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Spectra of supersaturation and liquid water content (LWC) fluctuations in cloud turbu-
lence are theoretically studied. Equations for the variance spectra are derived using the
Lagrangian renormalized approximation and examined through asymptotic analysis. Our
results show that the wave-number-dependent Damköhler number, defined as the ratio
of the turbulent eddy turnover time to the phase relaxation time of the supersaturation,
controls the scalar transfer functions and the supersaturation excitation by turbulence. Ad-
ditionally, the supersaturation spectrum Es(k) has three power-law ranges. Here two ranges
follow k−5/3; however, their amplitudes differ depending on the large-scale Damköhler
number and the input ratio of the supersaturation excitations in the associated range. The
third range of Es(k) ∝ k−1−2CBDK includes CB and DK representing the Bachelor constant
and Damköhler number corresponding to the Kolmogorov time, respectively. The LWC
spectrum Eφ (k) reveals two power-law ranges: k−5/3 for k < kφ∗ and k−1 for kφ∗ < k, in
which the transition wave number kφ∗η is given by the input ratio of the supersaturation ex-
citations in the two k−5/3 ranges by the turbulence and is consistent with field measurement
results.
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I. INTRODUCTION

Recent developments in the measurement of cloud properties has allowed for the accumulation of
a considerable amount of cloud microphysics data, gathered by various means including airplanes
[1–5], high-elevation measurements [6], and cloud kites [7]. The power spectrum of liquid water
content (LWC), in particular, has attracted much interest [1,2,6,8–11]. The LWC spectrum is k−5/3

at low wave numbers but trends toward k−1 at 2–5 m, which corresponds to kη ≈ 0.002, where η

is the Kolmogorov length [1,9]. High-elevation measurements from a mountain top have indicated
an LWC power spectrum of f −5/3 for low frequencies; however, the spectrum is shallower and
shows a transition at around 3 Hz (Fig. 12 of Siebert et al. [6]), corresponding to kη ≈ 0.0018.
Notably, this transition occurs at wave-number values well inside the inertial-convective range.
These findings lead to questions as to whether the observed k−1 spectrum is the Batchelor spectrum
for a high Schmidt number [12], as well as why the transition wave number is so low compared to
the theoretical condition of kη � 1.

Much effort has been directed towards clarifying these observations. Among the arguments posed
it is considered that the observed spectrum reflects actual physical phenomena and is not due to
sampling error, and that the intermittency of the LWC is irrelevant for the spectrum which is the
second order moment, but tends to manifest in high-order moments [13,14]. Mazin [8] argued
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the effects of the phase relaxation time τp to LWC fluctuations in turbulence. When τp � τturb,
a significant phase change cannot take place; in this case, the LWC is just a passive scalar. However,
when τp � τturb, the supersaturation responds quickly to the ambient turbulent field and attains a
statistically steady state. In both cases, the LWC spectrum obeys k−5/3 scaling. On the other hand,
when τp ≈ τturb, the dynamics of the scalar transfer changes and the k−5/3 spectrum is modified, and
the deviation of the LWC spectrum can be interpreted as the transition from one k−5/3 to another
k−5/3 spectrum. However, how the two spectra match in the wave-number space is not debated.
Jefferey [10] (see also [9,11]) examined the LWC spectrum enhancement at high wave numbers for
rapidly changing random velocity (Kraichnan model [15–17]). A passive scalar such as the LWC
is assumed to be excited by condensation-evaporation, which originates from the axisymmetric
vertical structure of the mean field depending on the vertical coordinate and the vertical turbulent
velocity. The result is an enhanced LWC spectrum, and the transition from k−5/3 to k−1 is found
to occur at the wave numbers as seen in the observations. However, in the authors’ view, it is
questionable that the anisotropy at scales where the k−1 spectrum is observed leads to such a large
enhancement of the LWC spectrum. And use of the random velocity which is delta correlated in
time masks the role of the phase relaxation of the supersaturation relative to the turbulent mixing
time that depends on scale.

In previous studies, the LWC fluctuations have been examined with respect to the measured
LWC spectrum; however, supersaturation has not been considered. Given that supersaturation is
responsible for the growth or decay of cloud droplets through the condensation-evaporation process,
arguments that do not include analysis of supersaturation effects may lack the essential physics
necessary to explain the LWC spectrum. Thus, the problem regarding LWC spectrum modification
has yet to be resolved.

The purpose of the present paper is to answer the questions proposed and to gain insight into the
spectral dynamics of the LWC and supersaturation variances over the entire range of the wave
number. For this purpose, first, by taking a closer look at LWC and supersaturation from the
micrcoscopic viewpoint, we derive the fundamental and simple equations to the problem which
allow theoretical analysis. Second, by using direct numerical simulations (DNSs) and the statistical
theory of turbulence, we study the scaling of the supersaturation and LWC variance spectra.
We stress also a viewpoint that spectral dynamics of scalar in turbulence which has its inherent
characteristic time, such as the phase relaxation time that is independent of scale, poses a new type
of the problem in the turbulent mixing. It is interesting and important to the physics of turbulence
to study where the scaling behavior of the scalar fluctuations is broken and how the spectrum is
modified.

