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Effects of parietal suction and injection on the stability of the Blasius
boundary-layer flow over a permeable, heated plate
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The main concern of this paper is to investigate the effects on the stability behavior of
wall suction or injection for external boundary-layer flow over a heated, porous plate for a
fluid with temperature-dependent viscosity. The wall suction or injection are applied to the
flow by a simple modification for the no-penetration condition and the current boundary
conditions on the flat plate. Liquid-type viscosities are found to entrain both the velocity
and temperature profiles closer to the plate with increasing both temperature sensitivity
and suction intensity, whereas gas-type viscosities are found to exhibit the reverse effect
with increasing flow injection and decreasing temperature dependence. We present then
the linear stability analysis and find that increasing both the temperature dependence
(from gas- to liquid-type behavior) and suction intensity of the fluid leads to increasing
critical Reynolds number to a point of maximum stability. We note also that increasing
both the Prandtl number (Pr) and flow suction in the liquid-type behavior results in an
increased critical Reynolds number. The magnitudes of the perturbation eigenfunctions
are considered before utilising them to obtain solutions to an energy balance integral.
We find that the eigenfunction profiles are imitative of the narrowing of their mean flow
counterparts when increasing either the temperature dependence or the flow suction. Our
results are then confirmed by the energy analysis, where we find a significant reduction
in the energy produced by the disturbance with increasing suction intensity and ultimately
leads to a more stable flow. Overall, there is a strong destabilizing effect with increasing
injection and the temperature-dependent viscosity over a heated plate. In summary, the
findings indicate that increasing the wall suction and temperature dependence results in
significantly more stable flows. It is worth noting that application and extension of this
study are considered in the context of chemical vapor deposition reactors.
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I. INTRODUCTION

The laminar transition of external flow to turbulence with parietal suction or injection is a
widely important phenomenon in many physical flows, such as engineering processes and industrial
systems. Some of the important applications for injection are gas turbines and turbojets. The effect of
injection on flow stability has been studied by Thierry and Grégoire [1]. Meanwhile, boundary-layer
separation is controlled by suction in aerodynamic applications for instance in laminar flow control
of internal and external flows.

There are a number of studies which are concerned on these occurrences spanning recent decades,
which have looked at the boundary-layer disturbances via external agents, for example free-stream
fluctuations and whether these turbulent-transition effects become unstable and lead to the laminar
flow breakdown [2]. There is no doubt that this interest is due to the significant problems in fluid
flow mechanics wherein most technological applications, skin-friction drag has become a greater
issue in the transition to turbulence, and the delay of transition is of particular interest. Therefore
the stabilization of laminar flows have been investigated extensively, interesting examples include
roughness levels, suction, mean flow distortion and wave cancellation by superposition [3–5], as
intelligent strategies to delay the laminar-turbulent transition process of flow.

Recent studies have focused exclusively on examining the effects of suction or blowing on the
turbulent boundary layer flows [6–9]. Park and Choi [10] numerically investigated the effects of
uniform suction or blowing on a turbulent boundary layer flow which has a spanwise slot. This
study showed that the skin friction and turbulence intensities above the slot and also downstream of
the slot change significantly using small-magnitude uniform suction or injection. The authors noted
that recovering from both cases of suction or injection occurs rapidly, while recovering from other
turbulence intensities and shear stress requires a longer distance downstream.

Examining the effect of injection velocity using three values of the injection intensity as direct
numerical simulations on the characteristics of the boundary-layer turbulence has been conducted
by Kim et al. [11]. Pantokratoras [12] investigated the problem of laminar-free convection over a
vertical isothermal plate in the temperature range between 20 ◦C and 0 ◦C with uniform blowing
or suction in water taking into consideration the temperature dependence of viscosity and density.
This work indicated that the variation of such parameters with temperature has a strong impact on
the results of the numerical solution of the boundary-layer equations. Bansal [13] has investigated
thermal boundary layers and the velocities over a porous flat plate with variable suction, or injection
velocity, and also considered constant wall temperature, without restricting the scope of the Prandtl
number. The author pointed out that this research has limiting cases of zero and asymptotic suction
for velocity and thermal boundary layers. Mohamed Ali [14] presented the similarity solutions for
laminar boundary-layer equations on a stretching surface with suction or injection. The results of
this examination show that the suction of the boundary-layer acts to delay the back flow over the
stretching surface, while injection intensity leads to increasing the strength of the reverse flow.
Hossaina et al. [15] considered the boundary layer flow of the unsteady laminar combining free
and enforced convective in viscous incompressible fluid with suction and injection about a vertical
porous plate. The authors showed that a small amount of suction or blowing plays a great role
in the velocity of flow and temperature distributions. Abu Bakara et al. [16] studied numerically
the influence of suction on the steady boundary-layer flow over a stretching or shrinking cylinder.
Meanwhile, Laouar and Mezaache [17] have studied the effects of parietal suction and blowing with
viscosity on the hydrodynamic and thermal behavior of external flow. They demonstrated that the
momentum and heat transfer can be significantly affected by wall conditions. The function of the
imposed stream condition for laminar flow produces the flow similarity for both cases of suction and
injection. Contrary to that, turbulent flow parameters are a strongly dissimilar. Shojaefard et al. [18]
presented a numerical study concerning flow control by suction and injection for the aerodynamic
characteristics of a specific airfoil. Their conclusions reveal that the suction slots near the trailing
edge can greatly increase the lift coefficient, while the injection decreases the skin friction. Laouar
et al. [19] focused on the temporal linear stability characteristics of laminar forced-convection
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external flows along a horizontal permeable flat plate. The findings of this study illustrate that
increasing the intensity of suction or decreasing the intensity of blowing raises the critical Reynolds
number.

