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This study numerically investigates the bifurcation aspect of the wide-gap spherical
Couette flow (SCF), with an emphasis on the competition among polygonal coherence
with different wave numbers observed over transitional Reynolds numbers. Focusing on a
representative case, the half-radius ratio η = 1/2, we confirm that the axisymmetric state
becomes unstable over the first transitional Reynolds number at which the fourfold spiral
state bifurcates, using the continuation method based on the Newton–Raphson algorithm.
The Galerkin-spectral method was employed to numerically solve the governing equations.
It is found that the threefold spiral state bifurcates from the axisymmetric state at a slightly
higher Reynolds number than the first transitional Reynolds number. The attraction of the
threefold spiral state expands rapidly with an increase in the Reynolds number, which
is determined by verifying the distance of the unstable periodiclike state to both spiral
states in the state space. This aspect of the state space explains the experimentally bistable
realization of different equilibrium states over the first transitional Reynolds number. This
study also found that the periodiclike state is composed of the three- and fourfold spiral
states, similar to a beat with two different frequencies.
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I. INTRODUCTION

An incompressible Newtonian fluid confined between concentric spherical boundaries rotating
differentially, namely, the spherical Couette flow (SCF), is one of the canonical flows. The SCF is a
configuration applicable to astrophysical and geophysical flows in the planetary core, atmosphere,
and ocean. Stimulated by geophysical issues, experimental studies on the SCF were initiated by
a few pioneers during the last quarter of the past century [1–7]. In particular, the case involving a
rotating inner sphere and stationary outer sphere has been largely investigated; this case is controlled
by the Reynolds number conventionally defined as Re = r2

in�in/ν. Based on early investigations
with several different combinations of spherical boundaries and various radii, it has been pointed out
that SCF is fairly complicated compared to the cylindrical Taylor–Couette flow, despite the apparent
similarity [8,9]. This difference is likely attributed to the presence of the meridional circulation and
inflection point in the azimuthal profile in the hemisphere, which become more influential in the case
of the larger gap between boundaries, that is, a small radius ratio. The case of a small radius ratio
η � 3/4, which has been conventionally named “wide-gap” or “thick layer,” exhibits somewhat
puzzling sequential transitions to turbulence involving nonuniqueness and hysteresis.
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The first transition in a wide-gap SCF is triggered by the polygonal traveling waves, which are
similar to the flow between two rotating planar disks. In general, a rotating shear flow always
favors polygonal coherence around the poles. Regular polygonal patterns in the polar jet streams
on Jupiter and Saturn were observed by recent spacecraft missions, which are relevant to the
polygonal coherence in an SCF [10]. The observed polygonal waves in a wide-gap SCF, which form
a sinusoidal disturbance at the midlatitudes propagating at a significantly low angular phase velocity
in the azimuthal direction, were visualized as a spiral pattern with m equally spaced arms extending
from the poles to the equatorial zone in each hemisphere. The transitional Reynolds numbers
reported in a previous experimental study were Recr = 2628 (m = 6) at η = 3/4, Recr = 1244
(m = 5) at η = 2/3, and Recr = 489 (m = 4) at η = 1/2, where m was the azimuthal wave number
at the critical Reynolds number [11]. It was confirmed that some of these values align remarkably
well with theoretical predictions based on linear stability analysis [12–14]. A recent investigation
with a further increase in the Reynolds number suggested relaminarization, nonuniqueness, and
hysteresis in successive transition processes in an SCF [15–18]. These aspects in a wide-gap SCF
can be regarded as a type of competition among different polygonal structures, which plays an
important role in the route to turbulence. For example, Wulf et al. investigated successive transition
processes undergoing several mode changes and concluded that the Ruelle-Takens-Newhouse sce-
nario, associated with a few polygonal modes, represented a route to turbulence in a wide-gap SCF
[16]. The variety of routes to turbulence still remains an open question in SCF.

