2 Ratio of inertial to viscous forces

Prandtl number Pr ν/χ Ratio of momentum to thermal diffusivity

Evaporation number E λ�T/ρLν Ratio of viscous to evaporative timescales

Density ratio D 3ρv/2ρ Ratio of vapor density to liquid density

Nondimensional latent heat L 8h̃2
0L/9ν2 Measure of the liquid’s latent heat

Nondimensional surface tension S σ0h̃0/3ρν2 Measure of the liquid’s surface tension

Capillary number Ca γ�T/σ0 Ratio of viscous to surface tension forces

Marangoni number Ma γ�T h̃0/2μχ Ratio of Marangoni to viscous forces

Dimensionless shear stress τ ∗ (Nh̃2
0/μν )τ̃ Strength and direction of the shearing gas

Equilibrium parameter K
kT 3/2

s
√

2πRg

αh̃0ρvL2
√

Mw
Degree of nonequilibrium at the liquid interface

read

∂x∗u∗ + ∂y∗v∗ = 0, (3a)

∂t∗u∗ + u∗∂x∗u∗ + v∗∂y∗u∗ = −∂x∗ p∗ + ∂x∗x∗u∗ + ∂y∗y∗u∗ + Re sin β, (3b)

∂t∗v∗ + u∗∂x∗v∗ + v∗∂y∗v∗ = −∂y∗ p∗ + ∂x∗x∗v∗ + ∂y∗y∗v∗ − Re cos β, (3c)

Pr[∂t∗T ∗ + u∗∂x∗T ∗ + v∗∂y∗T ∗] = ∂x∗x∗T ∗ + ∂y∗y∗T ∗. (3d)

The scaled wall-boundary conditions at (y∗ = 0) are

u∗ = v∗ = 0, T ∗ = 1, (3e)

while the scaled interface-boundary conditions at y∗ = h∗ become

EJ∗ = 1

N
[−u∗∂x∗h∗ + v∗ − ∂t∗h∗], (3f)

J∗ + E2

D2L
J∗3 = 1

N
[∂x∗h∗∂x∗T ∗ − ∂y∗T ∗], (3g)

− 3

2

E2

D
J∗2 − 2

N2
[∂x∗u∗[(∂x∗h∗)2 − 1] − ∂x∗h∗(∂y∗u∗ + ∂x∗v∗)] + p∗ = −3S(1 − CT )

[
∂x∗x∗h∗

N3

]
,

(3h)

[1 − (∂x∗h∗)2][∂y∗u∗ + ∂x∗v∗] − 4∂x∗h∗∂x∗u∗ − τ ∗ = −2
M

Pr
[∂x∗T ∗ + ∂x∗h∗∂y∗T ∗]N, (3i)

KJ∗ = T ∗. (3j)

D. Long-wave theory and interface evolution equation

In a procedure inspired by Benney’s [11] expansion for small wave numbers, a small parameter
ε = h∗

�
is defined where � is the flow’s horizontal characteristic length such that h∗ � �. Here ε is

used to rescale the system’s independent variables as

x∗ → εx, y∗ → y, t∗ → εt . (4)
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The star notation for h∗ and τ ∗ is be dropped from this point onward for convenience. Now the
system’s dependent variables are expanded in terms of ε as.

u = u0 + εu1 + O(ε2), (5a)

v = ε[v0 + εv1 + O(ε2)], (5b)

p = p0 + εp1 + O(ε2), (5c)

T = T0 + εT1 + O(ε2), (5d)

J = J0 + εJ1 + O(ε2). (5e)

Additionally, the following dimensionless parameters are rescaled:

E → εĒ , D → ε2D̄, S → S̄

ε2
. (6)

We consider the shear stress τ and the interface height function h(t ) to be zeroth-order quantities.
Note that the transformations in (6) can be considered realistic when compared to the data tabulated
in Ref. [20].

Substituting from Eqs. (4)–(6) into the system of equations (3), we obtain solutions for the
dependent variables (u, v, p, T, J ) which can be substituted into Eq. (3f) to obtain

∂t h + ∂x

[
Re sin β

3
h3 + τ

2
h2

]
+ Ē

h + K
+ ε∂x

[
2

15
(Re sin β )2h6∂xh + M h2

(h + K )2
∂xh

+ Vr
h3

(h + K )3
∂xh − 1

3
Re cos βh3∂xh + S̄h3∂xxxh

]
+ ε∂x

[
5Ē

24
Re sin β

h4

h + K

]

+ εĒPr
h3

(h + K )3

[
Ē

3(h + K )
+ 1

120
Re sin β(7h − 15K )h∂xh

]

+ ετ

[
1

12
ĒPr

h4

(h + K )3
∂xh + 2

15
Re sin β∂x(h5∂xh)

]
= 0, (7)

which describes the evolution of the liquid interface under the influence of gravity, hydrostatic
pressure, thermocapillarity, evaporation, and gas shear as modeled by τ . Note that this is the
same equation obtained by Joo et al. [21] except for the additional terms proportional to τ . We
define Vr = Ē2/D, which is a parameter representing the strength of the vapor recoil forces, and
M = KM/Pr, which represents the strength of the Marangoni forces as modified by evaporation
effects. By making various assumptions within Eq. (7), several previously derived models can be
recovered. When τ = 0, the exact equation derived by Joo et al. [21] is acquired. If then we set
Re = 0, a generalization of the equation of Burelbach et al. [20] with first-order evaporation and
convection terms is obtained. If we retain Re and set Ē = Vr = 0, the evaporative mass flux naturally
goes to zero, K takes the role of the Biot number, and Eq. (7) then describes a nonvolatile film
evolving under the influence of gravity, thermocapillary forces, and gas shear. If further β = τ = 0,
the equation derived by Davis [67] is retrieved, albeit without accounting for van der Waals forces.
Finally, if τ = 0, the film is isothermal (Ē = Vr = M = 0), but β �= 0, and Eq. (7) resembles
Benney’s [11] original equation for falling liquid films.

