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Threads of colloidal dispersions can be formed in microfluidic channel systems and
are often used for analytical purposes or to assemble macroscopic structures from col-
loidal particles. Here, we report a combined experimental and numerical study of thread
formation in channel systems with varying geometry. In the reference flow-focusing
configuration, the sheath flows impinge the core flow orthogonally while in four other
channel configurations, the sheath flows impinge the core flow at different confluence
angles, which are both positive and negative with respect to the reference sheath di-
rection. Tomographic measurements of the thread development are made using optical
coherence tomography (OCT) and are compared to numerically simulated 3D data. The
numerical simulations performed with an immiscible fluid solver show good agreement
with the experiments in terms of 3D thread shapes, wetted region morphologies, and
velocity fields provided an ultralow interfacial tension is applied between the low viscosity
(solvent) sheath flows and the high viscosity (dispersion) core flow. Such an ultralow
interfacial tension is motivated by the so-called Korteweg stresses induced as a result
of the concentration gradient between two miscible fluids in nonequilibrium state. These
stresses mimic the effect of interfacial tension, and are often modeled as an effective
interfacial tension (EIT), an approach chosen in the present work as well. The value of
interfacial tension applied in the simulations was determined through an optimization
procedure and compares well with a value deduced from a scaling analysis utilizing the
downstream development of experimentally determined thread shape. The experimental
and numerical results show that for channel configurations with modest deviations from
orthogonal sheath flows, the effect on the thread is similar regardless of whether the
sheath flows are co- or counterflowing the core flow. In fact, for these cases, the ef-
fect of co- and counterflowing sheath flows can be reproduced with orthogonal sheath
flows, if the sheath channel width is increased. However, for channel configurations
with larger deviations from orthogonal sheath flows, the effects on the thread are direc-
tion dependent. The one-to-one comparison and analysis of numerical and experimental
results bring useful insights to understand the behavior of miscible systems involv-
ing high-viscosity contrast fluids. These key results provide the foundation to tune the
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flow-focusing for specific applications, for example in tailoring the assembly of nanostruc-
tured materials.

DOI: 10.1103/PhysRevFluids.6.114001

I. INTRODUCTION

A boundary between two fluids (here, the term fluid is used in a generic form, encompassing both
molecular liquids and suspensions) is identifiable, irrespective of whether the fluids are immiscible
or miscible. In the case of immiscible fluids, the boundary zone is clearly distinguished through
a distinct interface created by the equilibrium interfacial tension acting between the two fluids. In
the context of miscible fluids, no such distinct interface exists as the two fluids are fully mixed
at equilibrium. However, when two miscible fluids come into contact, a boundary between them
can persist till an equilibrated homogeneous mixture have been formed due to diffusive mixing.
This boundary zone can act as a de facto interface with some of its properties resembling that of a
distinct interface observed between immiscible fluids [1–5]. In 1901, Korteweg first proposed that
when two nonpremixed miscible fluids are brought into contact, the composition inhomogeneties
and gradients of the fluid property at the zone of contact gives rise to additional stresses (so-called
Korteweg stresses). These stresses effectively mimic capillarylike stress effects [6] across the
boundary zone that can be seen as a sharp de facto interface. Accordingly, analogous to the
interfacial tension γ in the immiscible fluids, an effective interfacial tension (EIT) for miscible
fluids in nonequilibrium state, commonly denoted as �e [7,8] can be written as

�e = K
��2

δ
, (1)

where K is the Korteweg factor accounting for the relevant interaction effects (e.g., particle-solvent
interactions in miscible complex fluids) between the two fluids, δ is the interface thickness and ��

is the variation in composition or volume fraction �. As can be seen from Eq. (1), �e exists as long
as the composition gradients persist at the de facto interface, and as the interface smears out due to
diffusion over time, the EIT goes to zero.

Following Korteweg’s work, numerous experimental [9–11] and numerical investigations
[12–14] in the extant literature have invoked the phenomenon of EIT to rationalize the behavior
of multi-fluid dynamical processes occurring at short times in nonequilibrium miscible systems. A
few examples are microgravity experiments [15], evolution of miscible droplets [16,17], modeling
of hydrodynamic instabilities like viscous fingering or in Hele-Shaw flows [18,19], stabilization of
Rayleigh-Taylor instabilities induced by evaporation between a polymer solution and its own solvent
[20] and so on. Some of the recent experimental techniques explored to measure the EIT between
miscible fluids are through the evolution of drop shape [21,22], examination of hydrodynamic
instabilities [7,23], and probing of capillary waves by light scattering [24,25]. In spite of these
attempts, measuring the EIT between miscible fluids is intrinsically difficult due to ultralow values
(�e ∼ 10−4–101 mN m−1) and absence of a distinct interface [7,8,26].

For miscible systems, the Péclet number Pe = Uh/D is the relevant nondimensional quantity to
measure the relative importance of convective and diffusive effects, with U being the flow velocity,
h the characteristic length, and D the diffusion coefficient between the two fluids [5,27]. When
a pair of miscible fluids is passed through a flow-focusing channel, the Péclet number dictates the
flow-patterns. Flow-focusing essentially comprises a core fluid in the central channel focused by the
sheath fluid [28,29] entering from the side-channels as shown schematically in Fig. 1(a). At high
Péclet number under laminar flow conditions, where diffusion is almost negligible, viscous threads
are formed, while at low Péclet number, the threads undergo diffusive instabilities leading to a wide
diversity of flow-patterns [28,30,31]. It is even observed that the miscible threads at high Péclet
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FIG. 1. (a)–(e) Schematic illustration of the top view of geometrically varying flow-focusing channel
configurations with various confluence angles β. The red color represents the core fluid entering the central
inlet channel with a volumetric flow rate Q1. The light cyan color denotes the sheath fluid entering from the
side inlet channels at an angle β with a flow rate of Q2/2 in each channel. The central channel has a square
cross-section with sidelength h.

number is equivalent to the multi-fluid viscous flow problem, and could be employed to examine
and realize the role of diffusion [29,32].

For a high Péclet number system, with a colloidal dispersion as the core fluid and its own
solvent as the sheath fluid, we have detected and reported that the characteristics of spatial thread
evolution could be accurately captured and modeled as an immiscible fluid problem with a very
weak interfacial tension γ for a set of flow rates and specified rheology of the two fluids [33].
Ideally, at high Péclet number, the timescale for interdiffusion between the colloidal dispersion and
its own solvent is almost negligible compared to the convective timescale of the two fluids in the
channel. In such a scenario, presence of a sharp de facto interface due to composition gradients
is expected in the experiments [5,7,8]. However, it is extremely difficult to access such a sharp de
facto interface between the two fluids experimentally. The miscible viscous thread structures formed
at high Péclet number are in an out-of-equilibrium state and occur before the two fluids are fully
mixed.

In such occurrences, it is possible to reckon the de facto interface by applying a weak interfacial
tension γ in numerical modeling. In reality, the weak interfacial tension γ accounts for the Korteweg
stresses induced by the composition gradients in the experiments. In the previous work [33], the
experimental observations were reproduced numerically with a very weak interfacial tension γ

(O ∼ 10−2 mN m−1). Moreover, the magnitude of γ corroborated with the experimental measure-
ments of previous studies conducted for miscible complex fluids involving colloidal dispersions or
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polymer solutions and its own solvent [8,26]. Thus, it was established that the very weak interfacial
tension γ acts as an effective interfacial tension in the experiments with γ ≡ �e.