Here, we focus on a representative but insufficiently investigated radius ratio, η = rin/rout =
1/2. Belyaef et al. estimated the first transitional Reynolds number Recr = 460 at η = 1/2 based
on experimental studies of the power spectra of an SCF using laser Doppler velocimetry [9]. The
emerged flow consisted of four vortices (mcr = 4) in every hemisphere, displaced in staggered rows
with respect to the equator. By quasistatically increasing Re further, a new wave regime emerged
at the second transitional Reynolds number characterized by the m = 3 regime instead of the m =
4 regime, via a period doubling bifurcation of m = 4 with a subharmonic frequency. However,
the m = 3 regime attained at a higher Reynolds number can be quasistatically maintained near
the first transitional Reynolds number with reorganization of the m = 4 regime. This hysteresis
was observed in the relatively low Reynolds number range, as previously reported by Belyaef and
Yavorskaya [19]. They also suggested that a decrease in Re after an abrupt change in Re from
Re < 550 to Re > 660 creates a temporal chaotic regime. The further decrease in Re from the
chaotic state leads to an irreversible transition for a spatial structure with m = 3 (see Fig. 1 in
Ref. [19]). In an overview of experimental and numerical studies, including the case of η = 1/2,
Junk and Egbers concluded that the transitional Reynolds number was 489 and pointed out that
similar flow regimes with a small number of spiral waves were observed before the flow became
turbulent at a higher Reynolds number [11].

The primary motivation of the current work is to study the exchange of the stability of the m = 3
and m = 4 regimes at a representative radius ratio η = 1/2, which has been solved insufficiently.
The aforementioned experimental observation implies that the m = 4 regime originates in the
axisymmetric state and becomes stable over the first transitional Reynolds number, where the
axisymmetric state is unstable. However, it is plausible that the m = 3 regime does not originate in
the m = 4 regime and instead bifurcates from the unstable axisymmetric state. From the viewpoint
of the deterministic dynamical system, it is significant how the m = 3 regime is established as a
stable state over the second critical Reynolds number. Through the present study, we will elucidate
the formation of the m = 3 regime in the state space, which has remained unclear thus far.

The remainder of this paper is organized as follows. In the next section, we briefly describe
the nondimensionalized governing equations and numerical setup of our system. In Sec. 3, we
present the numerically obtained nonaxisymmetric states and discuss the morphology of the vortex
in comparison with previous studies. In the latter part of the section, the m = 4 and m = 3 states
are exactly explored using the Newton–Raphson algorithm, and the first and second transitional
Reynolds numbers are specified. We numerically confirm the bistability of these regimes and discuss
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FIG. 1. Configuration of the present study.

the basin of attraction of nonaxisymmetric states. The paper concludes with brief remarks on the
unstable saddlelike state between these states.

II. FORMULATION

The spherical coordinate represented by the radial, zenith, and azimuthal components, (r, ϑ, ϕ),
is centered at the origin. The incompressible fluid is confined between the inner and outer spheres
with radii rin and rout, respectively, as shown in Fig. 1. The inner sphere rotates at a constant angular
velocity �in with respect to the z axis. The nondimensional geometrical parameter is either the gap
ratio β = (rout − rin )/rin or aspect ratio η = rin/rout.

The Galerkin-spectral method was employed to numerically solve the governing equations,

∂u
∂t

+ (u · ∇)u = − 1

ρ0
∇p + ν0∇2u,

under the incompressible condition ∇ · u = 0. Due to the divergence-free constraint, toroidal and
poloidal decomposition were invoked with regard to the radial direction, u(r) = u0(r, θ )eφ (r, θ ) +
∇ × {−r�(r) + ∇ × [r
(r)]}, where the magnitude of the Stokesian shear flow u0(r, θ ) is pro-
portional to �in and satisfies ∇2(u0eφ ) = 0, boundary conditions, u0(rin ) = rin�in, and u0(rout ) =
0 [20]. Hereafter, the governing equation is nondimensionalized by the gap half-width �r =
(rout − rin )/2 and the viscous diffusion time �r2/ν0. Therefore, the system is uniquely deter-
mined only by the geometrical parameter η = rin/rout and Reynolds number Re. The toroidal and
poloidal components are spatially expanded into a series of spherical harmonics Y m