The Blasius boundary layer has been considered a staple of fluid mechanics since the early
20th century [20]. The first studies of the effects of small disturbances on the laminar flow over
a flat plate were by Tollmien [21] and Schlichting [22], where they considered the amplification
of linear, wavelike disturbances as the key mechanism for unstable flows. The ability to identify
a critical Reynolds number, which is the specific point of the beginning of transition from the
laminar to turbulent regime, was a particularly useful result from this work. The existence of
Tollmien-Schlichting (T-S) waves were demonstrated by Schubauer [23], who observed the waves
for the first time during experiments in a heavily damped wind tunnel.

The work presented will analyze the effects of wall suction and injection to chemical vapor
deposition (CVD): a microfabrication process where a gas mixture is pumped into a reactor and
flows over a heated reactant porous surface to chemically deposit a thin film of material. For
promoting regular and cohesive film growth, laminar flow must be maintained in a CVD reactor,
where the deposition process could be disrupted by turbulent or unstable flows [24,25].

It is possible that the sharp temperature gradients in a CVD reactor produce variations in all
physical properties of the fluid as presented in Refs. [26,27], and therefore there is a need for a
temperature-dependent viscosity model. Miller et al. [28] represents the first step to analyzing the
larger stability of flows in CVD reactors on a smooth surface of flat plate. Our paper will expand
Miller et al. [28] to include wall suction and injection that have been shown in Laouar et al. [19],
which are applied to analyze the effects of parietal suction and injection on the stability of flows in
a CVD reactor.

This study is organized as follows: Section I is a brief introduction to the smooth flat plate
with temperature-dependent viscosities of boundary-layer flows. In Sec. II, the governing steady
mean flow equations of the heated plate problem are formulated with the effects of the wall suction
or injection further analyzed and discussed. In Secs. III and IV, the linear stability properties of
the resulting steady flows are investigated wherein the neutral curves, critical Reynolds numbers,
growth rates, and amplitude ratios for different intensities of the suction or injection are presented. In
Sec. V, an analysis of the energy balance within the boundary-layer flow is analyzed for extracting
possible underlying physical mechanisms behind the impacts of wall suction or injection on the flow
stability. Finally, in Sec. VI, the summary and conclusions are drawn.

A. The physical model

A schematic diagram of the physical model taken into account is shown in Fig. 1. It consists of a
permeable, heated wall in direct contact with laminar and turbulent external flow. Wall heating, flow
suction, and injection induce momentum and heat transfer. The physical model is two dimensional.
The coordinate system Oxy is located on the flat plate and defined thus: Ox axis is in the flow
direction and Oy axis is normal to the plate and directed toward the flow.

II. MEAN FLOW OF A HEATED PLATE WITH WALL SUCTION AND INJECTION

A. Formulation

We consider a steady, incompressible, Newtonian fluid flowing with velocity U∗ = (U ∗,V ∗)
over a semi-infinite flat, porous plate, where U ∗ and V ∗ are the velocities in the streamwise and
plate-normal directions x∗ and y∗, respectively. Here T ∗ is the temperature of the fluid, and the plate
heated to a fixed temperature T ∗

w . Note that the dimensional quantities here are denoted by asterisk
superscripts.

113902-3



MUSHRIFAH AL-MALKI et al.

FIG. 1. Schematic diagram of the physical model. Wall suction (↓) or injection (↑). Adapted from Laouar
and Mezaache [17], (1) wall with suction or injection, (2) dynamic laminar/turbulent boundary layer, and (3)
thermal boundary layer

The system is governed by the following mass, momentum, and heat continuity equations:

∇∗ · U∗ = 0, (1)(
∂

∂t∗ + U∗ · ∇∗
)

U∗ = − 1

ρ∗ ∇∗ p∗ + 1

ρ∗ ∇∗ · τ ∗, (2)

ρ∗C∗
p

(
∂

∂t∗ + U∗ · ∇∗
)

T ∗ = k∗∇∗2T ∗, (3)

where ρ∗ is the fluid density, t∗ is the time, p∗ is the pressure, C∗
p is the specific heat capacity of the

fluid, and k∗ is the heat diffusion constant. The viscous stress tensor is given by τ ∗ = μ∗γ̇ ∗, where
γ̇ ∗ = ∇∗U∗ + (∇∗U∗)T is the rate-of-strain tensor. Equation (3) is coupled to (1) and (2) via the
temperature dependence of the fluid viscosity,

μ∗ = μ∗
∞[1 + ε∗(T ∗ − T ∗

∞)]−1,

where μ∗
∞ and T ∗

∞ represent the free-stream viscosity and temperature, respectively. The sensitivity
of viscosity to changes in temperature is represented by the characteristic constant of fluid ε∗. As
will be considered for a heated plate, i.e., T ∗

w > T ∗
∞, the case of ε∗ < 0 represents the viscothermal

behavior of a gas, while the case ε∗ > 0 represents that of a liquid. Setting ε∗ = 0 indicates a
constant viscosity and uncouples (3) from (1) and (2).

The nondimensional variables scales of the system are introduced as follows:

U∗ = U ∗
∞(U,V ), (x∗, y∗) = L∗(x, y), t∗ = (L∗/U ∗

∞)t,

p∗ = ρ∗U ∗2
∞ p, T ∗ − T ∗

∞ = T (T ∗
w − T ∗

∞), ε∗ = ε/(T ∗
w − T ∗

∞).