Furthermore, for a finite length of the channel, the estimation of time and length scales derived
from a scaling model [33], showed the streamwise spatial evolution of the high-viscosity thread from
near-ellipsoidal cross-section to circular shape was found to be dependent on ultralow interfacial
tension. Similar to the capillary number in immiscible systems, an effective capillary number based
on �e for the nonequilibirum miscible system could be defined as

Cae = ηQ

h2�e
, (2)

where η is the dynamic viscosity, Q is the flow rate of the core fluid thread, and h is the width of
channel. Thus, when the streamwise spatial coordinate is normalised with Cae, the spatial evolution
of the thread heights at different γ (�e) collapse on to a master curve. In other words, in the
framework of Korteweg’s theory for miscible fluids, employing a microfluidic flow-focusing setup,
we have proposed a methodology with a possibility to determine the EIT between two miscible
fluids. In short, �e can be estimated by measuring the spatial evolution of the thread shape formed
by these two fluids, and equating it with the master curve. However, this method was not yet fully
exploited.

In the present work, we widen the studies of viscous thread formation at high Péclet number
in miscible environments into a systematic investigation employing geometrically varying flow-
focusing setups with a confluence angle β as illustrated in Fig. 1. The Confluence angle β refers to
the angle made by the side (sheath) flow channel inlets with the central (core) flow channel inlet.
We characterise the flow in three dimensions (3D) both experimentally and numerically employing
optical coherence tomography (OCT) and volume of fluid (VoF) method [34] implemented in the
open-source code OpenFOAM [35].

There are three profound objectives for this study. The first is to investigate the effect of
confluence angles on the 3D shape of the thread structures. Here, we aim to understand the influence
of sheath fluid impingement and geometrical channel effects on the thread formation and wetted
region morphologies. Through this, we address an important aspect: whether the process of thread
detachment from the top and bottom walls of the channel in miscible systems [28,32] occurs (i)
naturally through the self-lubrication principle [30], a phenomenon associated with the effect of
viscous dissipation of energy and originally observed in core-annular flow involving high-viscosity
contrast immiscible fluid pairs [3,36], or (ii) through some other mechanisms with respect to high-
viscosity contrast miscible fluid pairs. The effects of confluence angle β could also be potentially
useful to understand how the sheath flow momentum affects the system, and identify the means to
achieve efficient extensional flows. The second objective is, to exploit the experimentally measured
3D spatial evolution of the thread shape together with an effective capillary number dependent
master curve to estimate an experimentally intractable variable, namely the �e between two miscible
fluids. The final goal is to bring out the implications of ultralow interfacial tension in general and
EIT in particular in microfluidic flow systems. In addition to these, a valuable feature of microfluidic
flows is demonstrated, where the 3D flow characteristics of different confluence angle geometries
can be replicated with a geometry of β = 90◦ by altering the sheath flow channel widths. The
present study also illustrates how additional insights into the physical mechanisms acting in the
complex microfluidic systems can be gained from a diligent analysis of numerical calculations.
These insights are difficult to ascertain in experiments due to inherent composition-dependent fluid
properties.

As the experimental fluids, similar to our previous work [33], we use a colloidal dispersion for
the core and its own solvent as the sheath fluid. The ingredients of the colloidal dispersion consists
of cellulose nanofibrils (CNF) dispersed in water. Such nanofibrils have been assembled into high-
performance structural cellulose filaments via hydrodynamic focusing [37,38]. Understanding the
underlying flow behavior among various geometrical configurations is critical for controlling the
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hydrodynamic assembly [39,40]. Moreover, these colloidal systems exhibit variant composition-
dependent fluid properties based on particle structure and interparticle interactions, and the �e for
such colloidal dispersion and its solvent system is expected to vary considerably [8,41].

The organization of the paper is as follows. In Sec. II, we give an overview of the experimental
setup and a brief outline of the numerical method. In Sec. III A, we compare and discuss the
numerical and experimental 3D thread topologies and wetted region morphologies on the top and
bottom walls for various flow-focusing configurations emphasizing the role of confluence angle β.
In Sec. III B, we briefly recall the scaling model, and the master curve, and use it to estimate the
�e for the present experimental fluids. The estimated �e, in turn, is verified with the value of �e

obtained through an optimization procedure. In Sec. III C, numerical and experimental results of the
centreline velocity is compared. Further, a numerical comparison of strain rates along the centreline
in different geometrical configurations is undertaken to dissect the effects of confluence angle β

on the flow-field. In Sec. IV, replicability of the 3D flow features of different confluence angles
β in modified flow-focusing channels with β = 90◦ is presented. In Sec. V, a remark highlighting
the significance of EIT in microfluidic channels is elucidated, and finally a brief summary of the
conclusions is provided in Sec. VI.

II. EXPERIMENTAL AND NUMERICAL SETUPS

A. Experimental setup

1. Flow-focusing geometries

In this work, we employ five distinct types of flow-focusing channel setups. The setups are planar
with square cross-sections of side-length h = 1 mm and have the geometrical configurations as
shown in Fig. 1. All the geometries have one main central inlet channel for the core flow and two
sheath flow inlets inclined with a confluence angle β. The confluence angle is varied between 30◦
and 150◦ with an interval of 30◦, to systematically investigate the impact of sheath flow impingement
and channel effect on the core fluid 3D thread topology and flow-field.

All the channel geometries are built using a stainless-steel plate of 1 mm thickness sim-
ilar to our previous works involving flow-focusing configuration with confluence angle β =
90◦ [33,37,39,40]. The steel channel plate is enclosed on both sides with layers of alu-
minum plates and a cyclic olefin copolymer (COC) film forming an assembly of “aluminum
plate–COC–steel channel–COC–aluminum plate” sandwich. The fluids are injected at constant
volumetric flow rates into the core and sheath flow channel inlets by two syringe pumps (WPI,
AI-4000). Furthermore, all the geometrical configurations [Figs. 1(b), 1(c) and 1(d), 1(e)] will be
discussed in relative to the reference configuration [Fig. 1(a)], and this choice will be clarified in
Sec. III A.

In all the configurations, the experimental measurements are performed at constant volumetric
flow rates (see Fig. 1) with Q1 = 6.5 mm3 s−1 and Q2 = 7.5 mm3 s−1, respectively. The core fluid
is a colloidal dispersion exhibiting a non-Newtonian viscosity behavior as shown in Fig. 2. The
sheath fluid is a deionized (DI) water of viscosity η2 = 1 mPa s.