114002-9



MOHAMED, DALLASTON, AND BIANCOFIORE

III. LINEAR STABILITY

A. Dispersion relationship derivation

We now follow Joo et al. [21] and derive the expressions for a base flow that is spatially uniform
but temporally evolving. We set ∂x = 0 in Eq. (7) to get

∂t h0 + Ē

h0 + K
+ εĒ2Pr

h3
0

3(h0 + K )4
= 0. (8)

Solving Eq. (8), we obtain

h0(t ) = � − K + ε
Ē Pr

3�

(
K (2K2 + 6K + 3)

1 + K
+ 3K2

2
ln

�

1 + K
+ K3

�
− 3K� − Ēt

)
+ O(ε2),

(9)
where � = (K2 + 2K + 1 − 2Ēt )1/2. Moreover, emulating Burelbach et al. [20], we employ the
frozen interface approximation [20,68], which assumes that the timescale associated with the
variation in base flow height is much larger than that associated with the perturbation’s growth.
In other words, we examine the stability of a base flow that is frozen in time. The amount of time
it takes the liquid film governed by a particular parameter set to completely evaporate is called the
dry-out time, denoted by tD. An analytical expression for tD can be found by setting h0(t ) = 0 and
solving for t in Eq. (9) to get

tD = 1 + 2K

2Ē
, (10)

which is identical to the expressions obtained in Refs. [20,21]. We define t f = t/tD as the fraction
of time until complete film evaporation, which in the subsequent stability analysis determines how
much remains of the evaporating liquid film. We now assume that the interface height function h(t )
is perturbed by an infinitesimal harmonic perturbation such that

h(t ) = h0(t ) + δHei(kx−ωt ), (11)

where H is the initial disturbance amplitude and δ is a small linearization parameter (δ � 1).
Note that, due to the applied scaling [Eqs. (6)], here k = k∗/ε and ω = ω∗/ε, where k∗ and ω∗
are the wave number and angular frequency in the nonscaled dimensionless spatial and temporal
coordinates (x∗, t∗). Subtracting Eq. (8) from Eq. (7) and substituting Eq. (11), we obtain

ω(k) = −iεS̄h3
0k4 + iε

[
2

15
(Re sin β )2h6

0 + Vr
h3

0

(h0 + K )3
+ M h2

0

(h0 + K )2

− 1

3
Re cos βh3

0 + 2

15
Re sin βh5

0τ

]
k2 +

[
Re sin βh2

0 + h0τ + εĒ

(
5

6
Re sin β

h3
0

h0 + K

+ 7

120
Re sin β Pr

h5
0

(h0 + K )3
− 5

24
Re sin β

h4
0

(h0 + K )2
− 1

8
Re sin βPr

h4
0

(h0 + K )3
K

+ 1

12
Pr

h4
0

(h0 + K )3
τ

)]
k + i

Ē

(h0 + K )2
− iε PrĒ2 h2

0(3K − h0)

3(h0 + K )5
. (12)

Equation (12) is a dispersion relationship of the form ω(k) governing the linear dynamics of the
liquid film. Note that the last two terms in Eq. (12) are not proportional to k, but rather are an
algebraic addition to the imaginary part of the angular frequency ω, as a function of the initial base
state height h0 [20,21]. This quantity is larger than zero for the range of parameters considered and
therefore causes an increase in the perturbation’s growth rate related not to the flow’s stability, but
instead to the reduction in base state height due to mass loss. Hence these two terms will be omitted
from the dispersion relationship throughout the rest of this work whenever Eq. (12) is invoked. Note
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that in the following analysis the parameter values ε = 0.15, S̄ = 0.15, K = 0.1, and Pr = 1 are
fixed unless otherwise stated.

B. Temporal stability analysis

For the purposes of temporal stability analysis it is assumed that the wave number k is real and
the angular frequency ω is complex. Under these assumptions, Eq. (12) can be written as

ω(k) = ωr + iωi, (13)

where ωr = kc is the real angular frequency

ωr = k

[
Re sin βh2

0 + h0τ + εĒ

(
5

6
Re sin β

h3
0

h0 + K
+ 7

120
Re sin β Pr

h5
0

(h0 + K )3

− 5

24
Re sin β

h4
0

(h0 + K )2
− 1

8
Re sin β PrK

h4
0

(h0 + K )3
+ 1

12
Pr

h4
0

(h0 + K )3
τ

)]
(14a)

and ωi is the temporal growth rate

ωi=ε

[
2

15
Re sin βh6

0

(
Re sin β+ τ

h0

)
+ M h2

0

(h0 + K )2
+ Vr

h3
0

(h0 + K )3
− 1

3
Re cos βh3

0 − S̄h3
0k2

]
k2.

(14b)

Equations (14) show that the effect of τ depends on whether the liquid film is moving or stationary.
Generally, for a moving film (β �= 0) positive values of τ increase the temporal growth rates
corresponding to the band of unstable wave numbers. By contrast, the opposite is true for negative
values of τ . Furthermore, τ ’s influence on the H mode is much more pronounced than it is on the
thermal instability mode. This is due to τ ’s role as a multiplier of the flow’s existing inertia as it
appears as an algebraic variation to the film’s velocity. For a stationary film (β = 0), τ does not
change the temporal growth rate since there is no base flow. As for the perturbation phase speed, τ

will always change its value regardless of whether the film is flowing or not, whereby this change is
contingent on the sign of τ .

Figure 2(a) shows a plot of the maximum temporal growth rate across the range of unstable wave
numbers versus the flow’s Reynolds number. The figure shows the existence of sets of Reynolds
number values for which the corresponding maximum temporal growth rates are positive. Moving
along the Re axis, the first unstable set of Reynolds numbers corresponds to the thermal instability
mode resulting from a combination of the Marangoni S mode and the evaporative E mode, whereas
the second unstable set of values corresponds to the inertial H-mode instability, albeit modified
by Marangoni and evaporation effects. The interconnection between the shear stress’s role and the
flow’s inertia is highlighted by the different colored lines representing different values of τ . At low
Reynolds numbers, where the flow’s inertia is weak, the effect of the shear stress is significantly
weaker than its effect at higher Reynolds number where the flow is dominated by inertia.

The effect of the film thinning can be observed by comparing Fig. 2(a) to Fig. 2(b), which
also shows a plot of the maximum temporal growth rate versus Reynolds number, however at
reduced base flow thickness (t f = 0.35). We find that, in general, the evaporation of the film
and the consequent reduction in its base flow thickness lead to the strengthening of the thermal
instability mode, as indicated by the expansion of the set of unstable values of Re and the increase
in their corresponding maximum temporal growth rates. This occurs despite the thinner film being
dominated by viscosity since the strength of the Marangoni and vapor recoil effects are significantly
increased. These effects are proportional to the temperature gradient across the film, which becomes
sharper as the film becomes thinner. In contrast, the thinning of the film results in the dampening of
the H-mode instability due to the increased prominence of viscous forces. This appears in the plot
as the contraction of the second set of unstable Reynolds numbers along with a decrease in their
corresponding maximum temporal growth rates.
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FIG. 2. Temporal growth rates for β = 25, M = 0.5, Ē = 0.1, Vr = 1. (a) ωi,max versus Re at t f = 0,
(b) ωi,max versus Re at t f = 0.35, (c) ωi versus k for Re = 0.5 and t f = 0, (d) ωi versus k for Re = 0.5 and
t f = 0.35, (e) ωi versus k for Re = 20 and t f = 0, and (f) ωi versus k for Re = 0.5 and t f = 0.35. Note that
the parameters in (c) and (d) are in the range of the thermal instability mode, while those in (e) and (f) are in
the range of the H -mode instability.

