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Nonlocal effects in the shear banding of a thixotropic yield stress fluid
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We observe a novel type of shear banding in the rheology of thixotropic yield-stress
fluids that is due to the coupling of both nonlocality and thixotropy. The latter is known to
lead to shear banding even in homogeneous stress fields. Yet, in the presence of nonlocal
effects such bands appear smoothed by the continuous shear rate variation across the shear
band. Here, we introduce a simple nonlocal model for the shear banding (NL-SB), and we
implement it for the analysis of sub-mm rheo-MRI velocimetry measurements of a milk
microgel suspension in a cone-and-plate geometry. The proposed NL-SB model enables
quantifying the cooperativity length, yielding values in the order of the aggregate size in
the microgel.

DOI: 10.1103/PhysRevFluids.6.113301

I. INTRODUCTION

Many yield-stress fluids, such as microgels, are known to exhibit thixotropic behavior, with their
viscosity reversibly decreasing when the material is subjected to flow. This is due to a competition
between the breakdown of the gel structure caused by flow, and its spontaneous buildup at rest. In
rheology, one thixotropic signature can be found in the history- or time-dependent divergence of
viscosity at a critical shear rate y,, below which part of the material does not flow. The existence
of a critical shear rate then directly implies shear banding, even in the absence of stress variations
throughout the gap: for an imposed shear rate y < y,, only a fraction of the fluid is sheared at
Yo < Y. While the rest remains stagnant (y = 0) [1-4]. Due to the coupling of the microstructure
with the flow, the rheological properties of such thixotropic materials are highly sensitive to shear
history, which in turn makes quantitatively modeling of the flow properties of these systems a
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yet unresolved challenge. Examples of particulate thixotropic materials, commonly encountered
in daily life, include many personal care products [5], food dispersions [6], paints [7], and clay
suspensions [8]. In such systems, thixotropy is often the result of weak attractive forces between
particles [9]. At rest, or even at low applied shear rates, attractive forces generate the formation
of flocs and therefore the development of a particulate network. Interparticle attractive forces are,
however, weak enough to be exceeded by shear forces during flow, thus disrupting the formed
network and producing time-dependent behavior.

While a particulate fluid undergoes thixotropic behavior, under strongly confined flow conditions
cooperative effects can also become significant, thus introducing an additional level of complexity.
Cooperative, or nonlocal, effects have been observed in flowing emulsions and particle dispersions,
when the dimensions of the flow geometry become comparable to the characteristic size of the
fluid, namely, particles of floc size for particulate gels, or droplets for emulsions [10,11]. The
cooperativity effect results from a spatial correlation in the plastic rearrangements induced by local
stress fluctuations. A striking consequence of this is that the material’s viscosity varies spatially
across the confined dimension. Such collective effects have been observed in granular [12,13] or
microgel [14—16] suspensions, emulsions [17,18], and cellulose dispersions [19] by means of parti-
cle imaging velocimetry (PIV) [11-14], optical microscopy [14,15], or rheo-MRI velocimetry [19].
Most experimental observations of nonlocal effects focused so far on flow characterization inside
narrow microchannels, around 50-250 pum in diameter [11,14,16], with only one work reporting
cooperativity effects in a 1 mm gap cone-and-plate (CP) geometry by rheo-MRI [19].

The emergence and origin of shear banding is one of the most important open questions in
the physics of disordered materials, as underlined in authoritative reviews [20,21]. Despite the
success of the nonlocal (NL) fluidity model and of related constitutive equations [10,11,22,23] in
describing cooperativity effects for a wide range of materials, shear-localization effects are often
attributed to, or modeled as being caused by, spatial variations of the stress across the measurement
geometry, e.g., a microfluidic channel or Couette geometry [11,22]. We show here that, in the case
of particulate thixotropic fluids, cooperativity and shear localization effects coexist under strongly
confined flow, even under homogeneous stress conditions. Even though the rheological properties
of thixotropic fluids have been thoroughly studied and modeled for over 50 years [24], confinement
effects are commonly overlooked even in rheological tests where gap sizes <1 mm are used [25].
In our present case, this results in shear bands with a spatially varying shear rate and, hence, a
spatially varying viscosity. This is in contrast to what happens for “usual” thixotropic fluids, where
two discrete bands are observed, namely, stationary or flowing at the critical shear rate, as typical
for SB models.