2. Dispersion material and its rheological properties

The colloidal dispersion is composed of cellulose nanofibrils (CNF) suspended in water. Cellu-
lose nanofibrils were obtained by liberating fibrils from never dried sulfite softwood pulp (Domsjö
Fabriker AB, Sweden) supplied by RISE (Research Institute of Sweden). Before defibrillation,
never dried sulfite softwood pulp was subjected to TEMPO-mediated oxidation following the
protocol described elsewhere [42,43]. Thereafter, defibrillation of the oxidized pulp was carried
out by passing through a high pressure (1600 bars) Microfluidizer (M-110EH, microfluidics) with
400/200 μm (one pass) and 200/100 μm (four passes) wide chambers connected in series. The
resulting output is a cellulose nanofibril dispersion of 1 wt%. Finally, a transparent colloidal
dispersion of concentration 3 g dm−3 was obtained by further dilution from 1 wt% to 0.3 wt% and
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FIG. 2. Shear viscosity measurements of the colloidal dispersion represented by red dots. The solid black
line represents the non-Newtonian Carreau model fit [see Eq. (3)], and the vertical dashed-dotted line denotes
the critical shear rate γ̇crit for the dispersion.

homogenization by an Ultra-Turrax dispersing tool (IKA, Sweden) for 10 min at 12 000 revolutions
per minute. The typical fibril lengths L vary from 100–1500 nm, and the average fibril diameter d
is 2.3 ± 0.7 nm as determined by Atomic Force Microscopy (AFM, Dimension 3100 SPM, Veeco,
USA) measurements.

The rheological characterization of the colloidal dispersion was performed using a bob and cup
Kinexus pro+ rheometer (Malvern). This rheometer is well suited for accurate measurements of
viscosity (indicated by red dots) over a range of shear rates, as observed in Fig. 2. The dispersion
displays a non-Newtonian shear thinning behavior [44–46].

The rheological data can be described well by a Carreau model

ηeff = ηinf + (η0 − ηinf )[1 + (τ γ̇ )2]
n−1

2 , (3)

where ηeff is the shear viscosity, ηinf the infinite shear viscosity, η0 the zero shear viscosity, τ the
relaxation time, γ̇ the shear rate, and n the power index. The parameters of the Carreau model
fit denoted by the solid black line in Fig. 2 are as follows: ηinf = 12 mPa s, η0 = 4500 mPa s,
τ = 1.306 s, and n = 0.16.

The shear thinning behavior is the consequence of microstructural rearrangements observed
in the colloidal dispersion resulting from fibril and solvent molecular interactions, electrostatic
interactions or due to effects of Brownian motion and fibre entanglement [47]. As the dimensions
of the fibrils are very small, Brownian motion along with the entanglement effects is dominant
over other interactions. At low shear rates, the microstructure of the fibrils are in disordered or
isotropic arrangement. Once the shear rates are high enough to overcome Brownian effects, fibrils
tend to reorganize by aligning and orienting toward the flow direction. As a result, the viscosity
starts to decrease at a particular critical shear rate γ̇crit indicating the onset of shear thinning. The
critical shear rate can be obtained by taking the inverse of the orientational relaxation time of fibrils,
γ̇crit = τ−1

r where τr = 1/(6Dr) [48]. The orientational relaxation time of a Brownian system can
be estimated by calculating the rotational diffusion coefficient Dr , which is a measure of the rate at
which a anisotropic system relaxes toward isotropy.
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The rotational diffusional coefficient for a fibril of length L in a polydisperse system close to
isotropy, could be approximated as [39,40,49,50]

Dr (L) ≈ β̃kBT L4
∗

ηL7
, (4)

where β̃ is a numerical factor �1000 [51–53], the Boltzmann constant kB = 1.38 × 10−23 J K−1,
the temperature T = 300 K, the solvent viscosity ηs = 1 mPa s. The entanglement length L∗ is
defined as [49,50]

L∗ =
(∫ +∞

0
c̃(L)LdL

)−1/2

, (5)

where c̃ is the concentration distribution dependent on fibril length L. The entanglement length L∗
indicates if the fibrils are in a dilute (not entangled, cL3 	 1, c being concentration of fibrils,
L < L∗) or semidilute regime (1 	 cL3 	 L/d , entangled, L > L∗). More details related to
L∗ can be found in Refs. [39,40]. For the present colloidal dispersion, L∗ ≈ 45 nm, and all the
fibril lengths L > L∗, fall in the semidilute regime. Substituting all the values in Eq. (4), for an
average fibril length L ∼ 750 nm, the rotational diffusional coefficient close to isotropy becomes
Dr ≈ 0.126 rad2 s−1. Thus, γ̇crit is approximated to be around γ̇crit = 6Dr � 0.80 s−1 as depicted
in Fig. 2.

Thus, the low shear viscosity, i.e., zero shear viscosity η0 of the colloidal dispersion is considered
near to the critical shear rate γ̇crit estimated as per the Eq. (4) (see Fig. 2). The viscosity ratio between
the core and sheath flow defined as χ = η1/η2 = 4500 is arrived based on the zero shear viscosity
η0 of the core fluid, i.e., η1 = η0 = 4500 mPa s, and η2 = 1 mPa s, being the viscosity of sheath
fluid.

3. Péclet number estimation

To verify whether a de facto interface persists in the experimental system, timescale analysis
is carried out by estimating the Péclet number based on the characteristic length scale h of the
channel system [5,27]. The translational diffusion coefficient D for Brownian fibrils of average
length L ∼ 750 nm and diameter d ∼ 2.3 nm diffused in a solvent of water is given as [48]

D = kBT ln(L/d )

2πηl
, (6)

where the temperature T = 300 K, the Boltzmann constant kB = 1.38 × 10−23 J K−1, and
the solvent viscosity η = 1 mPa s. Substituting all the values, D becomes approximately 5 ×
10−12 m2 s−1. The Péclet number is estimated as Pe = Uh/D ≈ 2 × 106 for an average
flow velocity of U ≈ 10 mm s−1. Thus, as the Péclet number is very large, the timescale for
the interdiffusion between the core fluid and sheath fluid is almost negligible compared to the
convection timescale of the two fluids in the channel. Therefore, in such an event, a sharp de facto
interface between the two fluids is likely to exist in the experiments [3,5]. Here, in the present
experiments, a sharp de facto interface could exist only as long as the composition gradient of a
fluid property is at hand, where EIT is expected to be present [8,41]. Moreover, the properties of
such de facto interface can be associated to a distinct interface [2–5] between two immiscible fluids,
wherein the two fluids, the core fluid (colloidal dispersion) and sheath fluid (water), could exhibit a
near-immiscible behavior.

In addition, the rheological behavior of the colloidal dispersion is also controlled by the fact
that the nanofibrils form a percolating volume spanning arrested state at very low concentrations
[54]. This, in turn, makes the diffusion of nanofibrils into the surrounding sheath flows very slow
compared to the timescales of the dynamics in the flow-focusing channel, making the Korteweg
stresses long-lived.

114001-7



GOWDA, RYDEFALK, SÖDERBERG, AND LUNDELL

4. Data acquisition method

Three-dimensional core fluid thread topologies and the velocity field measurements are carried
out by employing an light-based spectral domain optical coherence tomography. Optical coherence
tomography (OCT) is a noninvasive volumetric imaging technique that uses a broadband light
source, and operates based on the principle of low-coherence interferometry [55]. Utilising the
Doppler principle, OCT can simultaneously capture the structural properties as well as the motion
of opaque and turbid media sample with micron-level resolution [56,57]. The wavelength of the
light source of the spectral domain OCT used in the present work is 1310 nm with a bandwidth
of 270 nm, and a resolution of ∼3 μm in both the axial and transverse directions. More details
related to the working principle of OCT, subsequent data acquisition and processing employed for
the present study is described in Ref. [33].