Figure 2(c) depicts a plot of the temporal growth rate versus wave number for different values
of τ at a value of Reynolds number belonging to the thermal instability mode and at full film
height. It can be seen that the shear stress’s effect on the thermal instability’s growth rate is rather
small since its effect is proportional to the film’s Reynolds number. On the other hand, Fig. 2(d)
shows the temporal growth rates for the same film, but at a smaller thickness (t f = 0.35), where the
aforementioned strengthening of the thermal instability mode and the reduced impact of gas shear
are clearly apparent.

The effects of the shear stress and film thinning on the H-mode instability are presented in
Figs. 2(e) and 2(f). Figure 2(e) plots the temporal growth rate versus wave number for different
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FIG. 3. Maximum temporal growth rate and perturbation phase speed versus τ for β = 25, M = 1, Ē =
0.1, Vr = 1, t f = 0, and (a) Re = 1 (thermal mode instability) and (b) Re = 20 (H -mode instability).

values of τ at Re = 20. The plots evidently show the significant impact of the shear stress on the
H-mode instability, as seen in the large shifts in the temporal growth rate curves corresponding to
the different values of τ . Again, these effects are investigated at lower film thickness where Fig. 2(f)
shows the strong suppressive nature of the negative values of τ on the H-mode instability. This
suppressive behavior can be qualitatively linked to that in the work of Lavalle et al. [38] such that a
negative value of τ is equivalent to a shearing gas counter-flowing alongside the liquid interface in
a highly confined setting.

The contrast between the shear stress’s effect on the thermal instability and that on the H-mode
instability is highlighted in Fig. 3, where the maximum temporal growth rate and phase speed are
depicted versus τ for Re = 0.5 [Fig. 3(a)], which belongs to the range of the thermal instability
mode, and Re = 20 [Fig. 3(b)], which is in the range of the H-mode instability. In Fig. 3(a) it can be
seen that for a range of negative values of τ the perturbation has a maximum temporal growth rate
that is positive along with a negative phase speed, signifying an upstream-traveling perturbation.
Contrarily, Fig. 3(b) shows that the maximum temporal growth rate is zero for perturbations with
negative phase speed, so no upstream convection of H-mode instabilities occurs.

The reduction in film thickness due to evaporation results in it becoming increasingly dominated
by viscosity, which resists not only the growth of the perturbations, but also their convection in the
film. The thinner film’s increased resistance to the convection of the perturbations is demonstrated
in Fig. 4, which plots perturbation phase speed versus inclination angle [Fig. 4(a)] and τ [Fig. 4(b)]
for an increasingly thinner film. In Figs. 4(a) and 4(b) we see a significant reduction in the slope of
the plots, indicating a weakening of the convective nature of the flow with larger values of t f . This
demonstrates that the thinning of the film results in a significant reduction in the efficacy of flow
drivers such as inclination angle and gas shear.

C. Spatiotemporal stability analysis

We investigate the spatiotemporal evolution of the film following a procedure based on the
seminal work of Huerre and Monkewitz [45], where the spatiotemporal nature of the flow is
determined by examining its long-time response to an infinitesimal impulse source. The distinction
between the two types of instability is made by inspecting the temporal growth rate (denoted by σ )
corresponding to the zero-group-velocity solution (dω/dk ≡ V = 0), known as the absolute growth
rate and denoted by ωi,0, where ωi,0 < 0 indicates that the instability is convective and ωi,0 > 0
indicates that it is absolute. Examples of impulse response analyses can be found in the literature
for different flow systems (see, e.g., [69,70]).
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FIG. 4. Perturbation phase speed versus (a) inclination angle for τ = 0 and (b) τ for β = 0, Re = 1, M =
0.5, Ē = 0.1, Vr = 1, and increasing values of t f .

Equation (12) is used to obtain the full linear impulse response wave packets for different
parameter sets, as shown in Fig. 5 where the effect of film evaporation on both the thermal and
H-mode instabilities is investigated. Figure 5(a) depicts the impulse response wave packets for a
film at full thickness and Re = 1, i.e., where the film is subject to the thermal instability mode. The

FIG. 5. Impulse response wave packets for β = 25, M = 0.5, Ē = 0.1, Vr = 1, and (a) Re = 1 and t f = 0,
(b) Re = 1 and t f = 0.8, (c) Re = 20 and t f = 0, and (d) Re = 20 and t f = 0.35. Note that the parameters in
(a) and (b) are in the range of the thermal instability mode, while those in (c) and (d) are in the range of the
H -mode instability.
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plot shows three distinct wave packets corresponding to three values of τ , where the wave packet
associated with τ = 1 has the highest peak due to the shear stress’s contribution to the growth rate.
The central wave packet corresponding to τ = 0 has its edges on opposite sides of the V = 0 axis,
resulting in ωi,0 > 0, and thus represents a perturbation which is absolute in nature. On the other
hand, the two outermost wave packets corresponding to τ = −1 and τ = 1 have both fronts on the
same side of the V = 0 axis, resulting in ωi,0 < 0 and indicating that they represent perturbations
which are convected by the flow upstream and downstream, respectively.

The effect of the film thinning on the impulse response is shown in Fig. 5(b), where t f = 0.8. The
aforementioned amplification of the thermal instability mode is reproduced by our spatiotemporal
analysis as all the wave packets are noticeably more prominent. Furthermore, at this reduced film
thickness all three wave packets include positive values of ωi,0 and therefore correspond to absolute
instabilities. This indicates that the thinning of the film caused a convective-absolute transition of the
thermal instability mode in the cases of τ = ±1. Additionally, noting that the group velocity at the
center of the impulse response wave packets in Fig. 5 corresponds to the perturbation phase speed c
from the temporal stability analysis [71], we notice again here that the thinning of the film decreases
the phase speed of the perturbations, as observed in Fig. 4. However, comparing the wave packets
in Figs. 5(a) and 5(b), we observe that the edges of the wave packets corresponding to τ = 0 and
τ = 1 have significantly larger velocities, which implies that the overall progression of the thermal
instability mode is enhanced by the reduction in film thickness. In other words, the thinning of the
film hinders the convection of the thermal instability mode by the shearing gas or the flow’s inertia,
but actually increases the rate at which it spreads via its inherent instability mechanism.

Figure 5(c) presents the impulse response wave packets for a film at full thickness and Re = 20,
i.e., where the film is subject to the H-mode instability. The strong effect that the shear stress has on
the temporal growth rate of the H-mode instability is again clearly demonstrated by the significant
change in the curves as the value of τ is varied. The considerable suppressive effect of the film
thinning on the H-mode instability becomes apparent by comparing Figs. 5(c) and 5(d), which
differ only by the value of t f : t f = 0 [Fig. 5(c)] and t f = 0.35 [Fig. 5(d)].