In this work, we perform rheo-MRI velocimetry measurements in a CP geometry, for which
the stress is homogeneous to within 1.5%. We demonstrate that the heterogeneous confined flow
behavior of acid milk microgel suspensions, known for their thixotropic properties [26,27], can be
quantified by accounting for both nonlocality (NL) and thixotropic shear banding (SB) within a
unified analytical model. By combining the established NL model [11] with the classical SB con-
dition by Mgller et al. [1], we derive a comprehensive yet simple three-parameter fitting expression
that successfully describes the spatially heterogeneous flow of a particulate thixotropic fluid under
strong confinement. The proposed NL-SB model enables quantifying cooperativity length scales
without any artifact due to concurrent shear-banding effects.

II. MATERIALS AND METHODS
A. Materials

In this study, acid milk microgel suspensions were chosen due to their thixotropic properties and
relevance in the food industry. Gels at 12 wt% milk concentration were produced by acidification of
milk using 2 wt% of glucono-é-lactone (GDL) and incubation at 40 °C for 4 hours or until reaching
pH = 4.2. To ensure reproducible flow behavior, gels were presheared prior to measurements [28]
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FIG. 1. Two-dimensional confocal images of the acid milk microgel suspension before rheology or rheo-
MRI experiments. Samples were dyed with rhodamine B and imaged using a Leica SP8 Dive multiphoton
confocal imaging microscope. The scale bar represents 50 pm.

using a 50 mL syringe pump at a speed of 80 mL/min. Representative confocal images of the
suspensions are presented in Fig. 1 with milk proteins highlighted in red. These micrographs clearly
show that the acid milk suspensions are composed by a percolated network of aggregated milk
proteins, in agreement with results observed in previous literature [29,30].

B. Rheology measurements

Rheometry was performed using an Anton Paar MCR 301 rheometer equipped with a cone-and-
plate (CP) geometry with a cone angle of 1° and a radius of 25 mm. Shear rate sweeps for the acid
milk microgel suspension were measured by varying the shear rate from 0.01 to 200 s~!, and back
down to 0.01 s~!. The applied shear rate was kept constant at each recorded point for 10 seconds.

C. Rheo-MRI experiments

MRI measurements were conducted on a wide-bore Bruker Avance III spectrometer operating
at 7.0 T (300 MHz for 'H). A 25-mm-diameter radio-frequency coil was used for excitation and
detection, in combination with a three-dimensional gradient system with a maximum gradient of
1.5 Tm~'. To perform rheo-MRI experiments the magnet was equipped with a Bruker rheo-MRI
accessory employing a CP geometry (cone angle 7°, radius 8 mm). For all experiments a pulsed
gradient spin echo (PGSE) sequence with a two-dimensional slice excitation of I mm x 1 mm [31]
was used to measure one-dimensional velocity profiles with a spatial resolution of 29 um and a
temporal resolution of 10 minutes.

III. RESULTS AND DISCUSSION

A. Flow behavior of milk-derived microgels

We study the flow behavior of acid milk microgel suspensions using bulk rheology and 'H rheo-
MRI velocimetry. Acid milk gels are particulate gels; fractal, adhesive hard spheres, and percolation
models have been used to model their structure [32—34]. The thixotropic properties of the microgel
suspension are characterized by measuring hysteresis flow curves using a CP geometry (1° cone
angle, radius 25 mm). This setup ensures a uniform stress distribution along the cell gap (=0.03%
for 1° cone angle [35]) avoiding possible stress heterogeneity effects such as particle migration.