The remainder of this paper is organized as follows. In Sec. II the Batchelor theory is reviewed
as it plays a key role in the analysis, and we examine its performance by comparing the theory
with DNS data. Section III presents the derivations of the governing equations for supersaturation
and LWC. In Sec. IV the equations for the spectra of the supersaturation and LWC variances
are derived. An asymptotic analysis of the spectra and the results are presented in Sec. V for the
supersaturation and in Sec. VI for the LWC. Section VII provides a discussion of the results, and
Sec. VIII summarizes our findings.

II. BATCHELOR’S THEORY

In this section Batchelor’s theory of mixing of passive scalar with a high Schmidt number, Sc =
ν/κ , is reviewed [12]. These ideas are classical, but their understanding is essential to appreciate the
results on cloud turbulence in the following sections, where the complex physics of supersaturation
and droplet condensation is treated in a simplified framework of passive scalars.

Fluctuations of passive scalar θ at scales smaller than the Kolmogorov length η are assumed to
be convected by random straining motion, which is approximately uniform over the domain of size
of η. In local coordinates such that the rate of the strain tensor ei j = (1/2)(∂ui/∂x j + ∂u j/∂xi ) is
diagonal, the velocity field is expressed as u = αx1e1 + βx2e2 + γ x3e3, where the eigenvalues α, β
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and γ are ordered as γ < β < α and ei’s are the corresponding eigenvectors. The equation for θ in
the small blob is given as

∂θ

∂t
+ ∂

∂x1
(αx1θ ) + ∂

∂x2
(βx2θ ) + ∂

∂x3
(αx3θ ) = κ∇2θ. (1)

The scalar blob is quickly squeezed into a smaller size under the fluid motion of γ x3(γ < 0) until
the molecular diffusion balances, and then the equilibrium state is established and characterized by

−|γ | d

dx3
(x3θ ) = κ

d2θ

dx2
3

. (2)

The equation of the two-point correlation function of the scalar is given by

−|γ |r d〈θθ ′〉
dr

= 2κ
d2〈θθ ′〉

dr2
, (3)

where θ ′ = θ (x + re3) and r is the separation distance along the direction of the least eigenvalue
of the rate of the strain tensor [12]. The corresponding equation of the scalar spectrum Eθ in the
statistically isotropic state at small scales can be obtained as [12,15]

|γ | d

dk
kEθ (k) = −2κk2Eθ (k). (4)

Here Batchelor replaced |γ | by C−1
B (ε/ν)1/2 because γ is fluctuating, where CB > 0 is the Batchelor

constant and ε is the mean dissipation rate of the kinetic energy per unit mass. The scalar spectrum
is then easily obtained as

Eθ (k) = CBχθ

(
ε

ν

)−1/2

k−1e−CB(kηB )2
, (5)

where χθ is the mean dissipation rate of the scalar variance and ηB = ηSc−1/2 � η is the Batchelor
length. When kηB � 1, the viscous-convective range exists and Eθ (k) is

Eθ (k) = CBχθ

(
ε

ν

)−1/2

k−1. (6)

It is important to note that when both the Reynolds number and Schmidt number are very high the
inertial-convective range (kL � k � kd = 1/η) and the viscous-convective range (kd � k � kB =
1/ηBs) exist, and the scalar flux injected at kL is constant and equal to �θ = χθ throughout the two
ranges kL � k � kB according to Yaglom’s 4/3 law [13,18–20].

The k−1 spectrum is theoretically valid at wave numbers much higher than kd . However, some
studies have shown that the k−1 spectrum is observed at much lower wave numbers [10,21–24]. For
the moment, we put aside the theoretical condition k � kd and see where k−5/3 and k−1 spectra
match. In the inertial-convective range Eθ (k) is

Eθ (k) = COCχθε
−1/3k−5/3, (7)

where COC is the Obukhov-Corrsin constant [25–27]. Given the requirement that the spectrum of
Eq. (7) matches the spectrum of Eq. (6) at k∗, the transition wave number yields

k∗η =
(

COC

CB

)3/2

≈ 0.038. (8)
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FIG. 1. Compensated spectra of kinetic energy and scalar variances. Red: ε−2/3k5/3E (k); blue:
χ−1

θ ε1/3k5/3Eθ (k) (excited by Gaussian random injection); green: χ−1
q ε1/3k5/3Eq(k) (excited by the mean

uniform gradient) [14]. Collapse of two curves of the scalar spectra except the low wave-number range indicates
the fact that the scaling of the scalar spectrum is not affected by the scalar gradient.