The interaction between the shear stress and the effects of the film’s evaporation can also be
visualized by plotting the absolute growth rate in the (Re,Vr ) space as shown in Fig. 6 where the
blue, red, and green regions correspond to convectively unstable flow, absolutely unstable flow, and
stable flow, respectively. Figures 6(a)–6(c) plot the absolute growth rate in a film being sheared
by a counterflowing gas (τ = −1) for different values of t f . Note the existence of two regions
corresponding to convectively unstable flow: (i) The region on the left contains (Re,Vr ) values
belonging the thermal instability mode and (ii) the region on the right contains (Re,Vr ) values
belonging to the H-mode instability. In the former (latter) region the perturbation is convected
upstream (downstream) by the shear stress (flow). In between there is a parameter set resulting
in absolutely unstable flow where the downstream convection by the flow’s inertia is balanced by
the negative τ value representing a counterflowing shearing gas. As the value of t f is increased,
the parameter set corresponding to the absolutely unstable flow expands at the expense of those
associated with convective instability. Similarly, the parameter set corresponding to stable flow
expands as well, raising the critical Re associated with the onset of the H-mode instability outside
the parameter set we considered. In Fig. 6(c) where t f = 0.7, the amplified convective thermal
instability mode persists up to Reynolds numbers of O(10).

On the other hand, Figs. 6(d)–6(f) plot the absolute growth rate in a film being sheared by a
coflowing gas (τ = 1) for different values of t f . Due to the positive value of τ , the parameter space
is initially dominated by convectively unstable flow as the parameter set resulting in absolutely
unstable flow is limited to the upper left corner. As the film thins the parameter sets corresponding
to stable and absolutely unstable flow grow into regions of the parameter space previously occupied
by convectively unstable flows.
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FIG. 6. Absolute growth rate in the (Re,Vr ) space for β = 25, M = 0.5, Ē = 0.1, and (a) τ = −1 and
t f = 0, (b) τ = −1 and t f = 0.3, (c) τ = −1 and t f = 0.7, (d) τ = 1 and t f = 0, (e) τ = 1 and t f = 0.3, and
(f) τ = 1 and t f = 0.7. The red, blue, and green regions indicate absolutely unstable, convectively unstable,
and stable flow, respectively.

IV. NONLINEAR EVOLUTION

The linear stability analysis in Sec. III is only valid when the perturbation amplitude is small. To
relax this constraint we solve Eq. (7) numerically as an initial value problem using MATLAB [72]. A
perturbation in the form of a Gaussian wave packet localized about x = 0 is introduced such that the
initial interface is described by h(x, 0) = h0 + A exp(−10x2), where h0 is the initial flat film height
and A is the Gaussian wave packet’s maximum amplitude. For the numerical simulations we keep
ε = 0.15, S̄ = 0.15, K = 0.1, and Pr = 1.

A. Solver validation

The solver is validated by comparing the temporal growth rates obtained analytically to those
computed from numerical data resulting from solving Eq. (7) for an interface disturbed initially
by a small-amplitude perturbation. For a particular mode within the Gaussian wave packet with an
amplitude ĥ(k, t ), the numerical and analytical temporal growth rates are related by

˙̂h

ĥ
= ωi. (15)

To compute the left-hand side of Eq. (15) we find ĥ(k, t ) via the discrete Fourier transform of h(x, t )
as

ĥ(k, t ) = 2| f̂ (k, t )|/(n − 1), (16)

where

f̂ (k, t ) =
n−1∑
j=1

h( j, t )e−2π i( j−1)(k−1)/(n−1)
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FIG. 7. Comparison of the analytical and numerical temporal growth rates for β = 5, Re = 1, M = 0.2,
Ē = 0.01, Vr = 0.2, and t f = 0. The initial interface in the numerical simulation is described by h(x, 0) =
h0 + A exp(−10x2), where A = 0.005.

and n is the total number of discrete points in h(x, t ) and k � 1. We subsequently take its derivative
numerically to obtain ˙̂h. The right-hand side of Eq. (15) is computed from Eq. (14b).

An example of this validation is shown in Fig. 7, where the error between the numerical and
analytical values was found to be approximately equal to 1% during linear perturbation growth.
Further validation in the nonlinear regime was conducted by comparing the our simulation results
to those in Ref. [21], where excellent agreement was obtained.

B. Interface evolution

Figure 8 shows the results of simulating an evaporating film flowing down an inclined plane while
being assisted by a coflowing shearing gas, represented by a positive value of τ , and with A = 0.1.
The parameter set was chosen specifically such that the evaporation of the film and the growth of
the perturbation are sufficiently slow to allow observing several stability regimes. We observe that
the initial perturbation amplitude decays as it travels downstream; however, as the film’s thickness
decreases the thermal instability mode arises and the perturbation begins to grow. At this stage the
instability is convective in nature and is carried downstream by the flow. Further thinning of the
film causes the perturbation to undergo a convective-absolute transition, and the instability can be
seen to start spreading in the upstream direction as well. Notably, the reduction in the perturbation’s

FIG. 8. Evolution of the fluid interface for A = 0.1, β = 5, Re = 1, M = 0.1, Ē = 0.005, Vr = 0.2, τ =
0.3, and t f = 0.
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FIG. 9. Temporal stability analysis for β = 5, Re = 1, M = 0.1, Ē = 0.005, Vr = 0.2, τ = 0.3, and t f =
0. (a) ωi,max and h′

max versus time and (b) dh′
max/dt versus time.

phase speed is clearly demonstrated by the reduction in the rate of progression of the wave packet’s
center when observed in the (x, t ) plane.

1. Temporal evolution

The dynamics exhibited in Fig. 8 are investigated first by a temporal stability analysis. The
temporal evolution of the perturbation is examined in the linear regime by computing the maximum
temporal growth rate using Eq. (14b) and in the nonlinear regime by tracking the maximum
perturbation height, denoted by h′

max, which represents the maximum deviation of the film’s interface
from the flat base flow such that h′

max(t ) = |h(x, t ) − h0(t )|. Both these quantities are plotted versus
time in Fig. 9(a), where ωi,max is found to be zero up to t = 24.5 (marked by the green circle),
indicating that the fluid film is indeed initially linearly stable. The thinning of the film beyond this
point results in the flow becoming temporally unstable due to the onset of the thermal instability
mode. Furthermore, the same qualitative behavior predicted by linear stability analysis is observed
in the nonlinear regime, as h′

max initially decreases and then starts to increase. We attempt to
determine this inflection point, i.e., the point in time at which h′

max begins to grow, by numerically
computing d (h′

max)/dt and fitting the data around the transition point linearly. We consider the
intercept of the linear fitting function with the t axis to be the transition point from stable to unstable
flow, which occurs at t = 28.3, 15.5% higher than the value predicted by linear stability theory. This
difference is attributed to nonlinear effects.