In the present work, the 3D experimental measurements are performed for all the flow-focusing
configurations illustrated in Fig. 1 with the above mentioned fluid properties. These experimental
measurements will be used in Secs. III A and III C for cross-comparison with the numerical
observations, and in Sec. III B to measure the experimentally acting �e between the colloidal
dispersion-solvent system.

B. Numerical setup

The numerical computations have been performed by utilizing a recently developed finite volume
based geometric volume of fluid (VoF) method, an interface advection algorithm called isoAdvector
[34,58]. The implementation of the algorithm is incorporated in interIsoFoam, a two-phase incom-
pressible immiscible open-source flow solver which is a part of the OpenFOAM community [35].
The algorithm accurately captures and advects the sharp interface, a key aspect in the numerical
computation of multiphase flows. The rationale behind choosing the immiscible fluid solver was
elucidated in the introduction, and will be again clarified in the upcoming Sec. V. The set of
equations being solved for an immiscible system of two fluids are the continuity equation

∇ · U = 0, (7)

and the Navier-Stokes equation together with the continuum representation of an interfacial tension
force Fs [59],

∂ρbU
∂t

+ ∇ · (ρbUU ) = −∇p + ∇ · T + Fs, (8)

Fs = γ κ (∇α), (9)

where γ is the interfacial tension and κ is the curvature of the interface

κ = −∇ ·
( ∇α

|∇α|
)

, (10)

and the equation for the advection of phase and volume fraction α

∂α

∂t
+ ∇ · (αU ) = 0. (11)

Here T represents the deviatoric stress tensor, U is the velocity vector field and p is the pressure
field. The density ρb and viscosity μb are computed as ρb = ρ1α + ρ2(1 − α), μb = μ1α + μ2(1 −
α) based on the weighted average distribution of the volume fraction α of fluid where ρ1, ρ2, μ1, μ2

are the densities and the viscosities of the two fluids, respectively.
In the present study, 3D numerical computations are performed for the geometrical configu-

rations illustrated in Fig. 1. At the channel walls, a no-slip velocity boundary condition and a
contact angle of θ = 0◦ is imposed for the phase field. A uniform velocity flow profile is prescribed
at the core and sheath flow channel inlets based on the flowrates of Q1 = 6.5 mm3 s−1 and
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Q2 = 7.5 mm3 s−1. At the channel outlet, pressure is set to atmospheric, and zero gradient for
the volume fraction. The non-Newtonian Carreau model depicted in Fig. 2 is implemented for the
rheology of the core fluid while the viscosity of water η2 = 1 mPa s is set for the sheath fluid.

The numerical computations are performed on Cartesian meshes. The size of the computational
domain comprises of three inlet channels of length 5h and an outlet channel of length 30h with
a square cross-section of width h = 1 mm. The inlet channel domains are discretized with a
unidirectional grid along the channel length and an equidistant grid spacing across the cross-section.
The outlet channel domain has an equidistant grid spacing of � = 2 × 10−5 m (�x = �y = �z)
both along the channel length and across the square cross-section. An adaptive time step method is
used to achieve the stability and convergence of the computations. The computations were run on
256 processors, and the simulations took 48 hours. For additional details concerning to numerics
and grid convergence, we guide the interested reader to look upon Ref. [33].

In application to two-phase microfluidic flows via hydrodynamic focusing, and to ensure the
immiscible solver captures the actual capillary effects, the solver has been thoroughly tested and
validated through an extensive comparison, by reproducing a state space map based on the capillary
numbers of two fluids with previous experimental studies [60]. As detailed in Ref. [33], the
simulations performed with a pair of Newtonian immiscible fluids demonstrate very good agreement
with the experiments [60], capturing diverse flow patterns such as threading, jetting, dripping and
tubing regimes typically observed in a microfluidic flow-focusing channels. In addition, excellent
qualitative and quantitative agreement between numerical and experimental results [33] is demon-
strated.

III. RESULTS AND DISCUSSION

We first carry out a detailed numerical and experimental investigation of the effect of confluence
angle β on the 3D thread morphology and shape of the wetted region. Then, in Sec. III B, experimen-
tally measured thread height εz/h as in the case of reference flow-focusing configuration (β = 90◦)
is compared with the master curve to estimate the �e acting between the present experimental fluids.

The flow rates and rheologies of the core and sheath fluids in the computations and experiments
are set as mentioned earlier in Secs. IIA1 and IIA2.

A. Morphology of the thread and shape of the wetting region

In this section, we compare the 3D experimental thread shape measured with OCT for ge-
ometrically varying flow-focusing configurations described in Sec. II A, and those obtained by
numerical computations for the corresponding configurations. All the numerical computations are
performed with an ultralow interfacial tension γ = 0.615 mN m−1 modeling EIT. This choice will
be motivated in the upcoming Sec. III B.

First, a few generic features applicable to all the geometrical configurations are noted before
moving into a geometry specific detailed discussion. Figures 3(a)–3(e) show the experimental
and numerical 3D thread shapes of the colloidal dispersion for various confluence angles β. The
qualitative agreement between experiments and numerics is ascertained to be quite good. A closer
view shows the core and sheath flow channel walls intersect at the point of confluence corresponding
to x/h = 0. The region beginning from x/h = 0 to the position where the confluence of core and
sheath flow channels end (indicated by dashed magenta lines) is referred to as the confluence
region. However, the length of confluence region varies depending on the confluence angle β. The
confluence region is shortest (0 � x/h � 1) for the reference configuration (β = 90◦) and longest
(0 � x/h � 2) for β = [30◦, 150◦] pair. Meanwhile, at the top and bottom walls of the channel
(i.e., at z/h = ±0.5), the colloidal dispersion invariably remains attached to the walls even after
x/h > 0. The dispersion continues to stay attached to the upper and lower walls up to a pinch-off
point. The region originating from x/h = 0 to the colloidal thread detachment point is denoted
the wetted region and the subsequent length is called wetted length Lw/h [see Fig. 4(a)]. Indeed,
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FIG. 3. (a)–(e) 3D view of the experimental and numerical threads for flow-focusing configurations with
varying confluence angle β. The green curves at the top planes z/h = 0.5 on all the five panels represent the
boundary of wetted region created by the core fluid before the detachment. The horizontal dashed magenta
lines in all the five panels indicate the confluence region for the respective configurations.

both the wetted region and the wetted length vary with β as observed in Figs. 3(a)–3(e) (marked
by green curves at the top planes z/h = 0.5), and more clearly in Figs. 4(a)–4(e). Also here, a very
good agreement is notable between the computations and experiments.

Further, as observed from Figs. 3(a)–3(e), the evolution of streamwise thread development
appears to be affected by β in the upstream while at far downstream the thread shapes seem to be
nearly elliptical. The cross-sectional views of the elliptical thread at downstream position x/h = 10
are displayed in Figs. 5(a)–5(e) with its major and minor axes denoted by εz/h, εy/h. Besides,
quantitatively, the excellent agreement is exemplified between experimentally measured height εz/h
(red curves) and width εy/h of the thread (blue curves) with the numerically computed thread
height and width (denoted by various color curves as per the respective configuration) depicted
in Figs. 6(a)–6(e).