Here U ∗
∞ is the free stream velocity, L∗ is the length scale, δ is the scaling constant of

the boundary layer, and ε is the nondimensional temperature dependence parameter. From the
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equations (1)–(3), the nondimensional system of equations becomes then

∂U

∂x
+ ∂V

∂y
= 0, (4)(

∂

∂t
+ U

∂

∂x
+ V

∂

∂y

)
U = −∂ p

∂x
+ 1

Re

[
μ∇2U + ∂μ

∂y

(
∂U

∂y
+ ∂V

∂x

)
+ 2

∂μ

∂x

∂U

∂x

]
, (5)(

∂

∂t
+ U

∂

∂x
+ V

∂

∂y

)
V = −∂ p

∂y
+ 1

Re

[
μ∇2V + ∂μ

∂x

(
∂U

∂y
+ ∂V

∂x

)
+ 2

∂μ

∂y

∂V

∂y

]
, (6)(

∂

∂t
+ U

∂

∂x
+ V

∂

∂y

)
T = 1

RePr
∇2T, (7)

where μ = (1 + εT )−1, Re = U ∗
∞L∗ρ∗/μ∗

∞ is the Reynolds number, and Pr = C∗
pμ

∗
∞/k∗ is the

Prandtl number. In this work, we set Pr = 0.72, which is consistent for a range of gases, including
air. The effect of varying the Prandtl number is also considered for a liquid-type viscosity.

We consider the physical model shown above in Sec. I. The boundary conditions are then defined
as

y = 0, U = 0 and T = 1, as y → ∞, U → 1 and T → 0.

We have a small parameter which is δ = O(Re−1/2), at the boundary-layer region close to the
surface of the plate. We define also the boundary-layer coordinate: η = y/

√
x, hence the following

similar variables are formulated

U = f ′(η), V = [η f ′(η) − f (η)]/2
√

x, T = 	(η), (8)

where the primes indicate differentiation with respect to η.
We substitute Eq. (8) into the system (4)–(7), we then obtain the mean-flow equations as follows:

(μ̄ f ′′)′ + 1
2 f f ′′ = 0, (9)

	′′ + 1
2 Pr f 	′ = 0, (10)

where μ̄ = (1 + ε	)−1. Equations (9) and (10) are a boundary-value problem which is solved using
numerical methods subject to the modified wall boundary conditions which are expressed as

f (0) = fw, f ′(0) = 0, 	(0) = 1, (11)

f ′(η → ∞) = 1, 	(η → ∞) → 0. (12)

Here primes denote differentiation with respect to η, the wall stream function fw > 0 represents
wall suction, and fw < 0 indicates injection. These boundary conditions change to the boundary
conditions for a smooth, impermeable plate. The solutions converge at η = 20 to a tolerance of
10−8; we consider this numerical representation of free-stream conditions as η → ∞. Note that η

is the similarity coordinate and f (η) the nondimensional stream function.
The effect of ε on the boundary layer thickness δ∗ is noted by measuring the Blasius constant δ,

given as follows:

δ =
∫ ∞

0
(1 − U )dη = δ∗

√
ρ∗U ∗∞
μ∗∞x∗ . (13)

B. Results of temperature-dependent viscosity with wall suction and injection

From Eq. (11), we note that imposing outward parietal velocity acts to produce flow suction,
represented by positive values of stream function. Figure 2 shows the viscosity profiles of μ̄(η) with
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FIG. 2. Mean flow profiles, viscosity profiles μ̄(η), in the cases of various suction and injection, and a
range of temperature dependencies.

various intensities of the flow suction over a heated plate. Figure 2 presents viscosity profiles for a
range of flow suction fw > 0 and temperature dependencies. The boundary layers of the viscosity
profiles narrow strongly with increasing the suction intensity and are closer to the surface plate.
Figures 3 and 4 present viscosity profiles for a range of temperature dependencies and at fixed
suction and injection intensities, respectively. For Fig. 3, the viscosity profiles move in a gradual
reduction of μ̄(η) as fw > 0 and ε > 0, including a greater narrowing to both sides of the viscosity
μ(η → ∞) = 1, which is due to the uniform temperature in the free stream. In all three cases of
flow suction, we see that μ̄(η) is equal to the value one for the temperature independent case ε = 0.
This means that the fluid viscosity is in the free stream, and hence it is not affected by wall suction
when ε = 0.

FIG. 3. Mean flow profiles, viscosity profiles μ̄(η). (a) fw = 0 and a range of ε, (b) fw = 0.4 and a range
of ε, and (c) fw = 0.8 and a range of ε.
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FIG. 4. Mean flow profiles, viscosity profiles μ̄(η). (a) fw = 0, and a range of ε. (b) fw = −0.4, and a
range of ε. (c) fw = −0.8, and a range of ε.

The plots in Figs. 5–7 present the mean flow solutions of the velocity and temperature profiles
for a range of the suction values with three constant values of ε = −0.75, 0, 0.75, respectively.
Figures 5(a), 6(a), and 7(a) show the velocity profiles of U (η) for the case of different suction
intensities at a fixed temperature dependence ε = −0.75, 0, 0.75. Increasing both fw and ε results
in a greater thinning of the boundary layer and the velocity profiles are shifted toward the plate
surface and the boundary-layer edge. In Figs. 5(b), 6(b), and 7(b), the velocity gradient takes a
maximum value at the plate surface and a higher narrowing in the boundary layer is observed as
a result of increasing the suction intensity and ε. In contrast, decreasing ε slightly broadens the
boundary layers of the mean velocity profiles of U (η) and U ′(η) as observed in Figs. 5(a) and 5(b).
Therefore, lower values of U ′(η) profiles are noted.

Regarding Figs. 5(c), 6(c), and 7(c), show a gradual reduction in the temperature profiles toward
the plate surface as fw and ε are increased. However, this reduction decreases significantly when
decreasing ε as seen in Fig. 5(c).

From Table I, we note that increasing the suction fw and ε also decreases δ. Due to the
dependence of the boundary layer (δ) on U , it can be inferred that the narrowing of the boundary
layer results in the narrowing of the mean velocity profile.

The velocity profiles obtained for ε = 0 in this study are compared with a surprisingly simple
solution reported in Ref. [29], which is obtained in the case of a flat plate at zero incidence with
unform suction, and we note that our results have a good agreement with the result observed by
Schlichting [29].

