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Novel numerical simulations investigating the Richtmyer-Meshkov instability (RMI)
with surface tension are presented. We solve the two-phase compressible Euler equation
with surface tension and interface reconstruction by a volume-of-fluid method. We validate
and bridge existing theoretical models of effects of surface tension on the RMI in the
linear, transitional, and nonlinear postshock growth regimes. After deriving a consistent
nondimensional formulation from an existing linear incompressible theory predicting per-
turbation development under large surface tension, we find good agreement with theoretical
prediction in the small-amplitude (linear) oscillatory regime for positive Atwood numbers,
and we show that negative Atwood numbers can be accommodated by an appropriate mod-
ification to the theory. Next, we show good agreement with nonlinear theory for asymptotic
interface growth in the limit of small surface tension. Finally, we use the nondimensional
formulation to define a heuristic criterion which identifies the transition from the linear
regime to the nonlinear regime at intermediate surface tension. These results highlight the
utility of this numerical method for compressible problems featuring surface tension, and
they pave the way for a broader investigation into mixed compressible/incompressible
problems.

DOI: 10.1103/PhysRevFluids.6.113901

I. INTRODUCTION

The Richtmyer-Meshkov instability (RMI) occurs when two regions of fluids with different
densities and separated by a perturbed interface are subjected to the passage of a shock wave,
which is oftened modeled as an impulsive acceleration. The misalignment of the pressure and
density gradients incurred by the shock-interface interaction results in the baroclinic generation
of vorticity deposited on the interface, and hence in the subsequent growth and development of
perturbations. The RMI is relevant to many applications: it is well-known to inhibit the attainment of
fusion in inertial confinement fusion contexts [1]; it can enhance mixing in high-speed airbreathing
engines [2]; and may also drive mixing in certain supernovae [3] and magnetic field amplification
in supernova remnants traveling through the interstellar medium [4].

If at least one of the fluids is a liquid, or if the interface between the fluids is a membrane [5],
then surface tension may play a role. This is the case for the familiar example of dropping a bucket
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filled with water on the ground [6]; the impact on the ground constitutes an impulsive acceleration
which promotes the RMI on the water surface. Compressible effects in the gas phase are explicitly
involved in the problem of high-speed droplet aerobreakup, which is challenging to investigate both
in the laboratory (see Theofanous [7] and references therein) and numerically [8]. In this connection,
the RMI may be relevant to the early-time behavior of the shocked droplet. In any case, the effect
of surface tension on the fine-scale structures at these early times is typically not accounted for
and clarified by large-scale numerical simulations on grounds of insufficient resolution, even with
adaptive mesh refinement (AMR) techniques (e.g., as noted by Meng and Colonius [8]).

As a fundamental problem, the effects of surface tension on the RMI, along with the closely-
related Rayleigh-Taylor instability (RTI), have seen prior investigation. Mikaelian [5] performed
a linear stability analysis, finding that the (sufficiently strong) surface tension induces a stable
oscillation in the shocked interface whose amplitude and frequency depend on the magnitude of the
surface tension. Bigdelou [9] recently conducted a series of numerical simulations on shock-driven
multiphase flow problems using the level-set method [10], where Mikaelian’s predictions [5] are
used for a brief validation of the numerical model (see their Fig. 4.49). If the surface tension is
sufficiently weak, then the interface enters a nonlinear growth regime featuring asymmetrically
formed narrow “spike” and broad “bubble” structures interpenetrating between the fluids [11,12]; in
this regime, Sohn [13] provided an asymptotic analysis of the velocity of the bubble-structures and
included a brief numerical verification using a phase-field interface model [14] in incompressible
fluids. Matsuoka [15] also studied the interfacial behavior in incompressible RMI with surface ten-
sion by numerically solving the Birkhoff-Rott equation for vortex sheet motion, and demonstrated
that large surface tension is able to stabilize the interface and suppress its late-time rollup behavior.
The weakly nonlinear RTI under the effect of surface tension has also been investigated in a variety
of studies; see, e.g., Garnier et al. [16] and Guo et al. [17]. For a broad review of studies of the RTI
and RMI including surface tension are covered, among other topics, see the review of Zhou [18].

The existing studies reveal only a limited understanding of the RMI with surface tension. First,
the stabilizing effect of surface tension on the RMI suggests that it may inhibit transition to the
nonlinear regime of bubble and spike development. However, for sufficiently large Weber numbers
(defined as the ratio between inertial and surface tension forces), the interface perturbations may
grow large enough to escape the linear regime before reaching the maximum amplitude of oscil-
lation, so that Mikaelian’s analysis [5] no longer applies. This introduces a critical Weber number
for the RMI with surface tension, which to our knowledge has not been systematically studied
besides a brief heuristic calculation by Bigdelou [9], whose numerical validation is conducted in the
linear regime. Second, this critical value will not in general correspond with the vanishingly small
surface tension required by Sohn’s [13] asymptotic analysis; we expect that there exist cases with
intermediately small surface tensions (that is, large Weber numbers) whose perturbation growth
patterns are currently not well understood. Finally, besides Bigdelou [9], none of these studies,
which rely on numerical support of theoretical results, consider the effects of compressible flow,
which may appear, for example, in the case of shocked-membrane problems arising in shock tube
environments [5], or in shock-bubble interactions [19] where to our knowledge the very early
time-evolution of the shocked bubble under the influence of surface tension has not been investigated
in detail. This may be partly due to the relative lack of compressible-flow solvers that include surface
tension effects, although there has been recent progress in this direction (see, e.g., Ref. [20], used as
the basis for this study, and Refs. [9,21]).

In this study we present fully nonlinear, compressible numerical simulations of the inviscid
RMI with surface tension, using Fuster and Popinet’s [20] recently developed and implemented
numerical technique in the Basilisk package. In addition to the technical significance of this study,
its purpose is, first, to provide numerical support for the studies of Mikaelian [5] and Sohn [13]
in a compressible environment; second, to provide insight into the nonlinear development of the
problem, considering especially the asymptotic large-time behavior at small surface tensions (large
Weber numbers); and finally, to find the critical Weber number required to suppress the RMI and,
in particular, to restrict oscillations of the perturbation to the linear regime.
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FIG. 1. Sketches for the pre- (a) and postshock (b) states of the compressible RMI problem with surface
tension. The domain is separated by a sinusoidal interface featuring initial amplitude η−

0 and wavelength λ.
The fluids to the left and right of the interface are labeled “1” and “2,” respectively. The incident shock with
Mach number Ms,I changes the state of fluid 1 from preshock (with superscript “−”) to intermediate (with
subscript “L”) before its interaction with the interface, which compresses the interfacial perturbation to η+

0 .
The transmitted shock and reflected wave bring the two fluids to their final postshock states (with superscript
“+”), while the interface perturbation develops under the influence of surface tension σ .