In view of the above observations, it is apparent that the confluence angle β has a significant
influence both on the wetted region morphology and the thread development. Indeed, characterising
the influence of β is an important aspect from the hydrodynamic assembly of nanofibrils point of
view [37], since the shape of thread regulates the cross-section of an assembled material. This, in
turn, could enhance the scope for synthesizing materials of complex shapes such as rods, ellipsoids,
discs and so on. Hence, in what follows, is a systematic analysis of the effect of confluence angle β.

Beginning with the reference configuration (β = 90◦), the sheath flows are perpendicular to the
core flow. Accordingly, sheath flow momentum is acting only normal to the core flow over the
confluence region 0 � x/h � 1, and the sheath fluid impinges the core fluid with maximum impact
in the normal direction as seen in Fig. 3(a). As a result, the colloidal thread detaches with a shorter
wetted length Lw/h ≈ 1.8 [Fig. 4(a)] compared to other configurations [Figs. 4(b)–4(e)]. In fact, as
it can be seen from Fig. 6(a), even the thread width εy/h decreases much faster than the height εz/h
up to x/h ≈ 6, highlighting the extent of impact of sheath flow momentum along the streamwise
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FIG. 4. (a)–(e) Top view of the experimental and numerical wetted region morphologies of the core fluid in
the plane z/h = 0.5 for flow-focusing configurations with varying confluence angle β. The distance from x/h =
0 to the point of detachment of core fluid from the top wall is referred to as ‘wetted length’ Lw/h, indicated in
panel (a). The wetted region shape and length Lw/h vary as per the respective geometrical configuration. These
wetted boundaries are also shown in the previous Figs. 3(a)–3(e) at the top plane z/h = 0.5 marked with green
curves.

thread development. Far downstream the width attains a constant value. However, after the thread
detachment, the effect of sheath flow momentum on the height is less significant. Furthermore, since
the sheath flow momentum is maximized in the direction normal to the core flow when β = 90◦, all
the upcoming geometrical configuration discussions will be relative to this reference configuration.
In particular when the sheath flow momentum normal to the core flow is taken into consideration,
and hence the choice of geometrical configurations placement in the order as shown in Fig. 1 were
opted.

Continuing to the β = [60◦, 120◦] pair of configurations, the sheath flow momentum acts both
in parallel and normal to the streamwise core flow at their respective confluence regions as seen in
Figs. 3(b) and 3(c). Most importantly, both the configurations have the same length of confluence
regions, i.e., 0 � x/h � 1.15. However, in the β = 60◦ case, the sheath flow is impinging the
core flow in the same direction as the streamwise core flow, which can be referred to as positive
impingement, while in the β = 120◦ case, the sheath flow is impinging opposite to the direction of
the streamwise core flow, i.e., a negative impingement. For the purpose of clarity, top views of both
the configurations illustrated in Figs. 1(b) and 1(c), gives a better notion of positive and negative
impingement (following the signs of arrow representing the core and sheath flows). Surprisingly, the
thread morphology and shape of the wetted region for these two cases closely resembles each other
as seen in Figs. 3(b), 4(b) and 3(c), 4(c) in spite of difference in the fundamental impingement
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FIG. 5. Experimental [panels (a), (c), (e), (g), and (i)] and numerical [panels (b), (d), (f), (h), and (j)] thread
cross-sections at downstream position x/h = 10 for flow-focusing configurations with varying confluence
angle β. Black color denotes the core fluid while white color represents the sheath fluid. Thread width εy/h
(blue) and height εz/h (red) denoting the ellipsoid axes is pictured in panel (a).

direction. As it can be observed from Figs. 4(b) and 4(c), in both the cases, the wetted area
increases and the wetted length extends up to Lw/h ≈ 2.1, which is much longer than the reference
configuration Lw/h [Fig. 4(a), Lw/h ≈ 1.8]. This indicates that the main effect of β is through the
sheath flow momentum normal to the core flow, which has been weakened by about 13.4% in relative
to the reference configuration in both cases. Further, during the development of the thread width εy/h
and height εz/h as a function of downstream positions x/h, both the configurations exhibit similar
characteristics as displayed in Figs. 6(b) and 6(c). In both cases, the width and height of the thread
decay slightly faster up to x/h ≈ 6 and thereafter, stays almost constant far downstream with an
elliptical cross-section as visualized in Figs. 5(c), 5(d) and 5(e), 5(f).

However, for the β = [30◦, 150◦] pair, the thread shape and wetted region morphologies differ
substantially as viewed in Figs. 3(d), 4(d) and 3(e), 4(e). Figures 3(d) and 3(e) show the length
of confluence regions 0 � x/h � 2 being larger than in other configurations [Figs. 3(a) or 3(b),
3(c)]. Notably, in both cases, there is an expansion of the colloidal thread symmetrically in the
transverse or sheath flow direction (y direction) near the confluence region. This could be due to
the decrease in the impact of sheath flow momentum normal to the core flow. Compared to the
reference configuration, the magnitude of normal sheath flow momentum is reduced by around 50%
due to the effect of β. In the case of positive impingement of sheath flow (β = 30◦) there is a small
expansion of the wetted area first and the wetted length extends up to Lw/h ≈ 3.1 as depicted in
Fig. 4(d). However, for the negative impingement (β = 150◦), the wetted area expands considerably
by curving outward in the transverse direction with a much shorter wetted length Lw/h ≈ 2.1 as seen
from Fig. 4(e).

The evolution of streamwise thread development in Figs. 6(d) and 6(e) shows that the width εy/h
of the thread in the confluence region 0 � x/h � 2 overshoots up to εy/h ≈ 1.5 (β = 30◦ case) and
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FIG. 6. (a)–(e) Thread width εy/h and height εz/h as a function of downstream positions x/h for flow-
focusing configurations with varying confluence angle β. The experimental data are represented in blue and
red color, while the numerical data are denoted by various solid color lines shown in the rightmost legend in
panel (a) as per the respective geometrical configuration.

even more for the negative impingement (β = 150◦) before the decay, highlighting the expansion
of the thread in the tranverse direction. Another striking behavior is for the β = 150◦ configuration,
where the experimental cross-section of the thread is somewhat different from the elliptical shape as
illustrated in Figs. 5(i) and 5(j). In fact, the numerical curve shows an overprediction in the upstream
near the confluence junction during the expansion. This feature of experimental thread cross-section
in Fig. 5(i) is not accurately captured by the numerics.

B. Estimation of effective interfacial tension

In this section, we first present an overview of the model used to obtain a master curve that was
proposed at the conclusion of our previous study in Ref. [33]. Then, we fit the master curve to an
exponential function, and employ it here to estimate the �e between the present experimental fluids.