l (θ, φ) with
a polar wave number l and azimuthal wave number m through the aid of numerical libraries on
spherical harmonics utilizing the Gauss-Lobatto collocation method [21,22]. Adapting the second-
order Adams–Bashforth method, complemented by Crank–Nikolson for temporal discretization,
we converted the nondimensionalized governing equation to an equivalent inhomogeneous
Helmholtz equation. This Helmholtz equation is equivalent to a set of linear algebraic equations
for the expansion coefficients �l,m,n and 
l,m,n with the expansion into a series of modified
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FIG. 2. SCF experiences the first transition on the route to turbulence in two different manners depending
on the value of the geometrical parameter, η. The solid and dashed curves are the neutral curve of the
axisymmetric state against an infinitesimal perturbation of the indexed even and odd azimuthal wave numbers,
respectively. The numbers in the circles and triangles indicate the wave numbers of the spiral state observed in
previous studies.

Chebyshev polynomials (1 − y2)kTn(y) (k = 1 for � and k = 2 for 
), where y = (r − r0)/�r

and r0 = rin + rout

2
. This was also used in our previous study [23]. This set of equations can be

solved numerically using the LAPACK libraries [24]. Unless noted, we used the truncation levels
(lmax, mmax, nmax) = (30, 30, 32).

The developed numerical code [25] was validated for Re < 600 using a quantitative comparison
with previous experimental and numerical results [14,16,17]. Numerical integration was used to
obtain some equilibrium states at η = 1/2 around the transitional Reynolds numbers, beginning
initially with a Stokesian flow with a small disturbance that was artificially generated by a series of
random numbers. The basic laminar flow preferred under the first transitional Re consisted of the
Stokesian shear flow perturbed by two azimuthal momentum cells in the northern and southern
hemispheres. These were divided by a strong and local radial outward flow developing at the
equatorial zone via the inertial (centrifugal) force of the rotating inner sphere. The basic laminar
flow satisfied the axisymmetry ∂

∂φ

 = ∂

∂φ
� = 0 and equatorial symmetry [
(π − θ ), �(π − θ )] =

[
(θ ),−�(θ )]. A fluid element initially confined in a hemisphere travels from the equator to the
pole along the outer spherical boundary and then back to the equator along the rotating inner
boundary. It was quantitatively confirmed that the magnitudes of the ur and uφ components of the
numerically obtained axisymmetric flow aligned with those in a previous numerical study, with
an error of a few percentage points [14]. As Hollerbach et al. reported, the magnitude of the radial
component obtained numerically is comparable to that of the azimuthal component near the equator,
which is characteristic of a wide-gap SCF but not narrow-gap cases [14].

III. RESULTS

With an increase in the Reynolds number, the SCF experiences the first transition on the route to
turbulence in two different manners depending on the value of the geometrical parameter, as shown
in Fig. 2. In the narrow-gap cases (η > 3/4), the transition is primarily initiated by axisymmetric
Taylor vortices with successive instability, as observed in the cylindrical Taylor–Couette flow.
Conversely, in the wide-gap cases (η < 3/4), the first transition is triggered by nonaxisymmetric
secondary waves extending from the poles. The solid and dashed curves, which were reconstructed
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based on values read from the graph in Ref. [14], are the neutral curves of the axisymmetric
state against an infinitesimal perturbation of the indexed even and odd azimuthal wave numbers,
respectively. The number of waves in a hemisphere at the transition is determined by the value of
η and can be calculated by the linear stability analysis of the axisymmetric state. The numbers in
the circles and triangles indicate the wave numbers of the spiral state observed in previous studies
(Ref. [9] at η = 1/2 and Refs. [15,18] at η = 2/3), and they are located at the values (η, Ra) where
the state was obtained experimentally or numerically.