Our study is structured as follows. In Sec. II we adapt the theoretical work of Mikaelian [5]
on the RMI perturbation development under large surface tension [with typical postshock Weber
number We+ < 102, as defined in Eq. (7)] to form a fully nondimensional framework, based on
which the following analyses are conducted. In Sec. III we present a formulation of the problem
and introduce the numerical method. Afterwards, with the postshock parameters determined, we
compare Mikaelian’s [5] theory with the scaled numerical results in Sec. IV A, and propose a
modified theoretical model based on Vandenboomgaerde et al. [22] to better account for both
positive and negative Atwood numbers. For the development of nonlinear perturbation structures
in the limit of small surface tension (We+ > 103), we discuss the theory of Sohn [13] and compare
it with the scaled numerical results in Sec. IV B, although a complete comparison of the relative
large-time nonlinear behavior of bubbles and spikes at varying Weber numbers remains a topic for
future study. Then in Sec. IV C we use the nondimensional framework to identify the transitional
nonlinear development of the interface at intermediate surface tension (102 < We+ < 103), and
hence to propose a heuristic criterion to delineate the transition to nonlinear development. We
conclude the study in Sec. V with some remarks on future work.

II. NONDIMENSIONAL SCALING MODEL

We first adapt the theoretical result from a linear stability analysis of the incompressible RMI
with surface tension, due to Mikaelian [5], into a nondimensional formulation which can then be
interpreted in the compressible flow problem featuring a shock wave.

The flow configuration is illustrated in Fig. 1, where the fluid to the left is labeled “1,” and the
fluid to the right labeled “2.” Initially, the velocities of the two inviscid fluids and the sinusoidally
perturbed interface are all set to zero. The incident shock travels rightwards from the left boundary
x = xS to hit the interface, whose passage will first bring the density and pressure in fluid 1 to
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intermediate values denoted by subscript “L.” As is shown in Fig. 1(b), after the shock-interface
interaction, the interface will be accelerated and acquire a velocity jump �v; in the meanwhile, part
of the shock energy will be transferred into fluid 2 in the form of a transmitted shock, and the rest
will reflect back into fluid 1 as a reflected wave, whose passage will bring the density and pressure
in fluid 1 to their postshock values. The perturbed interface will then evolve under the influence of
surface tension σ .

The nondimensional groups governing the problem can be derived with respect to pre- and
postshock state of the interface. We first discuss the preshock state, which represents the a priori
understanding of the system, before next discussing the postshock state, to which Mikaelian’s anal-
ysis [5] naturally applies. Afterwards, we will discuss how the postshock state may be determined
from knowledge of the preshock state. In the following, minus-sign superscripts denote the preshock
state, and plus-sign superscripts denote postshock state.

A. Preshock dimensionless parameters

We discuss the state of the problem prior to the shock-interface interaction. The densities of
the preshock fluids are ρ−

i (i = 1, 2), the unperturbed pressure in each fluid is p0 and the specific
heat ratio of each fluid is �i. The fluids are considered inviscid in this model. The interface which
separates the fluids has a monochromatic, sinusoidal perturbation of wavelength λ and amplitude
η−

0 , and corresponding wave number k = 2π/λ.
The surface tension is given by σ . The corrugated interface slightly perturbs the pressure in the

two fluid by the action of surface tension; which may be approximated as �p = 2σ/Rc = 2ση−
0 k2,

where we use the Young-Laplace equation and take the characteristic radius of curvature Rc as that
at the extrema of the sinusoidal interface. In our work, the maximum magnitude of the ratio �p/p0

is 10−2; thus, we conclude that this pressure-perturbation �p has negligible effect on the subsequent
evolution of the system.

The incident shock is planar with a speed us,I and induces a velocity uL in fluid 1, which is known
analytically from the Rankine-Hugoniot shock relations. Applying Buckingham’s theorem, we form
the following four dimensionless groups apart from �i:

s− ≡ η−
0 k = 2π

η−
0

λ
, A− ≡ ρ−

2 − ρ−
1

ρ−
2 + ρ−

1

, We− ≡ ρ−
1 + ρ−

2

σk
A−2

u2
L, Ms,I = us,I√

�1 p0/ρ
−
1

, (1)

where s− characterizes the slope of the initial perturbed interface; A− is the Atwood number, which
represents the initial density setup; We− is the Weber number, which measures the strength of
surface tension, and Ms,I is the Mach number of incident shock, which satisfies Ms,I > 1. It should
be noted that the following incident shock strength ε ∈ (0, 1), defined as the relative pressure change
in Fluid 1 after the passage of the incident shock, is sometimes used instead of Ms,I within literature
(e.g., Refs. [22,23]) and may be calculated from Ms,I and �1 using the Rankine-Hugoniot shock
relation,

ε ≡ 1 − p0

pL
= 2�1

(
M2

s,I − 1
)

�1
(
2M2

s,I − 1
) + 1

. (2)

B. Postshock dimensionless parameters

We will now discuss the application of Mikaelian’s incompressible, impulsive model [5] to the
compressible case, and develop the appropriate dimensionless parameters. Mikaelian predicts that,
if the perturbation development is in the linear regime (i.e., when the slope s remains small), and the
effect of compressibility is negligible after the shock-interface interaction, surface tension will act
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as a restoring force and cause the postshock perturbation amplitude η(t ) to oscillate sinusoidally,

η(t ) = η+
0 cos (ωt ) + η̇+

0

ω
sin (ωt ) = η+

0

√
1 +

(
η̇+

0

η+
0 ω

)2

sin

(
ωt + arctan

η+
0 ω

η̇+
0

)
, (3)

where η+
0 is the postshock initial perturbation amplitude, and the capillary angular frequency ω is

defined in the following form, with postshock fluid densities ρ+
1 and ρ+

2 :

ω =
√

k3σ

ρ+
1 + ρ+

2

. (4)

η̇+
0 is the postshock initial perturbation growth rate, which Mikaelian [5] gives as

η̇+
0 = �vkA+η+

0 , (5)

where the postshock Atwood number A+ ≡ (ρ+
2 − ρ+

1 )/(ρ+
2 + ρ+

1 ), and �v is the postshock veloc-
ity jump of the interface. Equation (5) is identical to Richtmyer’s [24] prescription for growth rate
in the RMI without surface tension. Equations (4) and (5) combined yield the following result:(

η̇+
0

η+
0 ω

)2

= (ρ+
1 + ρ+

2 )A+2
�v2

σk
. (6)

The term (η̇+
0 /η+

0 ω)2 = We+ is a postshock Weber number of the perturbed interface and
measures the relative importance of the inertia of the flow compared to the surface tension. A set
of dimensionless groups to describe the growth characteristics of the RMI can be further defined in
terms of postshock variables to be

s+ = 2π
η+

0

λ
, A+ ≡ ρ+

2 − ρ+
1

ρ+
2 + ρ+

1

, We+ ≡
(

η̇+
0

η+
0 ω

)2

= ρ+
1 + ρ+

2

σk
A+2

�v2. (7)

These are of the same form as the preshock parameters, and both will be used throughout this
work. According to Eq. (3), the time-dependent amplitude η(t ) ≡ η depends on

√
1 + We+. Further,

combining Eqs. (4) with (7) yields ω = A+�vk/
√

We+. These can be used to nondimensionalize
amplitude and time t by

η̃ ≡ η

η+
0

√
1 + We+ , t̃ ≡ ωt = kA+�v√

We+ t, (8)

where the tildes indicate nondimensional variables. With these parameters introduced, Mikaelian’s
model Eq. (3) can be summarized in the following normalized form:

η̃ = sin

(
t̃ + arctan

1√
We+

)
. (9)

We note that saturation at t̃ = π/2 − arctan (1/
√

We+), in the regime discussed by Mikaelian [5]
and in which our Eq. (9) is presented, is governed by linear processes dependent on strong surface
tension. However, for small surface tensions nonlinear effects in underlying instability come to
dominate, which cannot be predicted by Eq. (9); but the postshock normalization scheme Eq. (8)
may still be used for comparison with strong surface tension cases, especially for the transition to
nonlinear regime with intermediate surface tension, as will be discussed in Sec. IV C.