Shear rate sweeps for the acid milk microgel suspension are shown in Fig. 2. The remarkable
difference between the two sweep-rate branches indicates strong thixotropic behavior and a signif-
icant stress decay due to structural degradation at high shear rate values. Similar results are found
for waxy crude oils known for their complex thixotropic behavior [36,37]. Although the rheological
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FIG. 2. Comparison between up (black) and down (red) hysteresis loops obtained from bulk rheology
measurements of an acid milk microgel suspension (empty circles), and from the A-model (thick lines)
with parameters chosen to match the experimental data. The critical shear stress 7., obtained from viscosity
bifurcation experiments, and the critical shear rate y, are indicated as thin dot-dashed lines. The down-sweep
curve of the A model is unstable (dt/dy < 0) for y < y, (red dashed line).

response of the microgel suspension is highly dependent on the shear rate, the thixotropic behavior
is maintained for different hysteresis protocols and is reproduced for different batches of samples
(see Figs. 6 and 7 in Appendix A).

In the past years, several models have been proposed to account for thixotropy, with varying
degrees of complexity and detail [24]. Here, we consider a minimal model to get some qualitative
insight into the system, without accounting for more complicated effects, such as elasticity or
kinematic hardening. In the most rudimentary model for thixotropy one assumes that the viscosity
n increases with dimensionless microstructural parameter A as

n =no(l +1"), (D

where 7 is the limiting viscosity at high shear rates, and n is a dimensionless parameter specific
for the material [4]. For an aging system at rest, or at low shear rates, the structural parameter A
increases without bound, while if the structure is disrupted by flow, A decreases to a steady-state
value. In this way, the time evolution of the microstructural state of the material can be described as

dr 1 v )

a kM @
where « is the characteristic aging time for the microstructure buildup, and « is the rate of disruption.
Simple yield-stress behavior is recovered only for n = 1, while thixotropic effects (n > 1) are
expected to increase with increasing n values [4]. Here we assume n = 2 as previously done in
Refs. [2,38] for a similar system. By solving these equations for the dynamic state, and assuming
that the shear stress of the material is given by t = ny, hysteretic flow curves are obtained that
are characteristic of thixotropic systems: because the structure is destroyed by the flow, in an
up-and-down shear rate sweep, the downward branch is significantly below the upward branch,
as can be observed in Fig. 2. The comparison with the experiment (empty circles) in which shear
rates is ramped up shows that, although the A model does not account for elastic startup effects [39]
visible in the measurements at low shear rates, it qualitatively describes the unstable flow curve
with a decreasing stress for increasing shear rate, that is indicative of shear banding. The A model
(thick lines in Fig. 2) shows an onset of flow instability at 38 s~!, below which the flow curve

113301-4



NONLOCAL EFFECTS IN THE SHEAR BANDING OF A ...

: : 0.4
(2) ——NL-SB fit - (b)
AESHENY I
—0—3s7! _ g
A 5gl A §0.2 #
. 0
g 0 20 40
<05 y(s7h)
X
> 8 +
AR

0 20 40
z (mm) SR

FIG. 3. Fitting results for the 'H rheo-MRI velocity measurements at increasing applied shear rates, for the
acid milk microgel suspension, obtained using the NL-SB model: (a) normalized velocity profiles, (b) £ values,
and (c) y,—o values. Each rheo-MRI velocity profile was corrected for slippage by extrapolation of the last five
pixels at the plate, as in Refs. [19,20,24].

has a negative slope. This value defines a critical shear rate above which the viscosity increases to
infinity discontinuously [4]. The obtained critical shear rate is also in good agreement with viscosity
bifurcation experiments on our milk microgel suspension shown in Fig. 8 in Appendix B.

The negative part of the flow curve and associated existence of a critical shear rate automatically
imply that, when applying a shear rate smaller than y,, shear banding should be observed [1,3,4]. To
look for such behavior in our system, we acquire 'H velocity profiles by rheo-MRI measurements
using a similar CP geometry (7° cone angle, 1.5% stress variation [35] and 8 mm radius) as for
the rheology measurements [19]. The imposed shear rate is varied between 1 and 50 s~!. To assure
reproducible results, the sample is presheared at 30 s~ for 2 minutes before the shear rate is imposed
and a velocity profile is acquired in 10 minutes.