Figure 7(a) summarizes our observations performed through an extensive set of numerical
computations in Ref. [33]. These computations were performed with the reference flow-focusing
setup for a set flow rate and the given rheology of the fluids. As mentioned in the introduction,
employing an immiscible fluid solver, we had demonstrated that soon after the core fluid detachment
from the top and bottom channel walls of the channel at x = Lw, the thread height varied from
noncircular (near-ellipsoidal) cross-section to a circular shape over a range of interfacial tensions
0.024 mN m−1 < γ < 3.000 mN m−1. The larger the value of γ , the faster the thread converges
toward a circular shape for which the thread height attains a constant value of εz/h ∼ 0.63.
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FIG. 7. (a) The numerical thread heights εz/h at various interfacial tensions γ plotted as a function of scaled
downstream length x∗ (detailed in text). The data collapse on to a master curve. These simulated data are taken
from Ref. [33]. The master curve can be best represented by an exponential fit [see Eq. (14)] denoted by the
dashed-white line. The fit parameters a, b, and c are reported in Table I. Panel (b) shows the experimental thread
height εz/h as a function of downstream positions x/h measured in the reference configuration (β = 90◦) of
the present study. The dash-dotted vertical blue line in panel (b) indicates the measured wetted length of the
thread before the detachment (Lw/h ∼ 1.8). In panel (c), the experimental thread height εz/h is compared
with the exponential fit (dashed-white line) representing the master curve to estimate the �e acting between the
present experimental fluids. The light gray backdrop in panels (a) and (c) is drawn for the purpose of better
visualization of the plotted data. Panel (d) shows the percentage variation of the error (defined in text) between
the numerical and experimental thread heights for a range of �e values near to the estimated �e (Table I)
obtained from the master curve fit in panel (c). The red marker in panel (d) indicate the �e that gives the best
match with the experimental measurement.

Following Ref. [33], using appropriate notations, the typical time and length scales for a near-
ellipsoidal thread to approach circular shape can be written as

τ = η1

δP
∝ η1

γ
, (12)

lr = Uτ ∝ η1Q1

γ h2
, (13)

where U , Q1, and η1 are the velocity, flow rate, and dynamic viscosity of the core fluid. δP is the
pressure gradient dependent on the thread geometry and is proportional to the interfacial tension
γ . Comparing Eqs. (2) and (13), η1Q1/(γ h2) � ηQ/(�eh2) = Cae, the effective capillary number
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TABLE I. Fitting parameters a, b, and c of the exponential fit [Eq. (14), dashed-white line in Figs. 7(a)
and 7(c)] representing the master curve. The estimated �e acting between the present experimental fluids is
obtained by utilizing the spatially measured experimental thread height εz/h (β = 90◦) [shown in Fig. 7(b)]
and Eq. (14) along with the fit parameters, and other experimentally acquired quantities such as viscosity (η1),
flow rate (Q1) of the core fluid and the channel width h.

a b c Estimated �e (mN m−1)

0.240 ± 0.0008 2.950 ± 0.015 0.622 ± 0.0006 0.756 ± 0.0005

where the numerical interfacial tension γ models the “effective” interfacial tension in experiments,
i.e., γ ≡ �e.

Thus, from Eqs. (12) and (13), a scaled downstream length x∗ can be obtained by renormalizing
the downstream length (x − Lw ) with lr leading to x∗ = (x − Lw )/(Cae × h), respectively. As
depicted in Fig. 7(a), all the simulated thread heights (εz/h) at various interfacial tensions γ collapse
well on a master curve when plotted with the scaled coordinate x∗.

The master curve depicted in Fig. 7(a) can be best fitted to an exponential function denoted by
dashed-white line with the fitting parameters a, b, and c given in Table I:

εz/h = a × e−bx∗ + c. (14)

The light gray backdrop in Figs. 7(a) and 7(c) is in place solely for the sake of clarity in the
graphics of the plots. The fit parameters are evaluated through nonlinear least-square regression
performed in Matlab.

To estimate the �e acting between the present colloidal dispersion - solvent system, we use the
spatial evolution of thread height εz/h measured experimentally with the reference flow-focusing
configuration (β = 90◦) as depicted in Fig. 7(b), and compare with the exponential fit representing
the master curve as shown in Fig. 7(c). By solving Eq. (14) together with the fit parameters reported
in Table I, the scaled downstream length x∗ is obtained. As noted from above, the expression for x∗ is
given as x∗ = (x − Lw )/(Cae × h). Substituting all the experimentally measured variables in x∗ and
Cae such as the core fluid flow rate Q1 = 6.5 mm3 s−1, viscosity of the core fluid, η1 = 4500 mPa s,
the wetted length Lw ∼ 1.8h along with the streamwise downstream positions x of the thread height,
and the channel width h, the estimated �e � 0.765 mN m−1 can be retrieved.

Furthermore, as a verification, the numerical computations were performed in close proximity
to the estimated �e utilizing the reference flow-focusing configuration (β = 90◦). The difference
between the numerical and experimental [Fig. 7(b)] thread height is plotted in Fig. 7(d) as an error,
which is defined as

δεz (�e) =
N∑

i=1

∣∣∣∣ε
num
z,i − ε

exp
z,i

ε
exp
z,i

∣∣∣∣
2

, (15)

where i = 1 to N are the downstream positions at which thread heights εz/h are evaluated after the
detachment of thread from the top and bottom channel walls. The minimum of δεz (�e) indicated
by a filled red symbol in Fig. 7(d) occurs at �e = 0.615 mN m−1 which, in turn, affirms the
estimated �e to be good with fairly accurate order of magnitude. This value of �e = γ is used
in the numerical simulations of all the geometrically varying flow-focusing setups as discussed in
the previous Sec. III A.

An interesting observation worth noting here is, that the value of �e (O ∼ 10−1 mN m−1) for
the present study colloidal dispersion-solvent system is almost one decade higher in magnitude
than our previously evaluated value (O ∼ 10−2 mN m−1) for a similar, but not identical colloidal
dispersion-solvent system [33] at the same dispersion concentration (0.3 wt. %). Both the colloidal
dispersions exhibit non-Newtonian shear thinning behavior, and the zero shear viscosity for the
present case is η1 = η0 � 4500 mPa s while it was 1750 mPa s in Ref. [33]. The order of magnitude
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difference in �e at same dispersion concentration could be attributed to the variation in length
fraction of nanofibrils, interfibril interactions leading to different rheological properties of the
colloidal dispersion, in turn to that on variant dispersion-solvent de facto interface properties through
different K in Eq. (1). At this point, it is also worth commenting that the EIT between a very dilute
dispersion and its own solvent will be very weak due to the fact that �e ∼ ��2.

Indeed, the above observations concur with the experimental studies performed by Refs. [8,41],
where �e between colloidal dispersions and its own solvent were measured, and the variations in �e

span over 5 decades (10−4–101 mN m−1) for mild changes in the concentration.
Given the non-Newtonian nature of the colloidal dispersion, and the dispersion being subjected to

extensional flow, one could expect that extensional viscosity could play a role in the dynamics of the
system. However, for this particular set of experimental fluids, i.e., a complex fluid made of cellulose
nanofibrils suspended in water, shear-dependent viscosity (see Fig. 2, Sec. IIA2) together with an
ultralow interfacial tension modeling the EIT between the dispersion and its own solvent seem to
be sufficient to describe the spatial evolution of threads quite well. This is evident from the master
curve [Figs. 7(a) and 7(c)] obtained through a simple scaling model [Eqs. (12) and (13)] where the
“effective” capillary number (Cae � η1Q1/(�eh2)) controls the thread evolution. In other words,
the low or zero shear viscosity (η1 = η0) of the core fluid, and interfacial tension modeling EIT
describes very well the spatial development of the thread for a given core fluid flow rate Q1 and
channel width h. In addition, as seen from the previous Sec. III A, for a set flow rate, utilizing the
shear-dependent rheology (see Fig. 2) described by a non-Newtonian Carreau model and a constant
value of effective interfacial tension (γ = �e = 0.615 mN m−1), the experimentally observed 3D
thread shapes and their spatial developments are very well captured and reproduced numerically for
a diverse set of geometrically varying flow-focusing configurations. Therefore, there is no indication
of significant effects from other hydrodynamic phenomena on the thread evolution for this system.