It is of interest to understand the relation between preshock and postshock parameters. It has
been concluded in Velikovich [25] that in the weak-shock limit (incident shock strength ε → 0),
the pre- and postshock values of perturbation slope, Weber and Atwood number are close and there
is no need to distinguish between them. It is also in the same weak-shock limit that Richtmyer’s
prescription is reported to give most accurate results (see, for example, Fig. 1 in Velikovich et al.
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[26].) In general, however, the postshock parameters may deviate significantly from the preshock
values. For the present study, the postshock parameters are determined numerically. For a discussion
on its effectiveness in comparison with alternative methods, see Appendix B.

Finally, a change in sign of the preshock Atwood number A− may introduce a qualitative change
in the shock interaction process [22,27,28]. When the shock wave interacts with the interface, it
undergoes a refraction process which results in a transmitted shock and a reflected wave, which
may be a shock or a rarefaction wave. The reflected wave type depends on A− and �i. Drake [27]
identifies the following critical preshock Atwood number A−

c for an unperturbed interface,

A−
c = �1 − �2

�1 + �2 + 2
. (10)

When A− < A−
c , a reflected rarefaction is expected to form in fluid 1; otherwise, a reflected shock

is expected. Within our work, we set the specific heat ratios as �1 = �2 = 1.4; hence, A−
c = 0, i.e.,

negative preshock Atwood numbers A− correspond to reflected rarefactions and positive ones to
reflected shocks. This effect is not accounted for in Mikaelian’s model [5]; its consequences will be
examined in Sec. IV A.

III. FORMULATION AND METHODOLOGY

A. Governing equations

We solve the two-phase compressible Euler equations with surface tension, which are written in
their averaged dimensional form,

∂ρ

∂t
+ ∇ · (ρu) = 0, (11)

∂ρu
∂t

+ ∇ · (ρuu) = −∇p + σκδsn, (12)

∂

∂t

(
ρe + 1

2
ρu2

)
+ ∇ ·

[
u
(

ρe + 1

2
ρu2

)]
= −∇ · (up) + σκδsn · u. (13)

Equations (11) and (12) are, respectively, the continuity and momentum equation, where p is the
fluid pressure. The influence of surface tension is incorporated as the volumetric term σκδsn within
Eq. (12), where σ is the surface-tension coefficient, κ and n the local curvature and normal vector
on the interface. The Dirac δs is nonzero only on the interface, indicating the local concentration
of surface tension effects [29,30]. The energy Eq. (13) is included owing to the presence of com-
pressibility, where e denotes the specific internal energy. Following Ref. [20], influences of thermal
diffusion and mass transfer are neglected. Equations of state are still required to close the equation
system. While both incompressible and compressible fluids can be modeled simultaneously by
Mie-Grüneisen equation of state in the numerical solver, for this study we restrict our attention
to entirely compressible flow by applying the ideal gas law as a special case:

ρiei = pi

�i − 1
, (14)

where ρi, ei, pi (i = 1, 2) are, respectively, the density, specific internal energy and pressure of each
fluid.

The following advective Eq. (15) is applied to determine the interface position, featuring a tracer
function f that distinguishes between fluids 1 and 2 [20]:

∂ f

∂t
+ u · ∇ f = 0. (15)

Finally, in Fig. 1, the wavelength λ, wave number k, and postshock perturbation growth rate η̇+
0

suffice to provide natural reference scales for the length, mass and time quantities that appear in the
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system Eqs. (15)–(13). Thus, following the work of Dimonte [31,32], the nondimensional variables,

η

λ
,

u

|η̇+
0 | , k|η̇+

0 |t, (16)

will be used in the remainder of the study as an alternative to the nondimensional parameters
presented in Sec. II.

B. Numerical method

The simulations in this work are conducted within the open-source solver Basilisk using the
all-Mach scheme proposed by Fuster and Popinet [20] for multiphase flows, which is capable
of handling mixed compressible-incompressible fluids. This is a second-order accurate finite
volume numerical scheme with hyperbolic upwinding suitable for shock capturing. Within the
solver, the mass and energy conservation Eqs. (11) and (13) are solved separately for each phase,
while the geometric volume-of-fluid (VOF) reconstruction method guarantees a sharp representation
of the fluid interface and reduces the parasitic currents induced by surface tension. For modeling
of surface tension effects, δsn in Eq. (12) is approximated as the gradient of the VOF tracer ∇ f
following Brackbill’s method [33], and the curvature κ is calculated by taking the finite-difference
approximation of the derivatives of interface height functions [29].

The problem is initialized within a rectangular simulation domain of size nD × D, where D is the
width of the domain and n = 5, 7, or 11, depending on the particular case. The shock is initialized
at the left boundary, so that the domain is defined by � = [xS, nD + xS] × [−D, 0]. The boundary
conditions on the top and bottom of the domain are periodic. We use a zero-gradient boundary
condition at the right boundary, while at the left side Dirichlet conditions are applied according
to the postshock conditions for a incident shock of Mach number Ms; these are discussed further
below.

The fluid interface is initially a cosine function of the form x(y)/λ = xI/λ + (η−
0 /λ) cos ky where

λ is set to the domain size D. The average position of the interface xI/λ is set to 0. The incident
shock is initialized at the left boundary of the simulation domain, at x = xS by assigning the values
of ρL, qL, EL to the conservative variables via the aforementioned Dirichlet boundary conditions.
We set the left boundary xS immediately next to the initial interface at xI = 0, so that the surface-
tension-induced self-oscillation behavior does not have sufficient time to influence the preshock
perturbation amplitude before its interaction with the incident shock.

The discretized grid size, being the same in x and y direction, is defined as h = D/2L, where L is
the resolution level. Most of our simulations are conducted on L = 9, while for convergence studies
we also run certain cases on levels L = 8 and L = 10 for comparison. The discretized timestep
is characterized and controlled by a nondimensional constant CFLac = (cm + um)�t/h, where cm

and um are the magnitudes of the expected maximum local speed of sound and the fluid velocity,
respectively. For simulations conducted in this work, we set CFLac = 0.5 and 0.25 for strong-shock
and weak-shock cases, respectively.

We now present the preshock nondimensional parameter space to be investigated in this work.
Namely, we conduct the simulations with preshock slope s− values going from low (0.02π ), medium
(0.03π ) to high (0.04π ), all of which are sufficiently small to satisfy the linear regime prerequisite
s− � 1. We thus allocate approximately 5–10 grid cells across the initial perturbation profile at res-
olution level L = 9, which is sufficient to capture the growth characteristics of the RMI independent
of the numerical resolution, as shown in Sec. III A. We set Ms,I = 2 (strong-shock, corresponding to
incident shock strength ε = 0.78) in most situations, where influence of compressibility is already
nontrivial but has not yet caused significant deviations from the impulsive model (see Fig. 8 in
Ref. [34]), while also setting Ms,I = 1.2 (weak-shock, corresponding to ε = 0.40) in certain cases
to allow for discussions on its influence. Preshock Atwood numbers are set as A− = 9/11 and
−9/11. The magnitude of preshock Weber numbers We− we investigate ranges from 101 to 103,
which covers all three of the linear, transitional and nonlinear postshock growth-rate regime.