The flow profiles, plotted in Fig. 3(a), show discrete shear bands for the lowest shear rates, y =
1-3 57!, in agreement with the expected behavior for thixotropic fluids sheared at y < y. [1,3,4].
We note that for all rheo-MRI measurements presented here, no time or velocity fluctuations were
detected in the static band during the experiment, excluding possible creep effects. Upon increasing
the macroscopically imposed shear rate [ = 3 s~! in Fig. 3(a)], a sharp transition from discretely
banded to curved velocity profiles is observed. The surprise here is that, in spite of the stress being
homogeneous, the flow profiles do not at all have a uniform shear rate. For thixotropic fluids, two
bands are generally observed below the critical shear rate: one at zero, and one at the critical shear
rate. A constant shear rate equal to the imposed shear rate should be observed for y > y, [1,3,4].
Thus, because of the constant stress, the velocity profiles should always be straight lines. Instead,
what we observe is a continuously varying slope of the velocity profiles, implying that the viscosity
varies spatially. This is the hallmark of nonlocal cooperative effects [11].

B. Coupling shear banding and nonlocality

To quantitatively account for the coupling between nonlocality and shear banding, we consider
the nonlocal fluidity model [11,22], which highlights the effectiveness of the key concept of fluidity,
the inverse of the fluid’s viscosity f = y/t. During flow, the microstructure of the material causes
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the fluidity to be influenced by cooperative plastic rearrangements. Thus, by defining a cooperativity
length £ that describes the spatial correlation between plastic deformations, the local fluidity f is
set to obey the following diffusion-type equation:

2 82f(Z)
072

where fuouk(z) corresponds to the fluidity in absence of nonlocal effects, and z is the position
across the cell gap. Note that Eq. (3) does not depend on the radial direction as we are considering
one-dimensional velocity profiles taken at a fixed radial position and along the axial dimension, thus
neglecting possible three-dimensional fluidity effects [40]. Under homogeneous flow conditions,
Eq. (3) can be solved for a z-independent f,,x parameter since y and t are related through their con-
stitutive equation in the absence of flow cooperativity. However, if the fluid displays shear-banding
effects, bulk fluidity is expected to vary within the cell gap. To describe the shear-banding behavior
of thixotropic fluids in the absence of nonlocal effects, we refer to previous pioneering works [1,3,4].
Under homogeneous stress conditions, the velocity of a thixotropic fluid at an imposed shear rate
Yhulk 10 the absence of nonlocal effects can be described as

Uputk (2) = YouH (I — Dz + yeH(1 — DH (z — Ih)[z — (1 — Dh], “4)

where y, is the critical shear rate, I = pux/y. is the fraction of the gap sheared at pyy, £ is the
gap of the geometry, and H is the Heaviside function [H (x) = 0 for x < 0 and H(x) = 1 for x > 0].
From Eq. (4) it follows that (i) for phux < ¥., two shear bands coexist: one static and one sheared
at Yioc = y; (ii) for y > y., spatially uniform flow is restored [1]. By considering a z-independent
stress field 7y and solving Eq. (3) for the bulk fluidity taken as

1 dvpun(z)
To dZ ’

§

= f(2) — foux(2), 3)

fbulk (2) =

the following expression for y (z) = 7 f(z) is obtained:

7(2) = A(h, €) cosh (2) + B(h, £) sinh (é)

+ 9 H(1 = DH(z — )z — (1 — D] |:cosh (Z(lé_—l)h
where A and B are z-independent constants. We note that Eq. (5) is simply the solution for a
homogeneous bulk fluidity plus a second term that depends on the critical value y,. By integrating
Eq. (5) and applying boundary conditions for the velocity at the cell walls, an analytical equation
for the flow profile v(z) can be found (see Appendix C for the full expression).