2. Spatiotemporal evolution

The wave packet’s spatiotemporal evolution within the flow domain can be observed by tracking
the perturbation’s edges, which are defined by the two points on the interface where |∂xh| increases
beyond a small tolerance, indicating the existence of a perturbed interface deviating from the flat
base flow. The loci of these points are plotted against time in Fig. 10(a), which shows that the wave
packet’s edges both initially travel downstream, forming a convective instability. Subsequently, the
rear edge begins to slow down relative to the front edge, eventually reversing direction and traveling
upstream, indicating the transition to absolutely unstable flow. The colored circles mark the wave
packet’s edges at four points in time corresponding to the interface profiles in Fig. 10(b). Comparing
the four interface profiles, the transition from convective to absolute instability is apparent.

The spatiotemporal dynamics in the nonlinear regime are further examined by generating the
complete impulse response wave packets by numerically computing the temporal growth rate along
each ray (V = x/t ). We consider the perturbation amplitude at any point along the streamwise

114002-18



SPATIOTEMPORAL EVOLUTION OF EVAPORATING …

FIG. 10. Visualization of wave-packet spreading in the flow domain for β = 5, Re = 1, M = 0.1, Ē =
0.005, Vr = 0.2, τ = 0.3, and t f = 0. (a) Front and rear wave-packet edge positions in time. (b) The evolution
of the interface profile through the convective-absolute transition.

coordinate as the maximum perturbation height h′
max(x, t ), a quantity which is shown to behave

asymptotically [73] as

h′
max ∝ t−1/2eσ (V )t , V = x/t = const for t → ∞, (17)

where again σ is the temporal growth rate along a given ray V = x/t = const, which can be found
analytically as

σ (V ) ∼ d

dt
{ln[t1/2h′

max(V t, t )]} for t → ∞. (18)

This expression can be discretized in a form suitable for numerical computation as

σ (V ) ≈ ln[h′
max(V t2, t2)/h′

max(V t1, t1)]

t2 − t1
+ σ0(t2, t1), (19)

where σ0(t1, t2) = ln(t2/t1)/[2(t2 − t1)] is a finite-time correction term. For further details, see
Ref. [74].

Note that the analytical absolute growth rate is obtained under the notion that the base flow
height does not vary during the growth of the perturbation, i.e., under the frozen interface assump-
tion [20,68]. In order to allow comparison with linear theory, we enforce this assumption when
numerically computing the nonlinear absolute growth rate by simulating the interface evolution at a
constant base flow height (Ē = 0). Furthermore, the temporal growth rate was monitored over time
to ensure that the perturbations were growing nonlinearly at the time when the nonlinear impulse
response was acquired. Additionally, the resulting impulse responses were obtained at a value of t2
large enough to ensure the saturation of the computed values of σ [see Eq. (18)]. The value of ωi,0

was approximated by linearly interpolating between the two peaks closest to the V = 0 axis, which
is sufficiently accurate for our qualitative analysis.

Figure 11(a) plots the linear and nonlinear absolute growth rates versus film thickness for the
range of values of h0 where the flow is temporally unstable. We observe that initially, when the film
is relatively thick, the nonlinear absolute growth rate is higher than its linear counterpart, indicating
that finite instabilities are less convective than infinitesimal ones for this set of parameters. However,
as the film height decreases, the linear and nonlinear absolute growth rates converge. Note that
the two growth rates appear to slightly diverge again towards the end of the range of h0 values
considered. However, this is due to the film rupturing at a time which is too early to allow accurate
estimation of the growth rates.
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FIG. 11. Analytical (linear) and numerical (nonlinear) impulse responses for β = 5, Re = 1, Vr = 0.2,
M = 0.1, Ē = 0.005, τ = 0.3, and t f = 0. (a) Absolute growth rate versus h0. (b) Linear and nonlinear
impulse response wave packets for h0 = 0.84. (c) Linear and nonlinear impulse response wave packets for
h0 = 0.6. Note that LIN (magenta dashed lines) and NL (blue solid lines) indicate linear and nonlinear data,
respectively.

The impulse response wave packet corresponding to h0 = 0.84 is depicted in Fig. 11(b), where
the large disparity between the linear and nonlinear responses behind the difference in absolute
growth rate is seen. The inset of Fig. 11(b) details the wave packets’ peaks and demonstrates the
significant difference in the upstream and downstream front velocities of the linear and nonlinear
responses. According to Dee and Langer’s criterion [75], this implies that in the case of finite
perturbations, both front velocities are nonlinearly selected as the nonlinear wave packet’s saturation
produced wave fronts with velocities higher than those which would result from an infinitesimal
perturbation. On the other hand, the impulse response wave packet corresponding to h0 = 0.6 is
shown in Fig. 11(c), where we observe that the saturated nonlinear wave packet’s fronts match
their linear counterparts, indicating that the front velocities are linearly selected, which suggests
that for this thinner film the front dynamics are dictated by infinitesimal modes governed by the
linear dispersion relationship (12). The convergence of the nonlinear front velocities towards their
linear equivalent as the film thins suggests that this effect is related to the strength of the instability,
since the thinning of the film results in a significantly stronger thermal instability mode. This is
investigated by generating both the linear and nonlinear impulse responses for a constant film
thickness of h0 = 1 and increasingly stronger instabilities (higher values of M and Vr) (see Fig. 12).
Both the linear and nonlinear absolute growth rates are plotted versus increasing values of M
in Fig. 12(a). The same trend observed in Fig. 11 appears here as the nonlinear value of ωi,0 is
initially larger its linear counterpart. However, again this deviation decreases with larger values
of M until the eventual convergence of the linear and nonlinear absolute growth rates. This is
confirmed by plotting the linear and nonlinear impulse response wave packets for M = 0.32, as
shown in Fig. 12(b), where the disparity between the linear and nonlinear responses is apparent, and
those corresponding to M = 0.64, as shown in Fig. 12(c), where their concurrence is demonstrated.

Moreover, Fig. 12(d) shows the linear and nonlinear absolute growth rates for a film with a
constant thickness h0 = 1 and increasing values of Vr . Once more we observe initially higher values
of the nonlinear absolute growth rate and the subsequent convergence to the linear value as Vr is
increased. This is confirmed by plotting the linear and nonlinear impulse response wave packets in
Figs. 12(e) and 12(f), corresponding to Vr = 0.42 and Vr = 0.86, respectively.