113901-7



TANG, MOSTERT, FUSTER, AND DEIKE

FIG. 2. The development of postshock density values ρ+
i in cases with preshock Atwood number A− =

9/11 (a) and A− = −9/11 (b) measured from numerical diagnostics. The postshock densities of the two
fluids are observed to eventually settle down at steady-state values, which are chosen as the postshock values
determined by numerical diagnostics.

IV. RESULTS

A. Linear regime

Mikaelian’s existing theory is written in terms of the postshock state, which is not known a
priori in this study. We therefore determine the postshock state, characterized by ρ+

1 , ρ+
2 , �v, and

η+ numerically. This sets postshock dimensionless parameters s+, A+ and We+, as discussed in Sec.
IV B, where we find the postshock Atwood numbers A+ to be 0.793 and −0.819, corresponding to
the light-heavy and heavy-light density configurations.

In the diagnostics, the postshock state variables are extracted close to the interface, and averaged
over y to remove variations due to the interface perturbation. Then we nondimensionalize the
postshock variables by the natural units introduced in Sec. III A. Figure 2 shows the numerical
outputs for sample cases with A− = ±9/11, We− = 160, 240, and s− = 0.02π, 0.03π .

All measured variables behave similarly in the diagnostics: there is a short transient period at
early times associated with shock-interface interaction, before the measured variables stabilize as
the transmitted and reflected wavefronts move away from the postshock interface. The steady-state
values are not affected by the value of s−, as expected, and are taken as the postshock state. As
discussed in the Appendix B, these numerical diagnostics are more reliable for the present study
than theoretical alternatives. Note that the density remaining constant after the initial transients
supports the assumption that compressible effects are limited to the time during and immediately
after the shock-interface interaction, and that the flow is approximately incompressible afterwards.
This is consistent with conclusions from other numerical studies [6,35].

We now test the normalized model of Mikaelian [5] given by Eq. (9), which predicts a relation-
ship between the nondimensional amplitude η̃ and the nondimensional time t̃ independent of the
other nondimensional parameters (provided that the postshock Weber numbers We+ are larger than
200, which causes an error less than 4.5% at the first peak if the phase shift term arctan 1/

√
We+ is

neglected).
The results are presented in Fig. 3, where they are organised into three major categories: strong

shock (Ms,I = 2) with positive Atwood number (A− = 9/11) in the first row, strong shock with
negative Atwood number (A− = −9/11) in the second and weak shock (Ms,I = 1.2) with positive
Atwood number in the third row. For each Atwood/Mach number category, a sweeping of Weber
number We− is conducted. In the left column [Figs. 3(a), 3(c) and 3(e)], the amplitude and time
are normalized naturally (see Sec. III); in the right column, the scaled amplitude and time based
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FIG. 3. Numerical results compared with Mikaelian’s theory [5]. Upper row: strong shock (Ms,I = 2)
with negative Atwood number (A− = −9/11); middle row: strong shock (Ms,I = 2) with positive Atwood
number (A− = 9/11); lower row: weak shock (Ms,I = 1.2) with positive Atwood number (A− = 9/11). Left
column: perturbation growth scaled with the natural units. Right column: results scaled using the postshock
dimensionless parameters. Good collapsing patterns are observed for strong-shock cases (Ms,I = 2), among
which those with positive Atwood number A− = 9/11 show a good qualitative agreement with Mikaelian’s
theory [5], whereas the weak-shock cases display poor collapsing under the normalization.

on Mikaelian’s model (see Sec. II) are used [Figs. 3(b), 3(d) and 3(f)]. To facilitate comparison of
simulation results with Mikaelian’s model [5], we also plot in dashed lines the theoretical η̃ − t̃
curves for Weber numbers larger than 200, at which the phase shift term arctan 1/

√
We+ becomes

negligible.
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In the following parts, we will first discuss the influence of Atwood number A− on postshock
perturbation growth in IV A 1 by comparing the first and second row in Fig. 3, and then the influence
of incident shock Mach number Ms,I in Sec. IV A 2 by comparing the first and third row of the same
figure.

1. Effect of initial fluid density configuration

As is shown in Figs. 3(a) and 3(c), when normalized using the natural scheme introduced in
Sec. III A, the postshock perturbation amplitude η/λ will first increase with diminishing growth
rate. At small postshock Weber number We+, η/λ will reach a peak and then decrease, whereas
for large We+ values the peak will not be reached in the limited simulation domain. These findings
agree with the numerical results of [21].

When the time developments of perturbation are normalized using the scheme developed in
Sec. II B [see Figs. 3(d) and 3(f)], they overlap very well for both positive and negative Atwood
number cases with Ms,i = 2. However, discrepancy exists between the two Atwood number classes:
the positive Atwood number cases have their first normalized peaks around η̃ = 1.1 [Fig. 3(b)],
while those of the negative Atwood number cases are much higher, being around η̃ = 7.3 [Fig. 3(d)].
Consequently, the positive Atwood number cases conform to Mikaelian’s model Eq. (9) more
closely, whereas the negative Atwood number cases show a nontrivial deviation from the same
model.

This negative-Atwood discrepancy is rooted in the incompressible nature of Mikaelian’s model
[5] and might be traced further back to the situations where surface tension σ is absent. As the
postshock Weber number We+ asymptotically approaches infinity, Mikaelian’s model [5] will
reduce to Richtmyer’s impulsive prescription [24] in the form of Eq. (5). Vandenboomgaerde
et al. [22] and Velikovich [25] observe that this prescription usually gives good results for positive
Atwood number cases, but fails for negative Atwood number cases where η̇ is not proportional to A+
[23] and other alternatives are available (e.g., Refs. [22,28,36]). In particular, the negative Atwood
number is qualitatively different from the positive case, as it generates a reflected rarefaction wave
rather than a reflected shock, as noted in Sec. II B. This is the physical reason for this discrepancy.

We will now seek to develop a correction to the linear theory of Ref. [5] that can effectively
reduce the discrepancy caused by opposite signs of Atwood numbers. An alternative to Eq. (5) is
given in Ref. [22] as

η = η+
0 + k�v

[
1

2
(A+η+

0 + A−η−
0 ) − 1

6
(A+ − A−)(η+

0 − η−
0 )

]
t . (17)

In this prescription, the postshock perturbation growth rate now depends on both pre- and
postshock states, which is different from Mikaelian’s model [5], as the latter is only related to
the postshock state. According to Ref. [22], this prescription takes into account the shock-induced
compression of the perturbation and variation of Atwood number in a simplified way; and while
Dimonte [32] notes that this prescription might be problematic when A+ and A− are very different,
Table I suggests that the two Atwood numbers are very close in our numerical calculations,
especially for the negative Atwood number cases where A− = −9/11, in which case Eq. (17)
reduces to the following prescription of Meyer and Blewett [28]:

η = η+
0 + k�v

[
1

2
A+(η+

0 + η−
0 )

]
t, (18)

which has been reported to match well with the RMI perturbation growth trend in cases with neg-
ative A− [32,37]. Consequently, we expect good performance of Vandenboomgaerde’s prescription
[22] in the parameter space we explore. We then seek to compare Vandenboomgaerde’s prescription
[22] with Richtmyer’s [24] in the zero-surface-tension cases with different Atwood number setups.