In contrast, we find also that flow injection is produced by imposing an inward parietal velocity
represented by negative values of the wall stream function. Figure 2 shows the viscosity profiles
of μ̄(η) with various intensities of injection over a heated, permeable plate. Figure 2 presents
viscosity profiles for a range of injection intensities fw < 0 and ε. Increasing the intensity of
injection makes the boundary layers of the viscosity profiles thicker and more distant from the
surface plate, especially with increasing viscosity (ε < 0). Figure 4 presents the viscosity profiles
for a range of temperature dependencies and a fixed injection intensity of fw = 0, fw = −0.4, and
fw = −0.8, respectively. These cases display a gradual reduction in height of μ̄(η) profiles away
from the surface for fw < 0, as the temperature-dependent viscosity is increased from negative.

We find that the dimensionless velocity increases with increased injection, which is evident from
the plots in Figs. 5(a), 6(a), and 7(a) of the velocity profile, U (η) for a range of the injection
values with three constant values of ε = −0.75, 0, 0.75, respectively. We found that increasing the
injection strength results in a significant thickening of the boundary layer and causes the velocity
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TABLE I. Computed mean flow data for a range of temperature dependencies
for flow suction and injection at fixed ε values.

fw U ′(0) 	′(0) δ

ε = −0.75
−0.6 0.0547 −0.10196 3.9656
−0.4 0.0692 −0.14470 3.4302
−0.2 0.0848 −0.19207 3.0083
0 0.1016 −0.24306 2.6688
0.2 0.1192 −0.29691 2.3909
0.4 0.1376 −0.35306 2.1599
0.6 0.1568 −0.41109 1.9653

ε = 0
−0.6 0.1349 −0.14182 2.6882
−0.4 0.1956 −0.19112 2.2674
−0.2 0.2616 −0.24247 1.9587
0 0.3321 −0.29564 1.7208
0.2 0.4061 −0.35042 1.5313
0.4 0.4833 −0.40665 1.3767
0.6 0.5630 −0.46419 1.2481

ε = 0.75
−0.6 0.1475 −0.15369 2.3378
−0.4 0.2487 −0.20921 1.8759
−0.2 0.3622 −0.26452 1.5670
0 0.4853 −0.32023 1.3429
0.2 0.6160 −0.37660 1.1719
0.4 0.7529 −0.43377 1.0370
0.6 0.8949 −0.49177 0.9278

profile to move far away from the plate surface. In Figs. 5(b), 6(b), and 7(b), the inflectional nature of
U ′(η) increases to a maximum at some distance away from the plate surface and a higher thickness
in the boundary layer as a result of increasing injection intensity and decreasing ε, as seen in Fig. 5.

Figures 5(c), 6(c), and 7(c) show an increase in the temperature profile gradients far away from
the plate surface with fw < 0. This increase is greater with decreasing ε as seen in Fig. 5(c).

From Table I, we can see that increasing the injection strength fw and decreasing or increasing
ε also increases the thickness of the boundary layer. This is due to the dependence of the boundary
layer (δ) on U . It can be inferred that the thickness of the boundary layer also causes the thickness
of the mean velocity profile. Our results are in agreement with Laouar et al. [19] and Miller et al.
[28].

We now consider the Prandtl number, a dimensionless quantity approximating the ratio of mo-
mentum diffusivity to thermal diffusivity. Note that the temperature-dependent viscosity of the fluid
is increased with increasing temperature dependence (ε < 0) for air and gasses, and therefore the
momentum diffusivity rate will be decreased. This means that the thermal diffusivity is dominant,
and hence Pr � 1. Meanwhile, the viscosity decreases with increasing temperature dependence
(ε > 0) for liquids, this could make the viscous diffusion rate dominant, so Pr � 1. This leads us to
examine the effect of increasing Pr and wall suction intensity in a liquid-type viscosity, ε > 0, where
we find that there is an extremely slight change in the velocity profile as it is evident in Figs. 8(a) and
8(c). However, the temperature profile shows a greater reduction toward the plate when increasing
both Pr and wall suction intensity as seen in Figs. 8(b) and 8(d).
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FIG. 5. Mean flow profiles, in cases of various suction and injection, and fixed ε = −0.75. (a) streamwise
velocity, (b) velocity gradient, and (c) temperature.

III. LINEAR STABILITY EQUATIONS

A. Formulation

A small perturbation quantity is added to each of the mean flow variables

u(x, y, t ) = U (x, y) + û(x, y, t ), (14)

v(x, y, t ) = Re−1/2V (x, y) + v̂(x, y, t ), (15)

p(x, y, t ) = p(x) + p̂(x, y, t ), (16)

T (x, y, t ) = 	(x, y) + 	̂(x, y, t ). (17)

In order to derive the governing set of disturbance equations used in the forthcoming numerical
analysis, the quantities in Eqs. (1)–(3) are nondimensionalized with the same velocity, length, time,
pressure, and temperature scales shown in Sec. II B, where L∗ is taken to be δ∗, then we have

(x∗, y∗) = δ∗(x, y), t∗ = (δ∗/U ∗
∞)t .
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FIG. 6. Mean flow profiles, in cases of various suction and injection, and fixed ε = 0. (a) Streamwise
velocity, (b) velocity gradient, and (c) temperature.

Note here that the choice of scaling is identical with the exception of the length and time scales,
which are now scaled in relation to the boundary-layer thickness δ∗. At this point the newly scaled
Reynolds number is defined as

R = δ
√

xRe.