C. Rupture analysis

Thermal instabilities can lead to the rupture of the fluid film, which can have significant negative
effects on applications sensitive to the film’s integrity. Therefore, we examine the effects of the shear
stress on rupture location (denoted by xr) and rupture time (denoted by tr). We expect a shearing
gas to play a role in mitigating these issues by either preventing rupture altogether or altering the
evolution of the interface such that film rupture is delayed until the disturbance exits the region in
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FIG. 12. Analytical (linear) and numerical (nonlinear) wave-packet impulse responses for β = 5, Re =
1, Ē = 0.005, τ = 0.3, and t f = 0. (a) Absolute growth rate versus M for Vr = 0.2. Linear and nonlinear
impulse response wave packets for (b) M = 0.32 and (c) M = 0.64. (d) Absolute growth rate versus Vr for
M = 0.1. Linear and nonlinear impulse response wave packets for (e) Vr = 0.42 and (f) Vr = 0.86. Note that
LIN (magenta dashed lines) and NL (blue solid lines) indicate linear and nonlinear data, respectively.

which it would be detrimental to the system. Note that in the presence of more than one simultaneous
effective rupture location, the one closest to the origin of the perturbation (x = 0) is considered to
be the rupture point.

In Fig. 13(a) rupture location xr is plotted against increasing values of both M and Vr . We find
that increasing either parameter causes the rupture location to shift closer towards the origin. This
occurs since an increase in M or Vr enhances the perturbation’s temporal growth rate, allowing less
time for it to travel before film rupture. However, this trend does not continue across the range of
values of M and Vr we considered, as at a certain value of either parameter the rupture location is
abruptly shifted downstream before again resuming its upstream trend. On the other hand, rupture

FIG. 13. Rupture (a) location and (b) time versus M and Vr for β = 5, Re = 1, Ē = 0.005, τ = 0.5, and
t f = 0.
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FIG. 14. Interface profiles at film rupture for β = 5, Re = 1, Ē = 0.005, τ = 0.5, t f = 0, and (a) Vr = 0.1
and M = 0.6, (c) Vr = 0.1 and M = 0.7, (e) Vr = 0.1 and M = 0.8, (g) Vr = 0.1 and M = 0.9, and (b)
M = 0.1 and Vr = 0.6, (d) M = 0.1 and Vr = 0.7, (f) M = 0.1 and Vr = 0.8, and (h) M = 0.1 and Vr = 0.9.

time does not display this harmonic behavior as tr decreases monotonically across the considered
range of M and Vr values [see Fig. 13(b)].

We investigate this further by plotting the interface profiles at rupture for different values of M
and Vr , as shown in Fig. 14. In particular, in Figs. 14(a), 14(c), 14(e), and 14(g) we keep Vr = 0.1 but
vary the value of M, while in Figs. 14(b), 14(d), 14(f), and 14(h) the value of M = 0.1 is retained
while the value of Vr is increased. The rupture profile corresponding to M = 0.6 is presented in
Fig. 14(a) and shows that film rupture occurs towards the rear edge of the perturbation, while the
front edge remains far from rupture. When the value of M is increased to 0.7, the same dynamic is
preserved; however, the front edge of the perturbation is significantly closer to rupture as it occurs, as
seen in Fig. 14(c). Further increases in the value of M show that the rupture location is changed from
the rear of the perturbation towards to the front as the value of M crosses a critical threshold [see
Figs. 14(e) and 14(g)]. Additional increases in the value of M restore the original trend of rupture
location moving closer towards the origin of the disturbance. Interestingly, the same dynamic is
reproduced when the value of M is kept constant while the value of Vr is increased. Here again we
observe a shift in the evolution dynamics as the strength of the thermal instability mode is increased,
akin to that observed in Sec. IV B 2.

D. Self-similarity analysis

Self-similar analysis of fourth-order thin-film-type equations has been performed extensively
in the past (see Refs. [53,55,56,76,77]) and is a useful framework within which to understand
and predict the rupture of thin films. The solutions of Eq. (7) rupture in finite or infinite time or
exhibit other long-time behavior depending on the presence or absence of thermal disequilibrium
K , evaporative mass loss Ē , and shear τ . In the absence of mass loss (Ē = 0), a possible fate of the
solutions is to evolve to long-time traveling waves or to exhibit permanent chaotic behavior. Indeed,
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a weakly nonlinear analysis of Eq. (7) with Ē = 0 will result in the Kuramoto-Sivashinsky equation
[78], which is a paradigmatic equation that exhibits chaos. As typical with Benney-type equations
which include an inertial term proportional to ∂x(h6∂xh), the solution may also blow up in finite time
[79]. This blowup is due to a breakdown in the assumptions leading to the Benney equation and is
not physical. In simulations the Reynolds number is kept sufficiently small to avoid this blowup.
In this section we investigate the fates of the solutions of Eq. (7) depending on the values of the
dimensionless parameters.

1. Finite-time rupture: K = 0

When K = 0 we observe that the generic behavior of solutions to Eq. (7) is to rupture (h → 0) at
a finite point xr and finite time tr . This rupture will correspond to a singularity of the solution, as the
time and space derivatives will become infinite at the rupture point. The behavior close to rupture
can be found by performing the similarity transformation

h(x, t ) = (tr − t )α f (ξ, s), ξ = x − xr

(tr − t )β
, s = − ln(tr − t ). (20)

Under this transformation we obtain ∂t h = (tr − t )α−1(∂s f − α f + βξ∂ξ f ) and each term in Eq. (7)
is scaled by a power of (tr − t ). The exponents α and β are determined by balancing the time
derivative term with surface tension [proportional to (tr − t )4α−4β ] and Marangoni or vapor recoil
terms [proportional to (tr − t )α−2β ]. Thus, we can write

α − 1 = 4α − 4β = α − 2β ⇒ α = 1
3 , β = 1

2 .

Under this scaling, it can be easily checked that every other term in Eq. (7) is multiplied by a higher
power of (tr − t ) and is thus negligible in the limit that rupture is reached, t → tr . In particular,
this rupture will occur independently of the presence of evaporative mass loss (Ē > 0) and shear
(τ > 0).

Close to rupture, the scaled profile satisfies

∂s f − 1
3 f + 1

2ξ∂ξ f + ε∂ξ [(M + Vr )∂ξ f + S̄ f 3∂ξξξ f ] = 0, (21)

where the neglected terms go to zero as s → ∞ (t → tr). For instance, the evaporative mass loss
term will be proportional to (tr − t )1−2α = (tr − t )1/3 → 0, while the shear stress term will be
proportional to (tr − t )1+α−β = (tr − t )5/6 → 0. The parameters ε, M, Vr , and S̄ may be scaled
out by taking

ξ = ε1/2(M + Vr )1/2X, f = ε1/3(M + Vr )2/3S̄−1/3F (22)

so that we obtain

∂sF − 1
3 F + 1

2 X∂X F + ∂X [(∂X F + F 3∂XXX F ] = 0. (23)

The thin-film equation corresponding to Eq. (23) is a special case of the family of thin-film-type
equations with similarity solutions considered in Dallaston et al. [55]. In their work it was shown
that Eq. (23) has an infinite number of steady states (∂sF = 0), corresponding to similarity solutions,
the first of which is linearly stable. This situation is qualitatively similar to the rupture due to van
der Waals attraction [76,77], and the connection between that problem and Eq. (23) was made in
Ref. [55] via numerical continuation. The existence of a stable similarity solution implies that the
rupture behavior of Eq. (7) is universal in the K = 0 case.