As is shown in Figs. 4(a) and 4(b), we normalize time t and the perturbation amplitude η by the
natural units introduced in Sec. III A. It is found that Vandenboomgaerde’s prescription Eq. (17)
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FIG. 4. Upper row: Comparison of the simulation results with the theortical predictions of Richtmyer [24]
and Vandenboomgaerde et al. [22]. Lower row: simulation results scaled using the modified model in cases with
surface tension. (a, c) A− = 9/11, (b, d) A− = −9/11. The theory of Vandenboomgaerde [22] shows a better
match with simulation results in both negative and Atwood number cases without surface tension, leading to
improved performance of the modified theoretical model.

matches much better with simulation results for the negative Atwood number cases compared with
Richtmyer’s prescription Eq. (5) [24], and is also close to the numerical results in the positive
Atwood number cases. The failure of Richtmyer’s prescription [24] for the negative Atwood number
case corresponds back to the deviation patterns of our simulation results from the scaling model in
the previous part, where the A− = 9/11 cases slightly overshoots the theoretical maximum η̃max = 1
under the scaling, and those with A− = −9/11 significantly overestimates the same maximum.

Consequently, in order to modify Mikaelian’s model [5] for a better performance, we tentatively
replace the Richtmyer’s prescription embodied in Eq. (3) with Vandenboomgaerde’s [22]. To this
end, we introduce the modified Atwood number Ã based on Vandenboomgaerde’s work [22],
which may be viewed as an average of pre- and postshock Atwood numbers A− and A+ involving
compression ratio r ≡ η+

0 /η−
0 :

Ã ≡ 1

2

(
A+ + A−

r

)
− 1

6
(A+ − A−)

(
1 − 1

r

)
. (19)

With this modified Atwood number defined, the postshock dimensionless parameters Eqs. (7) and
(8) and normalized perturbation-growth model Eq. (9) proposed in Sec. II B can be formally retained
by replacing all A+ with Ã, which is then used to nondimensionalize the results for Figs. 4(c) and
4(d).
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When the modified model is compared with simulation results, as is shown in Figs. 4(c) and 4(d),
within each Atwood number category the normalized curves still show good collapsing, and good
agreement is found between the results of the two Atwood numbers with opposite signs, as the first
peaks of all normalized curves are now around (t̃, η̃) = (1.65, 0.8). This maximum η̃ value of 0.8
is less than unity as expected by the modified model, which is likely caused by the aforementioned
overestimation of η̇+

0 by Vandenboomgaerde’s prescription [22] in zero-surface-tension cases; but it
is still a considerable improvement compared with the original model of Mikaelian [5], especially
for negative Atwood number cases since their discrepancy in peak values with positive Atwood ones
is now greatly reduced.

2. Effect of incident shock strength

Apart from surface tension and initial density setups, Mach number of the incident shock Ms,i

also plays a significant role in the postshock perturbation growth, as it is directly connected with
shock strength and effects of compressibility via Eq. (2) [22]. Since Mikaelian’s model [5] is
essentially impulsive and incorporates Richtmyer’s prescription [24], it is natural to expect better
matching of the simulation results with our scaled model in the weak shock limit. We find that this
is indeed the case for Ms,i = 1.2, as the perturbation growth patterns shown in Fig. 3(f) are closer to
Mikaelian’s prediction compared with Fig. 3(b), with maximum normalized perturbation amplitude
values almost exactly equaling 1. The recent numerical work by Bigdelou [9] has also confirmed a
good match of linear-regime perturbation growth with Mikaelian’s prediction for RMI cases with
Ms,i = 1.2, where a different preshock Atwood number A− = 2/3 is used.

We further discuss the applicability of our modification of Mikaelian’s model Eq. (9) in Sec. IV
A 1. Mikaelian approximates the impact of the incident shock on the interface as an impulsive
acceleration, which is compatible with the prescriptions of both Richtmyer [24] and Vanden-
boomgaerde [22]. More accurate models for perturbation growth under the influence of surface
tension can be derived using the same approach in Sec. IV A 1, i.e., swapping Vandenboomgaerde
et al.’s prescription Eq. (19) for more precise ones, preferably those accounting for nonlinear
perturbation development (e.g., Ref. [38]), and combining them with Mikaelian’s model, as long
as the prescriptions introduced are compatible with the impulsive base of Mikaelian. However, it
should be noted that the impulsive model will become inaccurate at higher values of Ms,I (see,
e.g., the limit of ε → 1 in Fig. 5 of Ref. [11]), where compressible theories predicting perturbation
growth have to be proposed. This is a fundamental problem for RMI studies and requires detailed
investigation of the shock-interface interaction period, which is out of the scope of this work.

Consequently, we conclude that in the linear oscillation regime with strong surface tension, the
scaled model Eq. (9) based on Mikaelian [5] match very well with weak-shock cases, whereas the
strong-shock positive Atwood number cases show maximum perturbation values slightly larger than
those predicted by Mikaelian due to stronger influence of compressibility. The strong-shock negative
Atwood number cases show maximum η̃ values that are several times larger than Mikaelian’s
prediction, but still keep good collapsing patterns under the proposed nondimensionalization scheme
Eq. (8). This nontrivial negative-Atwood deviation is due to the well-attested failure of Richtmyer’s
prescription [5] incorporated in Mikaelian’s model, and may be reduced by introducing more
accurate prescriptions for postshock initial perturbation growth rate η̇+

0 .

B. Nonlinear regime

As the simulation cases with incident shock Mach number Ms,I = 1.2 feature relatively small
Weber numbers and weak influence of compressibility, and their perturbation growth patterns are
thus close to the prediction of Mikaelian [5], in the following parts we mainly focus on the analysis
of the simulation results with Ms,I = 2.

When surface tension becomes small enough, it can no longer curb the perturbation growth and
the development of asymmetric spikes and bubbles on the interface. Figure 5 shows the evolution of
a bubble (the broad structure straddling the periodic boundary of the domain) and a spike (the narrow
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FIG. 5. A series of We− = 3800 simulation snapshots showing the evolution of the perturbed interface
from the initially sinusoidal shape to one with a bubble (across the periodic boundaries) and a spike (at the
center).

structure near the center of the domain) for We− = 3800. As the surface tension is very small,
the asymmetry between bubbles and spikes becomes evident as the nondimensional time k|η̇+

0 |t
approaches unity, as reported by Dimonte [31] for the onset of nonlinear effects in RMI without
surface tension. Sizes of the bubble and the spike can be calculated by measuring the difference
between the local and average interface positions, whose time derivatives yield bubble velocity UB

and spike velocity US .
The development of calculated bubble velocities UB and spike velocities US at different Weber

numbers are first nondimensionalized using the natural units discussed in Sec. III A, and then shown
in Fig. 6. The development patterns of bubble velocity are almost the same initially for differ-
ent Weber numbers, displaying early-time damped oscillating behavior followed by a constantly
decreasing period, which agree well in trend with Ref. [39], where front-tracking simulations are
used. Similar early-time oscillations of bubble and spike velocities have been observed in Ref. [34],
where compressibility is involved, but are lacking in works focusing on incompressible flows
(e.g., Refs. [13,40]), indicating that this is an effect of compressibility. Mikaelian [23] reported
the oscillations of perturbation growth rate η̇, and ascribed it to the “rippling” behavior of the
transmitted and reflected shocks; i.e., the profile of the two shocks are gradually flattened after
they travel a distance of magnitude λ = D away from the interface, as is also noted in Sec. II.