Egbers and Rath employed experimental studies for several values of η in “narrow-gap” cases
and found that the transition was initiated by the axisymmetric Taylor vortices with successive
instability where η > 3/4, as observed in the cylindrical Taylor–Couette flow [15]. However,
in “wide-gap” cases, the first transition was triggered in the absence of Taylor vortices by the
nonaxisymmetric secondary waves extending from the poles where η < 3/4. The flow structure of
the secondary wave consisted of a set of sinusoidal waves at the equator traveling in the azimuthal
direction, which connected with the spiral disturbance extending in each hemisphere from the poles.
Hereafter, we refer to the secondary wave with wave number m, which is the number of spiral waves
extending from a pole, as an m-fold spiral state. The dependencies of the transitional Reynolds
number on the value of η are listed in Ref. [11]. The wave number m selected at the first transition
depends on the value of η. In the wide-gap case, the larger the value of η, the larger is the wave
number.

Moreover, an experimental study conducted considering η = 2/3 reported that a further increase
in the Reynolds number caused a successive sequence of transitions with a decrease in the wave
number [15]. In other words, a spiral state with a smaller wave number was dominant as the
Reynolds number increased. They reported that m = 5, m = 4, and m = 3 were observed at
Re = 1250, Re = 1600, and Re = 1900, respectively. Clearly, the system exhibited a somewhat
complicated hysteresis at these successive transitional Reynolds numbers. This hysteresis has also
been reported in a numerical study considering η = 2/3, where m = 5 was obtained at Re = 1280,
m = 4 at Re = 1700, m = 5 at Re = 1800, m = 4 at Re = 2000, and m = 3 at Re = 2200 [18].
This is represented by the numbers marked with circles at η = 2/3 in Fig. 2. The critical wave
number at the first transitional Reynolds number was determined by η, whereas the ratio of the
representative magnitude of the meridional circulation to the rotational speed of the inner sphere
affected a successive sequence of transitions [25]. The increase in Re primarily enhanced the
meridional circulation, whereas mixing in the gap induced a nonaxisymmetric flow, weakening
the circulation. Once Re exceeds a critical value, a further increase in Re enhancing the mixing
reduces the meridional circulation, which may lead to a spiral state with a reduced wave number.
The decrease in the wave number of the nonaxisymmetric flow may be attributed to the reduction in
the ratio of the meridional circulation to the inner sphere rotational speed.

Previous experimental and numerical studies have shown that hysteresis over the transitional
Reynolds number is common in wide-gap SCFs. This implies that our system with η = 1/2 is a
bistable system, where different stable spiral states are attained from different initial states. Based
on an experimental study of the appearance of a single frequency in the power spectra, Belyaef et al.
estimated the first transitional Reynolds number at η = 1/2 to be 460 with m = 4 [9]. They reported
that an equilibrium state characterized by m = 3 vortices was realized over Re = 556 instead of m =
4 vortices, via a period doubling bifurcation excited by a subharmonic frequency over Re = 538.
Moreover, they studied the lower Re limit that the m = 3 vortex regime survives by decreasing Re
from Re = 556. This regime was not realized until the m = 4 vortex regime reappeared at Re =
462. This suggests that our system with η = 1/2 is also a bistable system over a certain second
transitional Reynolds number. The first transitional Reynolds number at η = 1/2 was solved as
Re = 489 in later studies [11,12]. Additionally, it should be noted that the wave number selected
at the first transition in the case of η = 1/2 is m = 4, whereas the first transition at η � 0.5 is
triggered by the m = 3 vortex regime [14]. This may be relevant to the competition between the
m = 3, 4 vortex regimes near the first transition at η = 1/2.
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FIG. 3. Views of (a) polar threefold, (b) equatorial threefold, (c) polar fourfold, and (d) equatorial fourfold.

First, we carried out numerical trial computations at η = 1/2 by initially reducing all modes
in the expansion coefficients of 
 and �, except for m = 0, 3, 4. The computations at Re = 560
approximately settled in either the threefold and fourfold spiral states, depending on the disturbance
in the initial condition. This implies that the three- and fourfold spiral states are stable attractors
and that the basic state is a repeller. The obtained m-fold spiral states spontaneously satisfy