The perturbed base flow (14)–(17) is then substituted into the resulting system of equations. A
“parallel-flow approximation” is imposed by the disturbances considered to occur sufficiently down-
stream (x � 1) such that we ignore streamwise boundary-layer growth. Recalling that V (x, y) ∝
x−1/2 acts to assume that V � 1. Therefore, the mean flow variables U (y) and 	(y) are now
functions of y alone. The viscosity μ has undergone a Taylor expansion to first order to retain
the mean flow form

μ ≈ 1

1 + ε	
− ε	̂

(1 + ε	)2
= μ̄ + μ̂,

113902-10
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FIG. 7. Mean flow profiles, in cases of various suction and injection, and fixed ε = 0.75. (a) Streamwise
velocity, (b) velocity gradient, and (c) temperature.

where μ̂ = −εμ̄2	̂. We now obtain the following system of PDEs that are separable in x and t :

∂ û

∂x
+ ∂ v̂

∂y
= 0, (18)

∂ û

∂t
+ U

∂ û

∂x
+ U ′v̂ = −∂ p̂

∂x
+ μ̄

R

(
∂2û

∂x2
+ ∂2û

∂y2

)
+ μ̄

R

(
∂ v̂

∂x
+ ∂ û

∂y

)
+ U ′′μ̂

R
+ U ′∂μ̂

R∂y
, (19)

∂ v̂

∂t
+ U

∂ v̂

∂x
= −∂ p̂

∂y
+ μ̄

R

(
∂2v̂

∂x2
+ ∂2v̂

∂y2

)
+ 2μ̄′∂ v̂

R∂y
+ U ′∂μ̂

R∂x
, (20)

∂	̂

∂t
+ U

∂	̂

∂x
+ 	′v̂ = 1

RPr

(
∂2	̂

∂x2
+ ∂2	̂

∂y2

)
. (21)

The perturbation quantities are then expressed in terms of normal modes

(û, v̂, p̂, 	̂) = (ũ, ṽ, p̃, 	̃)ei(αx−ωt ).

Here α = αr + iαi is the complex streamwise wave number and ω is the real disturbance fre-
quency. In the case that αi < 0, the disturbance is convectively unstable and grows downstream. The
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FIG. 8. Mean flow profiles of a range of Prandtl number values, and at a fixed value of ε = 0.25, and fixed
values of fw = −0.4, 0.4. (a) Streamwise velocity for injection, (b) temperature profile for injection, (c) axial
velocity for suction, and (d) temperature for suction.

perturbation quantities in Eqs. (18)–(21) are now expressed in their normal mode form, producing
the resulting system of stability equations

iαũ + ṽ′ = 0, (22)

R[i(αU − ω)ũ + U ′ṽ + iα p̃] = μ̄(ũ′′ − α2ũ) − εμ̄2[	′(ũ′ + iαṽ) + (U ′	̃)′] + 2ε2μ̄3U ′	′	̃,

(23)

R[i(αU − ω)ṽ + p̃′] = μ̄(ṽ′′ − α2ṽ) − εμ̄2[2	′ṽ′ + iαU ′	̃], (24)

PrR[i(αU − ω)	̃ + 	′ṽ] = 	̃′′ − α2	̃. (25)

Note that in the limit as ε → 0 this system can be reduced to the classical fourth-order Orr-
Sommerfeld equation. The system (22)–(25) is solved as a quadratic eigenvalue problem of the
form A2α

2 + A1α + A0 = Q̃, where Q̃ = (ũ, ṽ, p̃, 	̃)T is the vector of eigenfunctions, and the
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quantities Aj are matrices containing the coefficients of the O(α j ) terms. The eigenfunctions are
then computed according to the boundary conditions

ũ(y = 0) = ṽ(y = 0) = ṽ′(y = 0) = p̃(y = 0) = 	̃(y = 0) = 0, (26)

ũ(y → ∞) = ṽ(y → ∞) = p̃(y → ∞) = 	̃(y → ∞) → 0. (27)

We obtain the neutral temporal and spatial stability solutions via a Chebyshev polynomial dis-
cretization method. An exponential map is used to transform the Gaussâ Lobatto collocation points
into the physical domain. We solve then the stability equations as primitive variables over 100
the collocation points distributed between the upper and lower boundaries, with the exception of the
boundary conditions in Eqs. (26) and (27), which are imposed at y = 0 and y = ymax, where suitable
mean-flow convergence is again found at ymax = 20.

B. Neutral stability curves results for flow suction or injection

The solutions of the system (22)–(25) are the points on the neural curves, when αi = 0. The
region enclosed by the neutral curve identifies unstable points of the flow for which a disturbance
exponentially grows as αi < 0, while the region which is external to the curve shows the stable state
αi > 0. The stability of the flow will generally be interpreted based on a critical Reynolds number,
which indicates a more unstable flow when it is reduced. The eigenfunctions are then computed
according to the boundary conditions (26) and (27). The stability of the flow is examined by plotting
neutral points (αi = 0) in (R, F ) plane, where F = ω/R is the scaled frequency of the disturbance.

Figures 9(a)–9(c) in this section present the effects of wall injection and suction on the neutral
stability curves and data for a range of temperature dependencies. Note that the most amplified
T-S disturbances appear near to the lower branch of the neutral curve in the boundary layer of the
flat plate. Therefore, the structure of the T-S waves in the near-wall viscous layer are investigated.
Figure 9(a) shows the neutral stability curves for ε = −0.75. Increasing fw appears to stabilize the
flow, as the critical Reynolds number is increased.

However, Fig. 9(c) shows the neutral stability curves for ε = 0.75, and different intensities of the
suction ( fw > 0). In general, it can be noted that the scaled frequency of the disturbance reduces
with increasing both fw (suction) and ε. We note also that the critical Reynolds number increases
with higher intensities of the suction, as seen in Table II. In this case, it is observed that increasing
fw causes a highly stabilising effect.