We consider the case of a geometry with homogeneous stress field, where one of the cell walls
rotates at k. This simple model, solid lines in Fig. 3(a), is in excellent agreement with our
rheo-MRI data for the acid milk microgel dispersion. This confirms that the NL-SB model provides a
velocity equation v(z) that can be used for quantifying £ from the experimental rheo-MRI data. The
parameter y, is considered a material property and, thus is here taken as a global fitting parameter
for all velocity profiles. Figure 3(a) shows the fitted rheo-MRI velocities using a three-parameter
fitting with the NL-SB model. The fitting parameters £ and y,—¢ are shown in Figs. 3(b) and 3(c),
respectively. Fixed parameters are v(0) = 0, corrected for slippage at the plate, v(h) and the applied
shear rate yy,x. Within the fitting error, the NL-SB model succeeds in describing the spatial
dependence of experimental velocities, giving & values in the range 50-260 um, as expected for
similar samples [41]. The observed & values are comparable with the aggregate sizes observed in
confocal images (Fig. 1). Fitted & values are also comparable with the width of the observed shear
band in Fig. 3. Similar behavior was found by de Cagny et al. for dry granular materials [13]. At the
same time, the fitted critical shear rate y, = 24 £ 3 s~ ! is similar to that obtained from Fig. 2; the
differences are likely due to reproducibility variations during sample preparation.

) - 1} + wukH( — 1), (5)
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FIG. 4. Comparison between viscosity profiles calculated from 1H rheo-MRI measurements (symbols) and
fitted velocities obtained using the NL-SB model (lines) at increasing shear rate values: 1 s~! (squares), 3 s~!
(circles), 5 s~! (triangles), 7 s~! (inverted triangles), 20 s~' (diamonds), and 40 s™' (stars).

The nonlocal effects immediately become evident when we construct viscosity profiles (Fig. 4)
by combining the globally imposed stress measurements from the rheometer with the local shear
rate from the rheo-MRI (symbols) and fitted NL-SB (lines) velocities. We note that the derivative
of the velocity profiles needs to be taken in order to obtain spatial variations of shear rates and
to enhance any possible small deviations between rheo-MRI and NL-SB velocities. The resulting
profiles presented in Fig. 4 strongly differ from the expected behavior for homogeneous fluids but,
in addition, the observed viscosity variations cannot be attributed to nonlocality only, since this
does not account for the observed shear banding. We therefore must conclude that the spatial het-
erogeneity of the viscosity profiles is caused by the coexistence of both nonlocal and shear-banding
effects during flow. Under homogeneous flow conditions (I > 1), nonlocal effects introduce spatial
heterogeneities leading to the observed curved velocity profiles [Fig. 5(a)]. However, for [ < 1, the

-
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FIG. 5. Theoretical velocity profiles v(z) obtained with the NL-SB model for different values of the

correlation length & at (a) / = 1.0 and (b) [/ = 0.5, taking into account nonlocal effects only or coexistent
nonlocal and shear-banding effects, respectively.
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cooperativity smooths the transition between the two discrete bands [Fig. 5(b)], which becomes
more pronounced when increasing &: for high enough & values, the interface between flowing and
static bands can no longer be discriminated. We note, however, that, in such cases, flow profiles for
I > 1and! < 1 can become very similar (see velocities for £ = 300 um in Fig. 5). This highlights
the importance of a NL model that enables disentangling SB from cooperativity effects in SB fluids.
This is not unique to our system; in fact, similar behavior was found by de Kort et al. [19] for
microfibrillar cellulose dispersions, where the presence of curved velocity profiles under uniform
stress conditions was incompletely modeled as caused by nonlocal effects only. Here, we have
shown that shear banding also has to be taken into account.