We demonstrate the convergence to the universal rupture profile by solving Eq. (7) numerically
until rupture and rescaling the interface data and spatial coordinate at each point in time using
the transformations represented by Eqs. (20) and (22). Figure 15(a) shows the rescaled numerical
interface of a film free of any gas shear (τ = 0) at t ′

r = tr − t = 2.596, in comparison to the
analytical self-similar solution to Eq. (23). The numerical and analytical profiles are divergent from
each other, which is attributed to the fact that at this point in time the interface is still not close
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FIG. 15. Scaled numerical interface compared to the analytical self-similar solution of Eq. (23) at different
times towards rupture for K = 0, β = 0, Re = 1, M = 0.5, Ē = 0, Vr = 1, t f = 0, and (a)–(c) τ = 0 and
(d)–(f) τ = 0.3: (a) t ′

r = 2.596, (b) t ′
r = 1.096, (c) t ′

r = 0.01, (d) t ′
r = 5.099, (e) t ′

r = 1.599, and (f) t ′
r = 0.01.

Note that t ′
r = tr − t .

enough to rupture to satisfy the assumptions upon which Eq. (23) is based. However, as the value
of t ′

r decreases and h → 0, the scaled numerical profile approaches and eventually agrees with the
analytical one, as seen in Figs. 15(b) and 15(c), respectively.

Figures 15(d)–15(f) compare the numerical and analytical profiles at different values of t ′
r for the

same parameter set, but with an applied gas shear (τ = 0.3), where the same dynamic is observed.
Note that when the film is not close to rupture, the scaled numerical profiles corresponding to
the cases with and without gas shear are dissimilar due to the effect of the nonzero shear stress
being significant at these film thicknesses. However, as the film approaches rupture the role of the
shear stress is severely diminished to the extent where it becomes negligible [see Figs. 15(c) and
15(f)]. This ultimately goes to show that the rupture mechanism for K = 0 is indeed universal. Note
that if K is small but nonzero, the solution to Eq. (7) will initially tend to the stable similarity
solution of Eq. (20) until h and K are comparable in size, after which a new dynamic regime
appears. We demonstrate this numerically by computing the scaled numerical interface as the film
approaches rupture for K = 0.03 (see Fig. 16). As h → 0, the scaled numerical solution approaches
the analytical solution, as seen in Figs. 16(a)–16(c). However, as h becomes smaller than K , the
numerical solution departs from the analytical profile and exhibits new dynamic behavior [see
Figs. 16(d)–16(f)].

2. Nonsingular rupture: K > 0 and Ē > 0

The similarity solution discussed in Sec. IV D 1 is valid if K = 0 or in the intermediate time when
min(h) � K . However, when h � K , the dynamics will be different and the behavior depends on
whether the evaporative mass loss terms are present (Ē > 0) or absent (Ē = 0). When Ē > 0, the
evaporative mass loss term cannot be neglected in any self-similar analysis. However, this term is not
a destabilizing term and we do not see the universal self-similarity that results from the competition
between surface tension and Marangoni or vapor recoil forces. Instead, the thickness goes to zero at
a point with finite speed (∂t h ∼ −Ē/K ) without the appearance of any singularities in the solutions.
This conclusion is corroborated numerically in Fig. 17, where it is seen that the scaled numerical
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FIG. 16. Scaled numerical interface compared to the analytical self-similar solution at different times
towards rupture for K = 0.03, β = 0, Re = 1, M = 0.5, Ē = 0, Vr = 1, τ = 0, and t f = 0: (a) t ′

r = 4.939,
(b) t ′

r = 1.939, (c) t ′
r = 0.121, (d) t ′

r = 0.007, (e) t ′
r = 0.003, and (f) t ′

r = 0.001. Observe the deviation from
the analytical self-similar solution in plots (d)–(f) and the appearance of the new dynamic behavior. Note that
t ′
r = tr − t .

interface does not go towards the self-similar solution but instead flattens out, indicating nonsingular
rupture.

3. Infinite-time rupture: K > 0, Ē = 0, and τ � 0

If K > 0 and Ē = τ = 0, we find the most important terms again come from balancing the time
derivative with the Marangoni force and the surface tension. However, due to the effect of K on the
Marangoni term, we obtain the approximate behavior

∂ht + ε∂x

[M
K2

h2∂xh + S̄h3∂xxxh

]
. (24)

For this equation an infinite-time, rather than finite-time, similarity ansatz is appropriate:

h(x, t ) = t−α f (ξ, s), ξ = tβ (x − x0), s = ln t . (25)

FIG. 17. Scaled numerical interface compared to the analytical self-similar solution at different times
towards rupture for K = 0.2, β = 0, Re = 1, M = 0.5, Ē = 0.05, Vr = 1, τ = 0, and t f = 0: (a) t ′

r = 1.829,
(b) t ′

r = 1.079, and (c) t ′
r = 0.014. Note that t ′

r = tr − t .
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FIG. 18. Film evolution close to rupture for K = 0.4, β = 0, Re = 1, M = 0.5, Ē = 0, Vr = 1, and t f = 0.
(a) Scaled numerical interface for τ = 0 at different values of t ′

e = tend − t . (b) Minimum interface height versus
time for τ = 0 and τ = 0.3. (c) Chaotic interface evolution for τ = 0.3 at t = 286.1.

Balancing the three terms gives α = 1 and β = 1/2, resulting in the equation

∂s f − f + 1

2
ξ∂ξ f + ε∂ξ

[M
K2

f 2∂ξ f + S̄ f 3∂ξξξ f

]
= 0. (26)

All other terms in Eq. (7) are of lower power in t and therefore negligible in the limit t → ∞. As
previously observed in Refs. [52,53], the behavior of Eq. (24), as time becomes large, is to form
an infinite cascade of geometrically shrinking oscillations as h → 0. This likely corresponds to the
existence of a periodic (in s) solution to Eq. (26) for this phenomenon observed in finite-time rupture
[55].