Within the decreasing phase of bubble growth rate, for the cases with preshock Weber numbers
less than ∼500, the “bubble velocity” (more precisely, the growth rate of the sinusoidal crests as
bubbles have not yet formed in these cases) eventually decreases below 0 due to the long-term
restoring effect of surface tension. As the Weber number is further increased, the curves remain
positive for the entire simulated time and become less sensitive to preshock Weber number beyond

FIG. 6. Development of bubble (a) and spike (b) velocity for transitional and nonlinear cases with A− =
9/11. As Weber number increases, the curbing effect of surface tension on the postshock perturbation growth
diminishes, and the time development patterns of bubble and spike velocities remain roughly the same within
a large range of high Weber numbers (greater than 103).
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FIG. 7. Comparison between simulated (solid lines) and theoretical (dashed line) bubble velocity devel-
opments in cases with We− = 480, 1900, 3800, and 5700. Good agreements with Sohn’s theory are found at
asymptotically large Weber numbers.

∼1900 (i.e., postshock Weber number We+ beyond 1100, which we consider as the lower bound of
the nonlinear regime, as noted in Sec. I). This indicates that within this range of Weber numbers, the
development of bubbles velocity departs from an oscillatory regime and approaches asymptotically
zero velocity. The absolute values of spike velocities |US| in the high Weber number cases are also
decreasing after the oscillation period, similar to that of the bubble velocity.

Based on potential flow methods, Sohn derived a nonlinear and incompressible model in Ref. [13]
for the late-time bubble development, which accounts for effects of both viscosity and surface
tension in RMI at the same time. A similar model is also proposed in Ref. [41]. Specifically, when
the two fluids are inviscid, the nondimensional expression of Sohn’s model [13] reads

ÛB = cot t̂, (20)

where

ÛB ≡ 3

A+

√
(1 + A+)We+

2

UB

�v
, t̂ ≡

√
2(1 + A+)

3 + A+ t̃ =
√

2(1 + A+)

3 + A+
kA+�v√

We+ t . (21)

Note that the nondimensional Eq. (21) is not derived from the model of Mikaelian [Eqs. (8) and
(9)], which is not applicable in the regime with asymptotically small surface tension discussed here.
Rather, the postshock nondimensional parameters defined in Eq. (7) are retained to reformulate
Sohn’s nonlinear theory for consistency.

We now seek to compare our measured bubble velocities with Sohn’s model [13]. For this
purpose, we normalize bubble velocity and time extracted from simulation cases with We− =
480, 1900, 3800, and 5700 according to the definitions of ÛB and t̂ . The normalized curves are
plotted in Fig. 7 and compared with Sohn’s model [13] in the form of Eq. (20).

As is shown in Fig. 7, for the transitional Weber number case with We− = 480, Sohn’s model
[13] significantly overestimates the UB development within the simulated time range, despite
correctly capturing the late-time decreasing trend. As for the cases with higher Weber numbers
exceeding 103, where surface tension is weak enough to give way to formation of bubbles and
spikes, the normalized simulation results asymptotically converges to Sohn’s cotangent model
[13] as normalized time t̂ increases. Also, as the Weber number increases, convergence to Sohn’s
model [13] will occur at earlier normalized time t̂ . This verifies that Sohn’s model [13] applies for
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asymptotically high Weber numbers, since, for lower Weber numbers, surface tension still has some
curbing effects on the development of bubbles and spikes.

Within Sohn’s text [13], Eq. (20) is defined for asymptotically large We+ so that the singularity
at t̂ = π/2 is not reached for any physical time t . However, our simulations feature large but finite
We+, so that for sufficiently large physical time t , the t̂ = π/2 singularity may be reached in
simulations. This may correspond with the bubble velocity becoming negative and the interface
thus exhibiting nascent oscillatory behavior, as speculated by Sohn [13].

Therefore, we conclude that within the time range investigated, our results agree well with Sohn’s
model [13] in the bubble-development period of very high Weber number cases, besides the inability
of Sohn’s model to capture the early oscillatory behavior of the bubble and spike velocities, due
to compressible effects, observed in this study. The development of spikes and bubbles at later
time remains to be investigated, where Dimonte [32] reports that bubble amplitudes will eventually
saturate due to nonlinear effects; and in the meantime spikes will continually grow and eventually
break off from the interface, as has been predicted by Sohn [13] and Matsuoka [15,42], and recently
observed in simulations by Corot et al. [21].

C. Transition to the nonlinear regime

In Sec. IV A, we discussed the linear regime of interface evolution, which occurs for small
Weber numbers (strong surface tension), for which the interface perturbations oscillate with small
amplitude. Then, in Sec. IV B, we discussed the late-time development of the highly nonlinear
bubbles and spikes, which appear for large Weber numbers (small surface tension). However, for
intermediate Weber numbers the surface tension may curb but not prevent transition into a nonlinear
evolution regime, which still exhibits oscillatory behavior. The preshock initial perturbation slope
s− also plays a significant role in the later transition process, as larger s− values result in more
rapid depositions of baroclinic vorticity at the interface, which causes it to evolve from the initially
sinusoidal shape into the complex late-time structures [40]. Therefore, both slope and Weber number
will determine the nonlinear transition. Since the nondimensional formulation Eqs. (7) and (8) is
based on the linear incompressible theory of Mikaelian [5], it is used in this section to diagnose
the departure from the linear regime, and to develop a heuristic criterion for transition to nonlinear
behavior.

First, we seek a quantitative indicator of nonlinear transition. The earliest such signature is the
departure from the sinusoidal oscillation predicted by the linear theory. Therefore, as Weber number
and slope increase, nonlinear deviations in the shape of the η̃ − t̃ curves are expected to be found first
near the normalized peaks, as the onset of nonlinearity should be relatively subtle and achieved most
easily at maximum amplitudes. Figures 8(a), 8(b) and 8(c) show the first peak of the perturbation
oscillation as a function of Weber number, each at a different slope s−. In these figures, the axes are
normalized according to the linear theory [5].

For each s−, corresponding with each of Figs. 8(a), 8(b) and 8(c), the peaks of the perturbation
amplitude curves are marked out. In each case, the peak perturbation amplitude first increases,
then decreases with increasing We−. The time of peak amplitude, however, increases with We− in
all cases. We also note that this phenomenon becomes apparent at lower Weber numbers for the
cases s− = 0.03π, 0.04π [Figs. 8(b) and 8(c)] than at s− = 0.02π [Fig. 8(a)]. The phase shift that
occurs with increasing We− cannot be explained by the change of �ϕ = arctan 1/

√
We+ alone

in Eq. (9); for example, the phase-shift value predicted by this term for the s− = 0.02π cases
with We+ between 130 and 260 is only 0.025, much less than the measured value of 0.05 in
Fig. 8(a). Since the phase shift we observed in Figs. 8(a), 8(b) and 8(c) occurs around postshock
Weber number We+ ∼ 102, we select 102 as the typical Weber number for the lower bound of
the transitional regime and the upper bound of the linear oscillatory regime, as also noted in
Sec. I; while a more rigorous criterion incorporating the influence of the slope s− will be proposed
below.
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FIG. 8. Normalized perturbation development curves for A− = 9/11. (a) s− = 0.02π ; (b) s− = 0.03π ;
(c) s− = 0.04π ; (d) comparisons of cases with s− = 0.02π, 0.03π , and 0.04π , at We+ values around 90.
For panels (a–c), the zoom-in views near the first peaks of the curves are displayed, and the peak points of each
curve are marked with circles. Rightward shift of the peak points is found as the nonlinear indicator.