C. Rate-dependent nonlocality

An interesting feature is the dependence of £ on the applied shear rates seen in Fig. 3: at low flow
rates, £ increases linearly up to ~260 pm, where it stabilizes for y > 10 s~! (see Fig. 9 for fitting
results for a shear-independent £ in Appendix D). For emulsions, & values have been empirically
found to depend linearly on the droplet volume fraction above the jamming concentration and to
scale with the particle diameter [11]. While most experimental results report flow-independent
cooperativity lengths [11,14], modeling predicts £ to increase when the local stress approaches
the critical value t. and with the particle diameter size [10,40]. The results presented in Fig. 3 for
¥ < 10 s7! are in agreement with such scaling of £ when approaching y.: we note that in rheo-MRI
experiments shear rate is controlled instead of stress. Yet, flow cooperativity can also be affected by
shear-induced density heterogeneities, as previously reported in Ref. [13] for a granular material.
In the case of attractive gel particles, Rajaram et al. [30] recently observed that low shear caused
microstructural heterogeneities and pronounced segregation of flocs in a CP geometry by means
of three-dimensional confocal imaging. Furthermore, a linear increase of the size of cooperatively
reorganizing clusters of flowing soft colloidal microgels was observed by van de Laar et al. [16]
at increasing microcapillary pressure. The dimensions and density of the formed flocs have been
shown to depend on the size of the flow confinement and on a critical shear rate below which
attractive forces dominate the system hydrodynamics [42]. The latter effect could explain the sharp
transition observed in our results, where the £ trend changes from linear to constant behavior at
¥ = 10 s~!. Flow-concentration coupling effects likely also contribute to the rather complicated
spatial variations of the viscosity profiles in Fig. 4. The confinement geometry could also have an
impact on the observed flow cooperativity, as previously addressed by Paredes et al. [43] in the study
of emulsions. The cooperativity, as Goyon, Colin, Ovarlez, and collaborators have also shown, is
only visible when the system is sufficiently confined. The cooperativity length should be thought
of as the size of a cooperatively rearranging region, which in our system may also be seen as a
characteristic size of the structure. When, for a given shear rate, the size of the structure becomes
comparable to the confinement, cooperative flow effects start to show up. We believe the same to be
applicable for our current system.

IV. CONCLUSIONS

We have shown that the confined flow of a thixotropic fluid, such as an acid milk microgel
suspension, undergoes spatially heterogeneous flow that cannot be described by modeling nonlocal
flow with the established NL model [11,22] without taking shear banding into account. By intro-
ducing a comprehensive NL-SB model, we show that, under confined flow conditions, both effects
are strongly intercorrelated, leading to spatial variations of the viscosity. Moreover, by enforcing a
spatial dependence in the diffusive equation for the nonlocal fluidity, we successfully model the
flow behavior of the microgel suspension over the full range of applied shear rates, obtaining
cooperativity lengths of the same order as the protein aggregate sizes in the sample. Our results
show that cooperativity lengths are not rate-independent, as previously observed in concentrated
emulsions [11]. The observations here are believed to be general for thixotropic systems with a
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FIG. 6. Comparison between (a) low-to-high and (b) high-to-low hysteresis flow curves of the milk
microgel suspension.

flow-concentration coupling. A more detailed study of the relationship between material properties,
such as particle size, attractive or repulsive nature of interparticle interactions [42], and nonlocal
flow parameters would be interesting future work. We foresee that our proposed NL-SB model can
be useful for describing other thixotropic materials flowing in confinement during processing, such
as paints, muds, and a range of complex food materials.
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APPENDIX A: RHEOLOGICAL REPRODUCIBILITY AND EFFECT
OF HYSTERESIS PROTOCOLS

Figure 6 shows there is a clear difference in the rheological response of the milk microgel
suspension when hysteresis flow curves are performed starting from high shear rates rather than
low ones. This is caused by the structural breakdown at high shear values. However, differences in
cycles are still noticeable in both cases. The latter also confirms the high dependence of the sample
on shear history, as expected for thixotropic materials.