On the other hand, if K > 0 and Ē = 0 but τ > 0, the nonzero shear stress has the effect of
removing the infinite-time rupture solution. If we carry out the similarity transformation as in
Eq. (26) but have nonzero shear, we obtain

∂s f − f + 1

2
ξ∂ξ f + ε∂ξ

[M
K2

f 2∂ξ f + S̄ f 3∂ξξξ f

]
+ t1/2∂ξ

[
τ

2
f 2

]
= 0. (27)

The positive power of t on the shear term implies that the cascading similarity solution cannot be
reached. In this case, it is observed that the solutions evolve chaotically as the film becomes very
thin.

Figure 18(a) shows the scaled numerical interface at different times towards rupture. As h → 0,
the scaled numerical interface’s oscillations form a geometric hierarchy which repeats for a van-
ishing spatial coordinate. Since the film in this case ruptures in infinite time, note the usage of
t ′
e = tend − t instead of t ′

r , where tend is the value of time at which the numerical solution stopped.
Figure 18(b) plots the minimum interface height versus time for τ = 0 and τ = 0.3. It is observed
that in the case of τ = 0, hmin approaches zero asymptotically, which is consistent with infinite-time
rupture. However, for nonzero shear (τ = 0.3), hmin behaves erratically when it becomes small.
This chaotic interface evolution is further highlighted by plotting the fluid interface in this regime
(i.e., t = 286.1), as shown in Fig. 18(c).

V. CONCLUSION

We have studied the effects of a shearing gas on the evolution of an evaporating liquid film via
linear stability theory, numerical simulation, and self-similarity analysis. The one-sided model of
Burelbach et al. [20] was used to account for the evaporation of the fluid film, while the shear stress
imparted by the gas on the free interface was prescribed as a constant quantity, denoted by τ , whose
role was confined to modifying the base flow. The main difference of our work lies in investigating
the effects of a shearing gas on the temporal and spatiotemporal stability of perturbations caused by
thermal effects including thermocapillary and evaporation forces.
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Through a linear stability analysis we found that (i) the shear gas’s influence is much more
pronounced on the temporal growth rate of the inertial H-mode instability and (ii) its influence
depends on whether the fluid film under consideration is moving (β �= 0) or stationary (β = 0).
In a moving film the shear stress modifies the flow’s existing inertia and therefore affects both the
temporal growth rate and the perturbation phase speed, while in a stationary film it only changes
the perturbation phase speed. We found that for a sufficiently negative value of τ the H-mode
instability is completely suppressed. This result qualitatively matched that found by Lavalle et al.
[38], who used a more complex model (limited to isothermal films), combined with experimental
validation. We also investigated how the evaporation and consequent thinning of the film affects
the perturbations and their relationship with the shearing gas. We found that the thinning of the
film in general suppresses the H-mode instability, but enhances the thermal instability mode. The
influence of the shearing gas on both these instability modes is diminished as the film thins due
to the increasing dominance of viscous forces. Additionally, the thinning of the film results in a
reduction in perturbation phase speed, indicating a resistance for the convection of the perturbations
and possibly a transition into the absolute instability regime. Our subsequent spatiotemporal analysis
confirmed this result, showing that the ability of the base flow to advect the perturbations away from
their origin is diminished as the film thins. However, we found that the thinning of the film results
in the activation of new modes with higher group velocities, resulting in an overall faster spread of
the perturbations via their own mechanism.

The interface evolution equation was solved numerically to study the film’s evolution when
subject to finite perturbations. A set of dimensionless parameters was chosen to show the evolution
of the flow dynamics of an evaporating film from stable to convectively unstable and ultimately
to absolutely unstable. A temporal analysis showed that the dynamic behavior observed in the
linear regime persists qualitatively for finite perturbations. Moreover, a subsequent spatiotemporal
investigation demonstrated the effects of the film thinning due to evaporation on its evolution,
where it was shown to cause a transition in the type of instability from convective to absolute.
Additionally, the impulse response wave packets were computed numerically for finite perturbations
where we found that, in the case of weaker thermal instabilities, the linear and nonlinear responses
are different. In particular, the nonlinear absolute growth rate is higher than its linear counterpart,
indicating that finite perturbations are relatively less convective than infinitesimal disturbances.
Consequently, according to Dee and Langer’s [75] criterion, the front velocities of nonlinear
instabilities are nonlinearly selected as they are imposed by the nonlinearly saturated wave packet.
On the other hand, when the thermal mode instability is relatively strong the linear and nonlinear
wave fronts converge, suggesting that the wave-front dynamics are dictated by infinitesimal modes
governed by the linear dispersion relationship.

Finally, we investigated the role of the dimensionless shear stress, among other dimensionless
parameters, on the rupture mechanism by means of a self-similarity analysis, which was compared
to the scaled numerical simulation data. Our results showed that the dominant parameters in
determining the fates of the solutions to the evolution equation are the equilibrium parameter K , the
evaporation number Ē , and the constant shear stress τ . In the case of K = 0 the film ruptures in finite
time where this rupture mechanism is universal. When K is nonzero but small the solutions to the
evolution equation will approach the stable self-similarity solution until h and K are comparable in
size, beyond which a new dynamic behavior is detected. On the other hand, when K > 0 and Ē > 0
the film thickness goes to zero at a point with finite speed ∂t h ∼ −Ē/K without the appearance of
any singularities in the solutions. Again we find this rupture mechanism to be universal regardless of
the value of τ . Furthermore, in the case of K > 0 and Ē = 0, the film ruptures in infinite time, where
our analysis identified the appearance of an infinite cascade of geometrically shrinking oscillations
when τ = 0 and chaotic evolution when τ > 0.

The introduction of a shearing gas into the problem of an evaporating thin liquid film adds a
great deal of complexity and richness to an already interesting problem, which has ample room
for further investigation beyond our present work. Due to the limitations of the Benney equation,
improved models could be used to capture the interface evolution with a higher degree of accuracy
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and for higher Reynolds numbers such as the models utilizing the weighted-residual methods
developed by Ruyer-Quil and Manneville [12,13]. Additionally, the small wave number limit
could be overcome by introducing the shearing gas effects into the Orr-Sommerfeld eigenvalue
problem for an evaporating liquid film, as done by Mohamed and Biancofiore [22]. The results
obtained from these improved models could be then compared to those obtained via the direct
numerical simulation of the two-phase problem, via ad hoc algorithms developed for evaporating
flows [80].

Moreover, the limitations of our shearing gas model could be overcome by considering the full
interaction between the shearing gas and the liquid film using more advanced models such as those
formulated by O’Náraigh et al. [48] and Vellingiri et al. [43]. These formulations would allow
including the role of the normal stress imparted by the gas on the film’s surface. In addition, it
would be possible also to focus specifically on the interaction between a turbulent gas and the
thermal instabilities. For instance, the three-dimensional effects of the turbulent gas could have a
significant effect on other instability modes such as the transverse P mode [19]. These enhanced
models would also allow studying the role of practically relevant effects such as film confinement.
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