In contrast, in Fig. 9, we see that increasing the intensity of blowing leads to a marked leftward
change of the curves, tending strongly toward lower Reynolds numbers. Thus, blowing appears to
be highly destabilizing. Note that the region of instability is broadening greatly as the temperature-
dependent viscosity becomes stronger or lower, although the curve of ε = 0.75 is more stable. We
also note that the positive values of temperature cause greater leaps to lower Reynolds numbers, than
negative temperature, which is evident in Fig. 9(a). From Table II, it is clear that the critical Reynolds
number decreases sharply with higher intensities of injection for both increasing or decreasing ε.

Depending on our results of the mean flow profiles for Prandtl number effect in Sec. II, we note
that the critical Reynolds number is increasing rapidly as Pr takes higher values. This means that
the effect of increasing Prandtl number and flow suction shows a strongly stabilizing effect as seen
in Fig. 10(b), whereas increasing flow injection exhibits a reverse effect as noted in Fig. 10(a). It is
clear that significantly decreasing viscosity increases the Prandtl number value, leading to a more
stabilizing effect, especially with increasing suction intensity.

IV. EIGENFUNCTION OF FLOW SUCTION AND INJECTION

We assess the eigenfunctions at Rc + 200, and find that the value of α used is that of the most
amplified disturbance at this Reynolds number, which is found by marching through values of F
within the neural curve to find the maximum value of −αi.
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FIG. 9. Neural curves, in cases of various suction and fixed ε = −0.75, 0, 0.75. (a) Neutral curves of
suction at ε = −0.75. (b) Neutral curves of suction at ε = 0. (c) Neutral curves of suction at ε = 0.75.

Amplitudes of the perturbation stream function and streamwise, wall-normal, and temperature
eigenfunctions for a range of ε values are combined with a fixed value of suction at ( fw = 0.4), and
of injection at ( fw = −0.4), in Figs. 11 and 12, respectively. It can be seen that the profile maximum
moves closer to the plate surface as ε and fw are increased. This may be as a result of the narrowing
of the corresponding mean flow profiles seen in Figs. 5–7. Wall and Wilson [30] observed a similar
effect, and attributed it to the mean flow response of their temperature-dependent viscosity model.

Figure 11(a) exhibits the streamwise perturbation eigenfunctions for flow injection. It is noted
that the typical shape of |ũ(y)| moves away from the surface for ε < 0. The profile maximum is
flattened at ε = 0 and fw = −0.4. We can also see that |ũ(y)| is sharply divided into two distinct
maxima for ε = −0.75, and both maxima come together gradually to form one peak at ε = 0. Note
that increasing ε and injection intensity acts to increase the maximum value of |ũ(y)|. In Fig. 11(b),
the wall-normal disturbance eigenfunction with injection shows the same behavior seen with flow
suction. However, here the profile moves away from the plate surface with increasing injection
strength. The plots in Fig. 11(c) present a slight change of the maxima for |	̃(y)| with increasing ε

which results in a movement closer to the surface.
Figure 12(a) shows the profile disturbance of |ũ(y)|, which is slightly divided into two distinct

maxima for ε = −0.75. This division disappears gradually as ε and fw are increased. However, the
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TABLE II. Critical data for a range of the flow suction and injection intensity at
fixed ε values.

fw Rc F × 106 αr,c

ε = −0.75
−0.6 97.38 4613.88 0.8328
−0.4 111.23 3711.23 0.7649
−0.2 128.63 2929.33 0.7031
0 150.07 2298.26 0.6512
0.2 176 1789.77 0.605
0.4 206.53 1399.3 0.5658
0.6 241.4 1111.2 0.5360

ε = 0
−0.6 104.70 2575.93 0.5508
−0.4 160.46 1340.52 0.4568
−0.2 271.35 607.70 0.3748
0 519 232.34 0.3044
0.2 1095.8 78.1 0.2474
0.4 2294 26.7 0.2056
0.6 4270 11.5 0.1862

ε = 0.75
−0.6 80 3009.59 0.5255
−0.4 155.18 1125.14 0.4062
−0.2 373.07 308.79 0.3056
0 1125.30 62.12 0.2274
0.2 3250 13.88 0.1825
0.4 7040 4.64 0.1568
0.6 11800 2.47 0.1556

streamwise profile is maximum at ε = 0.5. In Fig. 12(b), we observe that the maximum value of
|ṽ(y)| decrease with increasing ε. However, the turning point appears in the range 0.25 < ε < 0.75.
The magnitude of the temperature perturbation, |	̃(y)| shows a slight reduction toward the surface,
as suction intensity and temperature dependence are increased, as is evident in Fig. 12(c). However,
there are fluctuations in the maximum values beyond ε = 0.25.

V. ENERGY ANALYSIS

A. Formulation

The examination of the energetic input and output of disturbance to the mean flow depends on
the eigenfunctions. Multiplying (19) and (20) by û and v̂, respectively, and then summing to form
an equation representing the energy transfer processes of the system, leads to

û
∂ û

∂t
+v̂

∂ v̂

∂t
+ U

(
û
∂ û

∂x
+v̂

∂ v̂

∂x

)
+U ′ûv̂

= −
(

û
∂ p̂

∂x
+ v̂

∂ p̂

∂y

)
+ μ̄

R

(
û
∂2û

∂x2
+û

∂2v̂

∂y2
+ v̂

∂2v̂

∂x2
+ v̂

∂2û

∂y2

)

+ μ̄′

R

(
û
∂ v̂

∂x
+ û

∂ û

∂y
+ 2v̂

∂ v̂

∂y

)
+U ′

R

(
û
∂μ̂

∂y
+v̂

∂μ̂

∂x

)
+U ′′ûμ̂

R
. (28)

We define the following variables:

ê = 1

2
(û2 + v̂2), q̂ = ∂ v̂

∂x
− ∂ û

∂y
, and ŝ = ∂ v̂

∂x
+ ∂ û

∂y
,
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FIG. 10. Neural curves, in cases of a range of Prandtl number. (a) Neutral curves of Prandtl number at a
fixed fw = −0.4 (injection) and ε = 0.25. (b) Neutral curves of Prandtl number at fixed fw = 0.4 (suction) and
ε = 0.25.

where ê is the kinetic energy of the two disturbance quantities, q̂ is the disturbance vorticity and ŝ is
defined purely for convenience. Following some manipulation of the term (28), the energy equation
becomes(

∂

∂t
+ U

∂

∂x

)
ê + U ′ûv̂ = −∂ (û p̂)

∂x
− ∂ (v̂ p̂)

∂y
+ μ̄

R

[
∂ (v̂q̂)

∂x
− ∂ (ûq̂)

∂y
− q̂2

]

+ 1

R

{
μ̄′

[
∂ (ûv̂)

∂x
+∂ (ê + v̂2)

∂y

]
+ U ′

[
∂ (μ̂û)

∂y
+ ∂ (μ̂v̂)

∂x
−μ̂ŝ

]
+ U ′′μ̂û

}
.

(29)

FIG. 11. Perturbation eigenfunctions for a range of temperature-dependent viscosity with fixed injection
fw = −0.4. (a) |ũ| streamwise eigenfunctions. (b) |ṽ| plate normal eigenfunctions. (c) |	̃| temperature
eigenfunctions.

113902-16



EFFECTS OF PARIETAL SUCTION AND INJECTION …

FIG. 12. Perturbation eigenfunctions for a range of temperature-dependent viscosity with fixed suc-
tion fw = 0.4. (a) |ũ| streamwise eigenfunctions. (b) |ṽ| plate normal eigenfunctions. (c) |	̃| temperature
eigenfunctions.

Integration through the boundary layer results in the following integral energy equation:

dE

dx
= −

{ ∫ ∞

0
U ′〈ûv̂〉dy

}I

+ 1

R

{
d

dx

∫ ∞

0
μ̄〈v̂q̂〉dy −

∫ ∞

0
μ̄〈q̂2〉dy

}II

+ 1

R

{
d

dx

∫ ∞

0
μ̄′〈ûv̂〉 + U ′〈μ̂v̂〉dy +

∫ ∞

0
μ̄′〈ûq̂〉 − μ̄′′(〈ê + v̂2〉) − U ′〈μ̂ŝ〉dy

}III

. (30)

The terms on the left-hand side of (30) represent the total mechanical energy Et of the system, and
here E = ∫ ∞

0 U 〈ê〉 + 〈û p̂〉dy. The integral I represents energy production due to Reynolds stresses
Rp, the integral II represents energy dissipation due to viscosity Vd , and terms in III represent
additional terms arising from variable viscosity Va. Hence the terms in III vanish when ε = 0.

B. Results of solutions

Note that for the integral energy solved via numerical integration we obtain the only non-
negligible terms (on the left side) being I and the second term of II. However, all the terms in III are
consistently negligible. The remaining terms are normalized with respect to

∫ ∞
0 U 〈ẽ〉 + 〈ũ p̃〉dy, as

follows:

−2αi︸ ︷︷ ︸
Et

≈
∫ ∞

0
U ′〈ũṽ〉dy︸ ︷︷ ︸

Rp

+ 1

R

∫ ∞

0
μ̄〈q̃2〉dy︸ ︷︷ ︸
Vd

, (31)

where ẽ = 1
2 (ũ2 + ṽ2), q̃ = iαṽ − ũ′, and 〈x̃ỹ〉 = x̃ỹ∗ + x̃∗ỹ, where a ∗ refers to a complex

conjugate.
The amplification of any turbulent eigenmode is noted when energy production outweighs energy

dissipation.
Figure 13(a) represents the change in energy contributions generated by combined suction

intensities with values of ε at Rc(ε) + 200. It can be seen that when ε < 0, the disturbances
are significantly more amplified, while this amplification gradually decreases with increasing ε.
However, when ε > 0.25, there are also significant fluctuations of amplification as fw is increased.

Generally, the profiles of the energy loss from Vd are approaching zero as fw and ε are increased.
It can also be observed that all curves are not constant with a range of suction strengths. This means
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FIG. 13. (a) Component energy contributions and (b) total and component energy dissipation due to
different suction values for a range of temperature dependencies. The vertical and horizontal black, dashed
lines are provided as reference to ε = 0 and to zero energy contribution, respectively.

that the effects of wall suction combined with temperature-dependent viscosity are not consistent
exactly with the effects of ε as is seen in Miller et al. [28].

In contrast, Fig. 14(a) shows an adverse change from that seen in Fig. 13(a), where all curves of
the energy contribution and dissipation significantly move away from zero as the blowing intensity
is increased.

We now separate Vd into a constant viscosity component and a temperature-dependent compo-
nent, giving ∫ ∞

0
μ̄〈q̂2〉dy︸ ︷︷ ︸
Vd

=
∫ ∞

0
〈q̂2〉dy︸ ︷︷ ︸
Nd

+
∫ ∞

0
(μ̄ − 1)〈q̂2〉dy︸ ︷︷ ︸

Td

. (32)

FIG. 14. (a) Component energy contributions and (b) total and component energy dissipation due to
different blowing values for a range of temperature dependencies. The vertical and horizontal black, dashed
lines are provided as reference to ε = 0 and to zero energy contribution, respectively.
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FIG. 15. Results of the energy balance integral showing the energy contribution of the individual compo-
nents for a range of suction intensities with fixed ε. D1 and D2 are the first and second terms of Vd .

Here Nd indicates Newtonian dissipation, and Td indicates temperature-dependent dissipation. This
separation of Vd allows for further notes on how the variable’s viscosity influences flow stability
with suction.