We also varied s− at constant We+ � 90 to study the effect of amplitude alone [Fig. 8(d)].
Compared with the nonlinear effects of increasing Weber number, the rightward phase shift caused
by increasing s− occurs at a global scale, as the normalized curves start to diverge at t̃ ≈ 0.65, while
the peak values decrease slightly as s− increases. Again, this rightward shift cannot be explained
by the change of �ϕ = arctan 1/

√
We+ in Eq. (9), as the term does not explicitly contain s−, and

are almost the same for the three cases as the postshock Weber numbers We+ are nearly fixed.
The initial amplitude of perturbation therefore has a material effect on the critical Weber number
required for nonlinear transition.

Therefore, nonlinear transition appears to manifest most clearly as a shift in (normalized) time of
the peak of the first oscillation. We quantify this directly as the relative error between the detected
peak time (normalized, denoted t̃m), and that predicted by the linear theory,

� ≡
∣∣∣∣∣ t̃m

π
2 − arctan 1√

We+
− 1

∣∣∣∣∣. (22)

Note that this is defined according to the postshock Weber number, We+. For properly linear
evolution, � = 0, corresponding to exact matching with the linear theory of Ref. [5], but this is
not attained for any cases in this study for even the smallest We−, s− with incident shock number
Ms,I = 2, primarily due to strong effects of compressibility as discussed in Sec. IV A. Of course, the
transition to nonlinearity is also gradual, so that a critical value �c for nonlinear transition can only
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FIG. 9. Left: phase diagram showing simulation cases in linear growth-rate regime (squares) and transi-
tional regime (crosses). The boundary between the two is selected as χ1.8 = 0.06 and plotted in dashed line,
while χ1 = 0.6 is also plotted in dotted line for comparison. Right: relationship between � and χ1.8 with
different s− setups. A common growth stage of � is reached for different s− setups as χ1.8 increases, and the
critical �c and χ1.8 values are plotted.

be heuristically chosen. Here we first choose �c = 0.255, and plot in Fig. 9(a) a phase diagram that
identifies linear cases (� < �c, in yellow squares) and transitional cases (� � �c, in blue pluses).

We now seek a simple predictive model for � and �c, in order to identify the presence of
nonlinear effects due to the effect of Weber number We+ and postshock perturbation slope s+.
The criterion k|η̇+

0 |t ∼ 1 proposed by Dimonte [31] is not applicable in this section as surface
tension may significantly influence the transition mechanism. We therefore assume heuristically
that nonlinear effects become apparent when the peak perturbation amplitude-to-wavelength ratio
reaches ∼0.1, or equivalently when smax ≡ kηmax ∼ 0.6 (Bigdelou [9] proposed a similar criterion
of kηmax ∼ 1). From Eqs. (7) and (8) and for We+ 
 1, this suggests that transition begins to occur
for values of the parameter χ1 � 0.6, where

χα ≡ (s+)α
√

We+ (23)

and α = 1 as a first estimate.
We plot χ1 = 0.6 in Fig. 9(a) as a dotted line, but it does not correctly delineate linear and

transitional cases for the given choice of �c. Moreover, as shown in the inset of Fig. 9(b), χ1 does
not fully explain the variation in �. In that plot, while � increases with χ1, the rate of increase
is clearly dependent on s− (hence, s+). There is therefore a further dependence of the transition
to nonlinearity on s+, suggesting a better choice of α in Eq. (23), which may be related to the
local competition of surface tension and baroclinic vorticity on the interface, and awaits a more
detailed investigation. Figure 9(b) shows the resulting scaling with a modified χ1.8 where α = 1.8,
which better collapses the data. Plotting the dashed line χ1.8 = 0.06 on Fig. 9(a) also more clearly
delineates the linear and nonlinear cases, especially for those with larger perturbation slope s+. The
measure is not perfect, as it does not fully delineate all linear and transitional cases. We attribute
this to the curves not fully collapsing in Fig. 9(b). Nevertheless, for any choice of �c a critical value
for χ1.8 can always be found that reasonably separates those conditions that will remain linear from
those that transit to nonlinear behavior.

V. CONCLUSIONS

We have presented results of nonlinear and compressible numerical simulations of the
Richtmyer-Meshkov instability with surface tension in the linear, nonlinear and transitional regime
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of perturbation development. Our core results are summarized below corresponding to each pertur-
bation development regime, with the Weber number range of each regime highlighted:

First, in the linear regime where We+ < 102, using appropriate dimensional analysis, we find
that the existing theoretical impulsive model due to Mikaelian [5] predicts well the evolution
of the shocked interface in this regime, with an appropriate modification based on the theory of
Vandenboomgaerde [22] to accommodate Atwood numbers of either sign.

Next, in the nonlinear regime where We+ > 103, we show agreement with theoretical predictions
of Sohn [13] on the asymptotic (large time) bubble velocity in the limit of large Weber number, while
a complete quantitative comparison of bubble and spike behavior at late times is left for future work.

Finally, in the transitional regime where 102 � We+ � 103, we use Eq. (8) to diagnose the onset
of this regime to allow for comparison with results in the linear oscillatory regime, and develop
a heuristic criterion based on nondimensional parameters s+ and We+ for transition to nonlinear
development.

These results indicate the utility of this numerical model for problems involving multiphase com-
pressible flows, and constitute a further validation of its surface tension model and implementation.
This study sheds light on influence of surface tension on the compressible RMI, which is important
for related multiphase compressible flow problems where surface tension effects have not yet been
systematically investigated, for example, shock-bubble interactions [19]; while also providing a
stepping stone towards the mixed compressible-incompressible problem which may influence the
early-time development of the shocked-droplet or aerobreakup problem [43].
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APPENDIX A: NUMERICAL CONVERGENCE AND MAXIMUM
RESOLVABLE WEBER NUMBER

Since each fluid is inviscid, the smallest length scale in the bulk is set by numerical dissipation,
so that pointwise grid convergence is not expected. Nevertheless, we require that the primary
characteristics of the RMI growth, both with and without surface tension, be independent of grid
resolution at our chosen resolution of L = 9. Here, four groups of convergence tests are conducted
in total for four different categories of initial setups; namely, light-heavy (A− > 0) and heavy-light
(A− < 0) density setups with and without surface tension. Specifically, we set A− = ±9/11, while
We− = +∞ or 160.

The raw outputs of the tests are provided in Fig. 10, where time t and perturbation η are
normalized by the natural units introduced in Sec. III A. Absolute values are taken to facilitate
the comparison between the results of light-heavy and heavy-light initial density setups, as in the
latter case there will be a phase reversal of the perturbation profile at early time. When relatively
weak surface tension is introduced to the heavy-light density setup case or the resolution level L is
low, noise may appear in the neighborhood of the interface during the simulation, causing spurious
high-frequency oscillations on the curve. Despite these problems, we still observe good converging
trend at resolution level L = 9 for all four groups of convergence tests.