(r, θ, φ + 2π/m) = 
(r, θ, φ) and �(r, θ, φ + 2π/m) = �(r, θ, φ). In addition, the flow pattern
appearing in both hemispheres shifted toward each other by half the wavelength, such that the
reflection symmetry to the equatorial plane, 
(r, π − θ, φ) = −
(r, θ, φ) and �(r, π − θ, φ) =
�(r, θ, φ) were satisfied. Taking into account these symmetries and the assumption of a rotating
wave solution with a constant angular velocity, ωφ , we substituted ∂

∂t = −ωφ
∂
∂φ

in the original
governing equation, where the solution was assumed to constantly rotate around the z axis along the
positive φ direction. A Galerkin-type reduced quadratic equation was deduced from the substitution
for the expansion coefficients �l,m,n and 
l,m,n. Here, the freedom of ωφ for the m-fold spiral
state could be specified by fixing the azimuthal phase of the state. We subsequently solved the
quadratic equations using the iterative Newton–Raphson method with the aid of LAPACK libraries
[24]. The polar and equatorial views of the three- and fourfold spiral states were converged at
(η, Re) = (1/2, 490) and are visualized in Fig. 3 by an isosurface of the 
 deviation from the mean
value. These states satisfy not only the m-fold symmetry with respect to a pole but also a reflection
symmetry with respect to the equatorial plane. Note that the time constant of the least stable mode
of the spiral states tends to almost vanish, particularly near the transitional Reynolds numbers. The
Newton–Raphson algorithm has an advantage over the direct numerical simulation in that it is able
to solve a less stable state. This enabled us to solve the phase angular velocity and obtain the states
with a small time constant, which could be principally traceable using a long-term simulation.

We continuously obtained the threefold and fourfold spiral states using the Newton-Raphson
algorithm by gradually varying Re from the transitional Reynolds number up to Re = 800. For each
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FIG. 4. The dimensionless frequencies against Re, calculated from the phase angular velocities of m = 3-
fold and m = 4-fold spiral states for η = 1/2, decreased with an increase in Re.

Re, the phase angular velocity ωφ converged to a value through stepwise iterations of the method.
The dimensionless frequency, mωφ/�in, is defined from the ratio of the phase angular velocity ωφ

of the obtained state to the inner sphere angular velocity �in; this was plotted against the Reynolds
number, as shown in Fig. 4. The frequencies for the four- and threefold states at Re = 490 and
Re = 496 are 0.623 and 0.463, respectively. They gradually decrease with the increase in Re. Note
that these coherent patterns rotate in the azimuthal direction with almost identical and relatively
low angular velocities, approximately one sixth of the inner sphere rotation. The experimentally
obtained value of the dimensionless frequency would appear as sharp peaks in the power spectra
if a pointwise velocity signal of the flow was measured experimentally by using laser Doppler
velocimetry to monitor the transition to chaos by detecting the broadening of these spectral lines.
In particular, the frequency for the fourfold spiral state near the first transition was measured as
0.614 in a previous experiment, which is in reasonable agreement with the present numerical result
[19]. As shown in Fig. 4, the dimensionless frequency gradually decreases as the Reynolds number
increases, which also resembles the behavior in Fig. 1, as reported by Belyaef and Yavorskaya [19].

The transitional Reynolds number for η = 1/2 was first specified as Recr = 460 by Belyaef et al.
[9]. This was later numerically refined by Dumas [12] and Hollerbach [14], and experimentally
refined by Markus and Egbers [11] to be Recr = 489. The norm of the nonaxisymmetric compo-
nents of 
 for the threefold and fourfold spiral states is defined as the integral of the squared
velocity over the whole volume

∫ |
antimirror,3D|2dv, where 
antimirror,3D = 1
2

∑
m �=0[
m(r, θ, φ) −


m(r, π − θ, φ)], as shown in Fig. 5. In the present calculation, the three- and fourfold spiral
states converge to the axisymmetric states at Re4 = 486 and Re3 = 487, respectively. The three-
and fourfold spiral states bifurcate from the axisymmetric state at different transitional Reynolds
numbers, i.e., Re = Re3 and Re = Re4, respectively, where Re4 < Re3.