Figure 13(b) shows the effects of flow suction as these two components interact over the range
of temperature dependencies. The energy dissipation increases as suction intensities are increased.
However, there are slight fluctuations of the energy contribution of Vd as fw > 0.

Adversely, the energy contribution is unstable with increasing flow injection, as seen in
Fig. 14(b). We see that both dissipation components are reduced for fw < 0. The Td curve is
increased with injection capacity, i.e, dissipation for ε < 0 and production for ε > 0. The minimum

FIG. 16. Results of the energy balance integral showing the energy contribution of the individual compo-
nents for a range of temperature dependencies with fixed injection fw . D1 and D2 are the first and second terms
of Vd .
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dissipation exhibited by the Nd curve is also moved to a reduced value of temperate dependencies
at a greater blowing intensity.

Figure 15(a) presents the energy balance calculation for ε < 0 and wall suction. This case shows
the effects of suction for the energy production term Rp, the energy dissipation Vd , and the total
mechanic energy Et of the system, where it is noted that the total mechanic energy Et is decreased
as a result of reducing the energy production and the energy dissipation with increasing flow suction
fw and ε.

Figure 15(b) shows the energy balance calculation for a range of temperature-dependent viscosity
ε > 0 and the suction. There is a stabilization effect on the T-S waves that mainly comes from the
large reduction in the energy contribution term. Note that the significant invariance of the energy
dissipation of the system Vd leads to a clear reduction in the total energy of the system as a result of
increasing flow suction of this type. However, Fig. 16 displays a more destabilizing effect of flow
injection as fw < 0 and ε is decreased.

VI. SUMMARY OF THE CURRENT RESULTS

This paper has been designed to analyze the effects of wall suction and injection on the stability
of the Blasius boundary-layer flow over a heated and permeable plate with a temperature-dependent
viscosity flow.

In Sec. II, we summarized and discussed the results of the effects of flow suction on boundary-
layer flow over a heated plate as follows: Our theoretical analysis depended on the no-penetration
condition modification for formulating the steady boundary-layer flow over a permeable, heated,
plate. Formulations of and solutions to the mean flow equations are formatted for various tem-
perature dependencies. The results exhibit a reduction in the boundary-layer flows of the mean
flow profile toward the plate surface, in particular with decreasing viscosity and increasing suction
intensity. Therefore, the effects of the suction show a more steady state of boundary-layer flows
with decreasing viscosity via setting ε > 0. We see also that increasing Prandtl number with flow
suction results in a greater reduction the temperature profile when ε > 0.

Our analysis of linear stability based on the steady mean flow reveals that flow suction has a
strong, stabilizing effect, which is shown in lower viscosity as presented in Sec. III. Overall, our
findings are consistent with those presented by Laouar et al. [19] and Miller et al. [28] for the
smooth heated plate, respectively.

In Sec. V, our study revealed that wall suction acts to reduce energy production of the T-S
instabilities. In contrast, there is a sharply destabilizing effect with increasing flow injection and
viscosity.

We briefly consider our results in the context of CVD reactor flows. Note that the temperature
dependence of a gas viscosity is given by setting ε < 0 and that the upper limit of operation of
a CVD reactor returns flows with R ∼ 200. Based on the viscosities at 300 K and 1300 K under
atmospheric pressure for context [31], a dry-air value is represented by ε ≈ −0.62 according to the
inverse linear model.

From Table II, we see that the lower limit of ε = −0.75, Rc ≈ 97, 111, 128, in a range of
injection intensity. This means that the flow of a gas mixture used in a CVD reactor with its
susceptor designed by wall injection has a viscosity-temperature relationship within the parameter
range where the critical Reynolds number characteristic of linear instability appears for R < 200. It
is clear in this case that wall injection is destabilizing to the flow.

The results presented in this paper have shown that introducing wall suction is stabilizing to the
flow, though Fig. 9(a) shows that this stabilizing effect is significantly diminished for ε = −0.75
and fw < 0.4. We re-examine Fig. 9(a) and find that for ε = −0.62, Rc( fw = 0) ≈ 150 and
Rc( fw = 0.4) ≈ 206. Therefore, the analysis presented here shows that a gas mixture used in a CVD
reactor with its susceptor designed using a small suction intensity could have a viscosity-temperature
relationship within the parameter range where linear instability appears for R < 200. Furthermore,
results indicate that this slight suction effect may be stabilizing.
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The current formulation could be developed by other techniques to model flows within a CVD
reactor. Jensen et al. [27] indicates there is a need for temperature-dependent density to reflect
gas expansion in the context of a CVD reactor. However, by approximating constant Pr and Cp

(both show little variation with temperature) noted by Kays and Crawford [32], other properties
of temperature-dependent gas, e.g., ρ, can be interpreted as “compensating” for each other. In this
case, the same steady-mean flow equations derived in this study for the heated, permeable plate can
be obtained and an incompressible approximation may be considered. The Blasius approximation
in this study is quite similar to a Poiseuille one for metal-organic chemical vapor deposition reactors
[33,34].

Nevertheless, an extension of the work presented in this study to form a comparison that fully
incorporates the temperature dependence of each physical property of the fluid is required to confirm
which of these approximations have suitable grounds for justification. In this light, similarly to
Ref. [34], we plan to extend our analysis to consider the effects of temperature dependence on
density, and we hope to report on this in the future.

Miller et al. [28] indicates the reaction mechanisms in CVD reactors are multistaged and
complex, and the most rigorous analysis needs multiple-interacting-species continuity equations
for each stage. However, a CVD reactor in its processes depends on reactants that are typically very
dilute compared to carrier gases. For this reason, the single diffusion equation can be used to track
all chemical species by making a no gas-phase reactions approximation [25]. Consistent with this
approximation, the different diffusive responses of the particle mixture to the temperature gradient
can be investigated by utilizing the Soret effect [35].
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