C. Centreline velocities

In addition to the evolution of thread shape, quantitative understanding of the flow field behavior
is vital for the modeling and prediction of hydrodynamic alignment of nanofibrils [61]. Alignment
of nanofibrils is a key factor in controlling and tuning the material properties [62] of assembled
materials.

Figure 8 shows the velocity variation along the centreline of the colloidal thread as a function of
downstream positions x/h for all the five confluence angle geometries. The agreement between nu-
merical computations and experimental measurements is excellent. Dashed vertical lines (magenta)
in all the panels [Figs. 8(a)–8(e)] mark the confluence regions. The trend of the centerline velocity
(Uc) variation is more or less similar among all configurations. First, the velocity is constant in the
inlet channel before the confluence region (x/h < 0). There is a slight deceleration right after the
confluence point at x/h = 0 that is followed by a rapid acceleration before a high steady value at far
downstream positions (x/h � 10) is reached. However, a careful inspection of Figs. 8 and 9 unveils
a considerable variation in the minimum and maximum centreline velocity, degree of deceleration
and acceleration for different confluence angles β. These variations will now be studied in detail.

In the case of the reference configuration (β = 90◦), close to the confluence point x/h � 0, the
deceleration is ascertained to be small as observed from Figs. 8(a) (confluence region) and 9(c)
(cyan color). As a consequence, the minimum centreline velocity Uc,min is higher (meaning lower
deceleration) than the other configurations as seen from Fig. 9(a). Subsequent to deceleration, a
substantial increase in the velocity caused by the sheath flow momentum normal to the core flow
leads to acceleration of the core flow. As depicted in Fig. 9(c), ε̇ (cyan color) continues to increase
till the end of the confluence region (x/h ∼ 1), and thereafter, ε̇ decays to 0 at around x/h ≈ 5
since the velocity is almost constant as observed in Fig. 8(a). However, far downstream, as seen in
Fig. 9(b), Uc,max is lowest as compared to all the other configurations.

For the β = [60◦, 120◦] pair, the velocity behavior duplicate each other as observed from
Figs. 8(b) and 8(c) and more clearly from the strain rate ε̇ plot in Fig. 9(c). It is worth to recall
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FIG. 8. Panels (a)–(e) show the experimental and numerical centreline velocity Uc as a function of stream-
wise downstream positions x/h for flow-focusing configurations with varying confluence angle β. The vertical
dashed lines (magenta) on all the panels denote the confluence region of the respective configurations. Error
bars represent the standard deviation of experimental measurements at each position.

that this similarity of the flow mirrors the similarity of the thread shape evolution as seen earlier
from Figs. 3(b), 3(c) to Figs. 6(b), 6(c). In both cases, the effect of β appends the streamwise
flow through the contribution by sheath flow momemtum acting parallel to the core flow. As a
result, the core fluid velocity increases much faster than the reference configuration velocity. For
both cases, Uc,min and Uc,max are symmetric with respect to β = 90◦ as seen in Figs. 9(a) and 9(b).
However, Uc,min is lower for the β = 90◦ case (implying higher deceleration) and Uc,max is highest
for [60◦, 120◦] cases when compared to all the other configruations. As observed from Fig. 9(c), in
both configurations, the variation in ε̇ (golden and green color) shows a similar trend as the β = 90◦
case (cyan color) but the magnitude is higher near the end of the confluence regions (x/h ∼ 1.15)
and from there onwards, the decay is much slower up to x/h ≈ 5.

On the contrary, Figs. 8(d) and 8(e) display a quite different behavior for the β = [30◦, 150◦]
pair. Even though both the configurations have the same confluence region 0 � x/h � 2, there
is a considerable variation in the deceleration and acceleration regions as seen from Fig. 9(c). For
the β = 30◦ case, the deceleration (x/h � 0) is higher leading to the lowest Uc,min among all the
configurations and also lower Uc,max far downstream as seen in Figs. 9(a) and 9(b), whereas in the
β = 150◦ case, deceleration is slightly lower as compared to the β = 30◦ case and Uc,max is also
higher. This results in an asymmetry of Uc,min and Uc,max with respect to the β = 90◦ case. As seen
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FIG. 9. Numerical plots of variation of minimum [panel (a)] and maximum velocity [panel (b)], and strain
rate ε̇ [panel (c)] along the centreline as a function of confluence angle β. The vertical dashed lines (magenta)
in panel (c) denote the confluence regions for all the configurations. The confluence region starts at x/h = 0
for all the configurations.

from Fig. 9(c) for β = 30◦, the strain rate ε̇ (purple color) is more steep than for the β = 150◦ case
leading to a lower peak value close to the end of confluence region (x/h ∼ 2). For x/h > 2 onwards,
the decay of ε̇ in both cases follows a similar trend.

Thus, having affirmed the agreement between experimental measurements and numerical com-
putations, we will now utilize purely the numerical computations for further analysis of confluence
angle effects.

IV. REPLICATION OF CONFLUENCE ANGLE EFFECTS

In this section, a strategic approach is attempted to comprehend the confluence angle effects.
Two computations are performed utilizing the reference flow-focusing configuration (β = 90◦) with
varying sheath flow inlet channel widths as illustrated in Fig. 10(a). Accordingly, the side channel
width (SCW) of the “SCW-1.15h” configuration was set to 1.15h matching the confluence region
(0 � x/h � 1.15) of the β = [60◦, 120◦] configurations. Similarly, the “SCW-2h” configuration
width was fixed to 2h tallying with the confluence region (0 � x/h � 2) of the β = [30◦, 150◦]
configurations. Other parameters such as flow rates of the core (Q1) and sheath (Q2) flows,
rheologies of fluids are held fixed as described in the Secs. IIA1 and IIA2. The interfacial tension
γ = �e = 0.615 mN m−1, and the cross-sectional width h of the central inlet and outlet channel
were unchanged. This means that the sheath flow channel inlets are now rectangular in these cases.

Astonishingly, the flow in the SCW-1.15h configuration precisely replicates the morphologi-
cal features of the wetted region and thread topologies of the β = [60◦, 120◦] configurations as
observed from Figs. 10(b) and 10(d). Once again this highlights the symmetry between these
two cases. Whereas, the SCW-2h configuration captures and replicates the features of only the
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FIG. 10. (a) 3D view of the thread shapes for flow-focusing configurations with varying sheath flow
channel widths (denoted by dashed magenta lines). Width of the side channel in the “SCW-1.5h” configuration
corresponds to the confluence region (0 � x/h � 1.15) of the β = [60◦, 120◦] pair [see Figs. 3(b) and
3(c)]. Likewise, width of the side channel in “SCW-2h” configuration corresponds to the confluence region
(0 � x/h � 2) of β = [30◦, 150◦] pair [see Figs. 3(d) and 3(e)]. Panels (b) and (d) show the “SCW-1.5h”
configuration wetted region, thread width (εy/h) and height (εz/h) plotted as a function of downstream positions
x/h overlapped with the wetted region and thread dimensions of β = [60◦, 120◦] pair. Similar plots of panels
(b) and (d) in panels (c) and (e) for the case of “SCW-2h” and β = 150◦ configurations.