The arithmetic discrepancy in the critical Reynolds number between the previous and present
studies is attributed to the difference in the numerical truncation. We confirmed that as the truncation
level for the spherical polynomials increased from 30 to 60, the fourfold and threefold spiral states
converged to the axisymmetric states at Re4 = 489 and Re3 = 491, respectively. Table I shows the
convergence of the critical Reynolds number against the truncation and the ratio of the torque acting
on the inner sphere to that of the Stokesian flow at Re = 560.
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FIG. 5. Norm of the antimirror component of 
 with m �= 0 plotted against Re for the three- and fourfold
spiral states obtained at η = 1/2.

IV. DISCUSSION

The degree of m-fold spiral states can be measured by the magnitude of X 2
m = ∫

dv|
m|2 and

m(r, θ, φ) = ∑

l 
l,m(r)Y m
l (θ, φ). Let us project the full state space of our system into a reduced

space spanned by X3 and X4. Note that the time evolution of the state is illustrated as a trajectory in
the projection and that the three- and fourfold spiral states correspond to fixed points on the abscissa
and ordinate, respectively. The basic state located at the origin of the map constitutes an unstable
equilibrium over the first transitional Reynolds number. We numerically confirmed in advance that
the three- and fourfold states were stable and that the basic laminar state was unstable for Reynolds
numbers in the present study. Thus, both states were not only equilibrium states but also attractors
in the state space, such that any infinitesimal perturbation against either equilibrium state decreased
asymptotically. Consequently, there must be at least one subspace (a super surface in the full state
space) that separates the basins of these attractors. We will hereafter refer to this as a basin boundary
between the three- and fourfold spiral states.

Here, we will obtain the basin boundary in the map by employing an edge-tracking or shooting
method, which was originally established as a tool to find an unstable steady solution embedded in

TABLE I. The convergence of the spiral state against the truncation level of spherical harmonics. (upper)
The critical Reynolds number of three- and fourfold spiral states. (lower) The convergence of the nondimen-
sionalized torque of three- and fourfold spiral states at Re = 560 against the truncation level of spherical
harmonics, where the nondimensionalized torque is defined as the ratio of the torque acting on the inner sphere
to that of the Stokesian flow analytically expressed.

Lmax 30 45 60

threefold 487.9 491.3 491.4
fourfold 486.7 488.8 488.8

threefold 3.126 3.133 3.134
fourfold 3.128 3.138 3.139
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FIG. 6. Time variation of the system at Re = 490 projected in the reduced space spanned by X3 and X4.
The square on the ordinate indicates the fourfold spiral state bifurcated at Re = Re4 from the axisymmetric
state on the origin. The triangle on the abscissa indicates the threefold spiral state performed at Re = Re3. The
trajectories indicated by the solid and dashed curves approach the four- and threefold spiral states, respectively.

a subcritical system, such as a planar Couette flow [26–29]. Hereafter, we denote the m-fold spiral
states as xm. We used an intermediate state xs = (1 − s)x3 + sx4 as the initial condition for a trial
run, where s was a parameter. In the full state space, the continuous set of the initial condition xs for
0 � s � 1 corresponded to a line segment connecting the threefold and fourfold spiral states. The
segment must intersect the basin boundary at least once because both equilibrium states at the ends
of the line segment are stable. We adjusted the value of s such that the state approached neither the
threefold nor fourfold spiral states for as long as possible. The edge-tracking indicated that the time
evolution for s < s0 asymptotically reached a threefold spiral state, while that for s0 < s reached
a fourfold spiral state. It is significant that the asymptotic state starting from xs is only classified
by the magnitude of s. An infinite period is needed for the crossing point s = s0 for the trial run
x(t ) starting from xs0 to reach either attractor. Principally, the trajectory starting with s = s0 stays
on the basin boundary, which is also a high-dimensional space. Thus, the time variation of the state
variables of the trajectory with s0 could exhibit chaotic or turbulent behavior.