As Sec. IV B investigates RMI with asymptotically weak surface tension, it is also of interest to
determine the maximum Weber number Wem resolvable at a certain resolution level. This is achieved
by setting the following grid Weber number Wegrid to 1:

Wegrid ≡ (ρ+
1 + ρ+

2 )(η̇+
0 )2h

σc
, (A1)
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FIG. 10. Convergence test results (Upper row: heavy-light density setup without (a) and with (b) surface
tension; lower row: light-heavy density setup without (c) and with (d) surface tension). Good numerical
convergence is observed for all the inviscid test cases.

and the critical surface tension σc is then plugged into the definition of postshock Weber number
We+ as given by Eq. (7). We then find that for the positive Atwood number cases at resolution level
L = 9, the maximum resolvable Weber number is

Wem = 1

k3(η+
0 )2h

= 4.7 × 104, (A2)

which is much larger than the maximum postshock Weber number investigated in this work (3.2 ×
103), and we therefore expect that our numerical results effectively capture surface tension at the
Weber numbers and resolutions that were tested.

APPENDIX B: DETERMINATION OF POSTSHOCK STATE

While in this study, the postshock state is determined through numerical diagnostics, it is
instructive to compare them with theoretical predictions.

If surface tension and interface perturbation are absent, then the flow state constitutes a Riemann
problem when the incident shock arrives at the interface, whose solution yields the postshock state.
Mikaelian [23] proposes a set of equations for this problem. Lying at the core of this equation system
are two alternative transcendental equations (Eqs. (A4) and (A16) in the Appendix of Ref. [23]) for
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which there are generally no analytical solutions:

ξ − p0

pL√
ξ + γ−1

γ+1
p0

pL

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
ρ−

2

ρ−
1

·
1 − p0

pL
− (ξ − 1)

√
γ−1+(γ+1) p0

pL
(γ+1)ξ+γ−1√

1 + γ−1
γ+1

p0

pL

, ξ � 1,

√
ρ−

2

ρ−
1

·
1 − p0

pL
+

(
1 − ξ

γ−1
2γ

)√
2γ

γ−1 + γ+1
(γ−1)2

p0

pL√
1 + γ−1

γ+1
p0

pL

, ξ < 1.

(B1)

The first equation is physically valid when its root satisfies ξ � 1, which indicates a reflected
shock; otherwise, the second one will produce a root satisfying ξ � 1, which indicates a reflected
rarefaction instead. Once the value of ξ has been determined, the postshock quantities ρ+

i ,�v can
be determined via the following equations:

ρ+
1

ρ−
1

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(γ + 1) + (γ − 1) p0

pL

(γ − 1) + (γ + 1) p0

pL

· (γ + 1)ξ + γ − 1

(γ − 1)ξ + γ + 1
, ξ � 1

(γ + 1) + (γ − 1) p0

pL

(γ − 1) + (γ + 1) p0

pL

· ξ
1
γ , ξ < 1

,

ρ+
2

ρ−
2

=
(γ + 1)ξ + (γ − 1) p0

pL

(γ − 1)ξ + (γ + 1) p0

pL

,

(�v)2 = 2ξ pL

ρ−
2

·
(
1 − p0

ξ pL

)2

(γ + 1) + (γ − 1) p0

ξ pL

.

(B2)

It should be noted that Eqs. (B1) and (B2) do not include effects of surface tension or the
perturbed interface profile investigated in our work. Both factors could potentially cause the
postshock state to deviate from the solution of the Riemann problem. In particular, the perturbed
interface profile gives rise to the RMI, and causes the transmitted and reflected wavefronts to have
corrugated shapes initially, which are similar to the sinusoidal shape of the perturbed interface itself.
These wavefront corrugations will oscillate and die out after the waves travel a distance of several
wavelengths away from the postshock interface [44], as is the situation shown in Fig. 1(b). This
rippling behavior has been observed in the experiments of Ref. [45], and reproduced afterwards in
many simulation works (e.g., Refs. [23,39,46]).

We compare now the predictions of theory and numerical diagnostics for the cases presented
in Fig. 2. The transcendental equation sets [Eqs. (B1) and (B2)] yields ξ = 1.8982 for the cases
with A− = 9/11, and ξ = 0.4668 for those with A− = −9/11. These solutions agree with the
categorization of reflected wave [Eq. (10)] by Drake [27], which is based on the sign of preshock
Atwood number A−.

The postshock parameters are then derived using the solution ξ , and their comparisons with the
values of numerical diagnostics measured at around t = 0.4 are shown in the following Table I.
Here r ≡ η+

0 /η−
0 is the compression ratio of perturbation amplitude, which may be calculated by

r = 1 − �v/us,I according to Refs. [22,23].
Within each preshock Atwood number category, the results gained via numerical diagnostics and

equation solving for the same postshock parameter are roughly on the same level of magnitude.
Particularly good agreements are found for ρ+

2 values in cases with A− = −9/11, and also A+ and
r in those with A− = 9/11. However, generally speaking, nontrivial discrepancies do exist between
the numerical and analytical results.

The discrepancies are most likely caused by the equation system Eq. (B1)’s not accounting for
the influence of the “rippling” behavior of the postshock wavefronts due to the initially perturbed
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TABLE I. Comparison between postshock values gained from numerical diagnostics (“ND”) and equation
solving (“ES”).

A− (Method) 9/11 (ND) 9/11 (ES) −9/11 (ND) −9/11 (ES)

ρ+
1 0.356 0.418 1.700 1.591

ρ+
2 3.084 3.593 0.169 0.168

A+ 0.793 0.792 −0.819 −0.809
�v 2.030 2.333 2.231 2.109
r 0.66 0.688 0.0565 0.109

interface profile (see Sec. II). In cases without surface tension, such behavior is reported in Ref. [23]
to cause the postshock perturbation growth rate η̇ to reach an asymptotic value, for which no simple
analytic solution exists [23,47], after going through a damped oscillation period, which also matches
the trend of our results in Fig. 2.

The ascription of discrepancies above is further consolidated by the following observation. As is
shown in Fig. 2, for the case with A− = 9/11, our state diagnostic case captures ρ+

1 = 0.411 and
ρ+

2 = 3.590 at a very early time t = 0.02 after the shock-interface interaction, which matches very
well with the solution of Mikaelian’s equation sets [23] (see column 3 of Table I). However, the two
densities eventually settle down at the steady-state values, as discussed in Sec. IV A.

The relationship between pre- and postshock Weber numbers We− and We+ may now be derived
using the postshock states determined by numerical diagnostics, which enables direct prediction of
We+ from We−. Based on the definitions of We− and We+ [Eqs. (1) and (7)], we find that

We+

We− = ρ+
1 + ρ+

2

ρ−
1 + ρ−

2

(
A+�v

A−uL

)2

. (B3)

That is, the postshock Weber number depends only on the ratio of postshock to preshock
densities, and the Mach number of the incident shock, and is independent of the (small) preshock
perturbation amplitude η−

0 . As a result, for simulation cases with preshock Atwood numbers
A− = 9/11 and −9/11, we have We+/We− = 0.553 and 3.875, respectively.
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