β = 150◦ configuration as depicted in Figs. 10(c) and 10(e) (remember the asymmetry between the
β = [30◦, 150◦] configurations).

In the three cases, “SCW-1.15h” and β = [60◦, 120◦], the sheath flow momentum normal to the
core flow is attenuated by 13.4% in relative to the reference configuration (β = 90◦). For the “SCW-
2h” and β = [30◦, 150◦] pair, the attenuation is around 50%. Therefore, inclining the sheath flow
channels at various confluence angles β or setting the width of sheath flow channels of reference
configuration to confluence region lengths, would essentially mean inducing the same magnitude of
sheath flow momentum normal to the core flow. Thus, from these demonstrations, it is aptly clear
that the magnitude of the sheath flow momentum at the confluence junction is the primary factor in
controlling the morphological features of the wetted region and thread topologies except for near
coflow (β = 30◦) case.
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V. A COMMENT ON EFFECTIVE INTERFACIAL TENSION AND THREAD DETACHMENT

The comprehensive systematic demonstrations utilizing geometrically varying flow-focusing
setups in Sec. III A together with the alternative approach in previous Sec. IV indicates the
significant role of �e. As noticed, for a set flow rate and specified rheologies of fluids, the same
value of interfacial tension modeling EIT (γ = �e = 0.615 mN m−1) deduced using the reference
flow-focusing configuration (β = 90◦), very well reproduces the 3D flow characteristics for the
respective geometrical configurations in the numerics. All the features such as the thread evolutions,
morphologies of the wetted regions, and velocity fields showed good agreement with the experi-
mental findings in Secs. III A and III C. In addition, the replication of 3D flow features of various
confluence angle geometries captured via the modified geometries (β = 90◦), numerically with the
same interfacial tension, further substantiate the robustness of our numerical procedure. Thus, as the
Péclet number is large in the system, a sharp de facto interface exists in the experiments where EIT is
expected. Since such a de facto interface can be associated with a near-immiscible behavior, utilizing
an immiscible fluid solver, the above comprehensive set of results were captured and reproduced
with ultralow values of interfacial tension γ . These evidences allows us to reassert that the weak
interfacial tension γ in the numerics models the ultra low but physically significant “effective”
interfacial tension �e in experiments. Further, the ultralow value (γ = �e = 0.615 mN m−1) is of
the same order of magnitude as the estimated �e (0.756 mN m−1) in Sec. III B obtained utilizing
the experimentally measured spatial thread shape (β = 90◦) and an effective capillary number
dependent master curve. In fact, �e found in the present colloidal dispersion and solvent system
is also in line and within the typical range (10−4–101 mN m−1) of experimentally observed EIT
values involving complex fluids like colloidal or polymer dispersions and its own solvent [8].

An important and interesting aspect from the above illustrations is on the detachment of thread
from the top and bottom channel walls. We find that, the above value of interfacial tension γ in
the numerical computations not only captured the wetted region shapes and wetted lengths Lw/h
accurately, but also steered the thread detachment from the channel walls. We also observed through
a separate set of simulations that are not displayed here, that the wetted length Lw/h → ∞ if γ → 0,
implying no detachment of thread from the top and bottom channel walls. Therefore, presence
of ultralow interfacial tension γ (�e) is a decisive factor in order for the thread detachment to
occur. Nevertheless, given the presence of high viscosity contrast (χ � 4500) between the colloidal
dispersion (core fluid) and its solvent (sheath fluid), Cubaud and Mason [30] predict that the
process of thread detachment in miscible systems having large viscosity contrast [28,32], could
occur naturally through the phenomenon of self-lubrication [36] depending on the fluid injection
geometries and injection flow rates. According to this principle, the low-viscosity fluid enwraps the
high-viscosity fluid to minimize the viscous dissipation of energy, leading to self-lubricated thread
structures. However, as evident from the above observations, in high Péclet number microfluidic
flows involving miscible systems with high-viscosity contrast, thread detachment is found to be
clearly controlled by �e as well. Indeed, to have a finer understanding of the effects of EIT versus
the ones associated with self-lubrication on the thread detachment, further detailed investigation is
needed. For instance, variation of interfacial tension, viscosity contrast and flow rate ratios, and how
these parameters affect the wetted length Lw/h and thereby the thread detachment is worthwhile,
and such investigations are beyond the scope of this present work.

VI. CONCLUSIONS

The effective interfacial tension �e acting between the colloidal dispersion and its own solvent
has been estimated utilizing the experimentally measured 3D spatial evolution of thread shape in the
flow-focusing channel and an effective capillary number dependent master curve obtained from a
simple scaling model [33]. We have verified from the 3D numerical computations, that the �e which
minimizes the error between computed and experimental thread heights is close to the estimated �e

utilizing the above method. The numerical computations were able to capture our experimental
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observations with good quantitative and qualitative agreement (both in terms of flow-topologies
and flow-fields) for a range of confluence angles. By mapping the numerical observations with the
experimental measurements, we gained insights into the influence of various physical mechanisms
driving the process of thread detachment from the top and bottom walls in the channels. From these
meticulous analyses, we find that in the case of high viscosity contrast miscible systems [28,32], the
thread detachment occurring in the physical experiments of microchannels may not be entirely based
on the phenomenon of self-lubrication [30] related with effect of viscous dissipation of energy, but
also the effect of EIT induced by composition gradients plays a major role.

Moreover, these ultralow interfacial tensions in nonequilibrium miscible fluids are extremely
difficult to evaluate in experimental measurements. The standard experimental techniques yielding
reasonable results in the case of molecular miscible fluids are light scattering and spinning drop
tensiometry [26]. However, these two techniques are observed to have drawbacks, in particular at the
transition region due to mixing of the two fluids and difficulty to distinguish between the bulk fluids
and interfacial region [26]. The recently explored new measurement strategies like examining the
Saffman–Taylor instability in a Hele-Shaw cell [7,8] with miscible complex fluids, and studying the
dynamics of drop shape in spinning drop tensiometry [22] tested with miscible molecular systems
are noteworthy developments. In addition to the above strategies, our method is also promising and
could be a suitable choice.

From a technical perspective, varying the effect of confluence angle β assists in the utilization of
sheath flows to generate effective extensional flows. This, in turn, could facilitate to achieve optimal
alignment of nanofibrils in colloidal dispersions [39,40]. A detailed investigation on the orientation
and alignment of nanofibrils can be pursued, utilizing the velocity gradients of various flow
configurations, including other relevant factors such as rotational diffusion, mobility, and rigidity
of fibrils. Concluding, a thorough understanding of effects like EIT in miscible systems opens
up possibilities in tuning, and controlling the material properties more efficiently via appropriate
selection of microfluidic geometrical configuration based on the practical interest and application.
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