Trajectories on the projection obtained at Re = 490, which is close to the first transitional
Reynolds number Re4 at η = 1/2, are shown in Fig. 6. The time variation of the states starting
at different initial conditions are indicated as curves, which separate either to the three- or fourfold
spiral states at a saddle point on the heteroclinic orbit. Note again that the fourfold spiral state
emerged at a smaller Reynolds number than the threefold spiral state. The basin boundary emerged
as a hidden concave curve with a small slope, which is identified in the figure as a watershed among
trajectories starting near the origin and finally approaching either one of the spiral states in the
projection. It should also be noted that this basin boundary was closer to the abscissa than that
obtained at Re = 560, as shown in Fig. 7. The threefold spiral state, which bifurcates at a slightly
higher Reynolds number than the fourfold spiral state, has a relatively narrow basin of attraction
compared to that of the fourfold spiral state at Re = 490. This hints that the threefold spiral state and
an unstable equilibrium bifurcate simultaneously from the origin at Re = Re3, where the threefold
spiral state would be unstable otherwise. When the threefold spiral state bifurcates at Re = Re3, a
boundary is also formed between the basin of attraction of the three- and fourfold spiral states from
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FIG. 7. Time variation of the system at Re = 560 projected in the reduced space spanned by X3 and X4.
Time variation of the states starting at different initial conditions are indicated as curves. The trajectories
indicated by the solid and dashed curves approach the four- and threefold spiral states, respectively.

the unstable equilibrium. The trajectories concentrate on an arc connecting both the stable states
before separating either to the three- or fourfold spiral states.

The trajectories on the projection obtained at Re = 560 are shown in Fig. 7. As the Reynolds
number increased from the second transitional Reynolds number, the basin of the threefold spiral
state expanded in the state space and then became comparable with that of the fourfold spiral state.
From a deterministic viewpoint, the initial state, which is a point in the full state space, determined
the final equilibrium that the state asymptotically reached. In most experiments, the initial condition
is uncontrollable such that the initial point can be selected randomly in the state space. Therefore,
the final equilibrium state may be estimated by the ratio of the volume of the basin boundary in the
state space. The distance between the stable equilibrium state and unstable saddle point on the basin
boundary in the full state space might be an index of the degree of attraction in the present bistable
system. The reproducibility of the final asymptotic state can be constructed using the index.

The time variation of X4(t ) for the trajectories obtained from the edge-tacking at Re = 560
are shown in Fig. 8. The unstable equilibrium state on the basin boundary was not a point but
a periodiclike state composed of time-varying X3 and X4 components. The obtained value of s0

was insignificant because it depended on both x3 and x4, which were artificially adopted for the
initial condition. However, the achieved equilibrium state, independent from the initial condition,
is significant and characterizes the system at a given Re. Based on the visualization of this state,
it was observed that the number of spiral arms extending from the poles to the equatorial zone
in each hemisphere varied with time. If the two spiral states with slightly different angular phase
velocities at Re = 560 would be superposed, the system would exhibit an interference in the time
variation, observed as a beat between two distinct sounds with slightly different frequencies in terms
of acoustics. The values of ωφ/�in were 0.1516 and 0.1503 for the three- and fourfold spiral states,
respectively. Therefore, the period of the beat was (2π/4/3)/�ωφ = 403, which is comparable to
the period observed in Fig. 8.

Based on the experimental observation of the sequential transitions obtained by the abrupt change
in Re from Re < 550 to Re > 660, Belyaef and Yavorskaya [19] reported the existence of a regime
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FIG. 8. Time variation of the degree of the fourfold spiral state, X4(t ), obtained through the edge-tracking at
Re = 560. Solid curves represent the trajectories starting from an intermediate state X s for s < s0 approaching
a threefold spiral state. Dotted curves represent trajectories for s > s0 for a fourfold spiral state.

with one half frequency of the fourfold state in the interval 710 < Re < 800 and a periodic regime.
This implies the possibility that the twofold spiral state may originate at a Reynolds number slightly
larger than Re3. Considering this as an indication for obtaining the twofold state in the present
study, we could obtain a twofold spiral state over Re ∼ 540 using the Newton–Raphson algorithm
by conducting several trial simulations under the restriction that the symmetries satisfied only by
the twofold spiral state were imposed. There were at least two independent branches of the twofold
spiral state over Re ∼ 590. The difference in the angular phase velocities of these two independent
branches was about one tenth of their absolute velocities, which could be recognized experimentally.
Figure 9 shows the polar and equatorial views of the obtained twofold spiral state, which are
visualized as an isosurface of the 
 deviation from the mean value. As is evident from the figure,
the present twofold spiral state satisfies the aforementioned reflection symmetry to the equatorial
plane; hence, a sinusoidal jet traveling in the azimuthal direction may be observed at the equator.