Figures 7(a) and 7(b) display the measurements, on two different samples prepared from different
batches, of low-to-high and high-to-low hysteresis curves, respectively. Both measurements display
the same trend upon shear rate variation. Yet, there is a strong influence of wall-slip, as expected for
milk microgels [29]. Fortunately, rheo-MRI enables decoupling wall-slip contributions from flow
information, thus minimizing discrepancies between measurements. Figure 7(c) shows the effect of
preshear.

APPENDIX B: MEASUREMENT OF CRITICAL SHEAR STRESS 7,

The critical shear stress was measured by performing viscosity bifurcation measurements [4]. In
these experiments, we monitored the shear rate as a function of time under a fixed stress. To erase
possible previous shear history, a fresh microgel sample was presheared at 200 s~! for 30 seconds
after which a fixed stress was applied.

Obtained bifurcation experiments presented in Fig. 8 clearly show the existence of a critical
shear stress 7.. Below 7. & 15 Pa there is no considerable flow given by a shear rate <1073 s~!
while when such critical value is exceeded the shear rate evolves towards a steady state.
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FIG. 7. Reproducibility of hysteresis flow curves of a milk microgel suspension when performed from
(a) low-to-high and (b) high-to-low shear rates. (c) Effect of preshear on the rheological response of the

microgel suspension.

APPENDIX C: ANALYTICAL EQUATION FOR v(z) IN THE CASE OF A HOMOGENEOUS
STRESS FIELD

Integrating Eq. (5) and applying boundary conditions for the velocity at the cell walls, we can
obtain the following expression for the velocity,

v(z) = v(0) + sinh (g)%[)&:o — Youdl (I — D] + &B(h, 5)[Cosh <§> - l] + VouH (I — 1)

—PelH(I =) = 1JH[z = (1 - l)h][z — (1= I)h — £ sinh <—Z - (15_ l)hﬂ,

| pre-shear
Imposed stress
1] — 30.0 Pa
10 —200Pa
TN g 150k
Xz i
e
107" 4
10 . . { e
20 40 60 80 100 120

time (s)

FIG. 8. Viscosity bifurcation measurements for the acid milk microgel suspension in a cone-and-plate
geometry (cone angle 1°, radius 25 mm). Before imposing a constant shear stress, the sample was presheared

at 200 s~! for 30 seconds.
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FIG. 9. Fitted 1H rheo-MRI velocity profiles at increasing applied shear rates, for the acid milk microgel
suspension, obtained using the NL-SB model for a shear-independent cooperativity length &. For each case
only velocity profiles acquired in a certain shear rate range were considered for the fitting: y = (1-40) s™!
(Case A), y = (7-40) s~! (Case B), and y = (1-6) s~! (Case C).

where B(h, £) is given by

B(h, &)
0 =v(0)~[Vemo—PhurcH (1= D] sinh ()& —purcH (I = Dh+ye[H(I=1)~1][Ih—¢ sinh ()]
N £[ cosh (21)—1]

and v(0) and v(h) are the velocity at the plate and the cone, respectively.

)

APPENDIX D: NL-SB FITTING FOR A SHEAR-INDEPENDENT £

To investigate the shear dependence of fitted cooperativity lengths & presented in Fig. 3(b), rheo-
MRI velocity profiles were analyzed using the NL-SB model for a shear-independent &. Figure 9
shows the fitted velocity profiles considering only those acquired at y = (1-40) s~! (Case A), y =
(7-40) s~! (Case B), and y = (1-6) s~! (Case C). Obtained fitting results can be found in Table 1.
Even though the NL-SB model works well for y > 7 s~!, in agreement with the results found for
variable &, it cannot fit those profiles where strong shear-banding behavior is observed. This effect

TABLE I. Fitting results obtained using the NL-SB model for a shear-independent cooperativity length &,
for the cases A, B, and C depicted in Fig. 9.

§ (um) Ve 57
Case A 236 + 20 24 +£2
Case B 286 + 42 24 £2
Case C 116 £ 3 21 £5
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can be seen even if velocity profiles for y > 7 s~! are not considered in the fitting (see profile for
1s7!in Case C).
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