FIG. 9. Views of (a) polar and (b) equatorial twofold obtained at Re = 576.
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This is remarkable, given that the axisymmetric state becomes unstable not only against the
m = 2 sinusoidal disturbance in 1/4.8 � η � 1/3 but also against the m = 2 varicose disturbance
in η � 1/4.8, which was reported in Ref. [14]. It should be noted that a varicose disturbance is
realized by another reflection symmetry to the equatorial plane, [
(r, π − θ, φ), �(r, π − θ, φ)] =
[
(r, θ, φ),−�(r, θ, φ)], where the flow pattern appearing in both hemispheres are distorted
symmetrically by the wavelength. While the obtained twofold spiral state is probably rooted at
the former sinusoidal disturbance, another twofold spiral state that is rooted at the latter might be
obtained at larger Reynolds numbers at η = 1/2. In addition, it should be noted that the present
twofold spiral state does not originate at the fourfold spiral state, because any state satisfying
both the twofold and fourfold symmetries at the same time is axisymmetric. That is, the twofold
and fourfold symmetries are mutually exclusive, so that it is impossible for either of the states to
bifurcate from the other.

The trial simulation involving the start of these twofold spiral states yielded time-varying periodic
states originating at the twofold spiral states. Relevant to the route to chaos in SCF, the multistability
of the rotating waves with azimuthal wave number m = 2, 3, 4 and their successive transitions
to the modulated periodic states have been recently investigated in the study on the continuation
from wide-gap SCF to a magnetized spherical Couette system [30,31]. With regard to the unstable
periodic states, these m-fold states are realized in sequential bifurcations, braking the azimuthal
symmetry as the externally applied axial magnetic field strength varies. It should be noted that in the
present study, without any external magnetic field, it is restricted by the symmetry that is satisfied
only by the twofold spiral state in which these periodic states should principally be stable. The
twofold spiral state may be stable or not in the full state space without the aforementioned restriction
over Re ∼ 540, where the three- and fourfold spiral states with their own basin of attraction are
stable attractors. This subject remains for future study.

V. SUMMARY

The bifurcation aspect of a wide-gap SCF was numerically investigated, with an emphasis on the
competition among polygonal coherence with various wave numbers observed over the transitional
Reynolds numbers. We focused on a representative case, the half-radius ratio η = 1/2, by means of
the continuation method based on the Newton–Raphson algorithm. This was used to confirm that
the axisymmetric state became unstable over the first transitional Reynolds number Re4 at which the
fourfold spiral state bifurcated. It was found that the threefold spiral state successively bifurcated
from the axisymmetric state at a slightly higher Reynolds number Re3 than the first transitional
Reynolds number.

The attraction of the threefold spiral state was guaranteed by a basin boundary consisting of a
hidden unstable periodiclike state that bifurcates from the axisymmetric state at Re3, which forms a
heteroclinic orbit connecting to the three- and fourfold spiral states in the state space. The attraction
of the threefold spiral state expanded rapidly with an increase in the Reynolds number, which was
verified using the distance from the unstable periodiclike state to both the spiral states in the state
space. This aspect of the state space explains the experimentally bistable realization of different
equilibrium states over the first transitional Reynolds number. It was also found that the periodiclike
state was composed of the three- and fourfold spiral states, similar to a beat with two different
frequencies. The validation of the present scenario under the other representative aspect ratio of the
wide-gap SCF, such as η = 2/3 and 3/4, is ongoing. Future studies should attempt to understand
the roles that a combination of a few polygonal modes and periodic states plays along the route to
turbulence in the wide-gap SCF under the Ruelle-Takens-Newhouse scenario.
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