The Obukhov-Corrsin and Batchelor constants are 0.7 and 6.2, respectively, through DNS, as de-
scribed in the following. The computed transition wave number k∗η = 0.038 = (0.7/6.2)3/2 is much
smaller than the condition kη � 1 that the Batchelor theory assumes; rather, it is approximately at
the upper end of the inertial convective range. Indeed, as seen in Fig. 1, the bump features in the
compensated spectra χ−1

θ ε1/3k5/3Eθ (k) and χ−1
q ε1/3k5/3Eq(k) for the variances of passive scalars

θ and q, respectively, and ε−2/3k5/3E (k) for the kinetic energy obtained by DNS begin at wave
numbers very close to k∗η = 0.038, where θ and q are convected by the same isotropic turbulence
and excited by different scalar injection methods that are described below [14].

For COC, we use a DNS with the number of grid points at 40963, Rλ = 803, and Sc = 0.72 [14].
The velocity is maintained by a random force corresponding to Gaussian white noise. θ is excited
by the Gaussian random noise of the Ornstein-Uhlenbeck process, and q by the mean uniform scalar
gradient.

The two compensated spectra collapse well and are horizontal for 0.002 < kη < 0.03, meaning
that Eθ (k) and Eq(k) follow the k−5/3 spectrum, from which the Obkukhov-Corrsin constants are
evaluated as Cθ = 0.725 and Cq = 0.699, respectively, and we take COC ≈ 0.7. The horizontal curves
begin to increase at about k∗η = 0.038, with a slope close to 1/3 that is slightly smaller than
2/3 = −1 + 5/3, which is known as the spectral bump. There is an explanation for the bump
formation, such that one of the legs in the triad interaction is lost, due to the molecular dissipation
[28]. However, it is not certain at this point whether the same physics can be applied to Eq. (8).

The excellent agreement of k∗η = 0.038 with DNS data suggests that turbulent straining motion
is acting on the passive scalar as if the rate of the strain tensor is effectively uniform over the domain
of size 1 � r/η < 1/0.038 if the same mechanisms as the one by Batchelor can be applied to this
domain. Given that the viscosity is irrelevant in this range, we consider that it is not appropriate to
call this wave-number range the viscous-convective range. Alternatively, we refer to this range as
the strain-convective (SC) range in this study. It should be noted that the transition wave number
(frequency) of the LWC spectrum found in field measurements is one order smaller than k∗η =
0.038.

Given that the above DNS for the passive scalar was made at Sc = 0.72, the molecular diffusivity
may introduce some ambiguity in interpretation of the above results. To make the physical setup
simpler and more transparent, an alternative numerical simulation method for computing the scalar
spectrum at an infinite Schmidt number was applied; the details are reported elsewhere [29]. Here
we provide a brief description of the method and the results that are especially relevant for the
present study.
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FIG. 2. Compensated three-dimensional spectra of scalar variance carried by particles χ−1(ε/ν )1/2kEθ (k).
The curves are plotted from top to bottom for increasing DK = τK/τθ , where τθ is the scalar relaxation time
of the particle. The top curve is for Rλ = 387 and the others for 225, respectively. The Batchelor constant
CB = 6.2 is computed for τp = 200. Vertical thin line indicates kη = 0.038.

Scalar transport via temperature, as an example, by monodisperse particles that are convected by
turbulence is assumed to obey the equations

dX j (t )

dt
= u(X j (t ), t ), (9)

Dθp

Dt
= −θp(x, t )

τθ

+ Fθ (X j (t ), t ), (10)

where D
Dt = ∂/∂t + u · ∇, X j (t ) is the position of the jth particle, and θp(X j (t ), t ) is the particle

temperature given by

θp(x, t ) = cp

ρ0c0

Np∑
j=1

mjθ jδ[x − X j (t )], (11)

and τθ is the relaxation time of the particle temperature. Here θ j and mj represent the particle
temperature and mass, respectively, and c0 and ρ0 are the specific heat and density of the fluid,
respectively. cp is the specific heat of the particle, and Np is the number of particles inside a grid cell.
Fθ is the Gaussian random noise, whose spectral support is at low wave numbers. The computation
of Eqs. (9) and (10) is made with the Lagrangian method. The fluid velocity at the particle position
is linearly interpolated and the particle temperature as a continuum is computed at the grid points
of the fluid by the linear interpolation. The spectrum of the fluctuation variance of the particle
temperature is computed using fast Fourier transform analysis, by subtracting the shot noise due
to the discreteness of the particle and by removing the spatial filter effects arising from the linear
interpolation [30]. Thus, the obtained spectrum of the particle temperature (as a passive scalar)
corresponds to that for an infinite Schmidt number.

The DNSs were done with N = 5123 grid points, kmaxη = 1.61 at Rλ = 225 for most of runs and
N = 10243, kmaxη = 1.58 for Rλ = 378. Figure 2 shows the variation in the compensated spectrum
χ−1(ε/ν)1/2kEθ (k) for Damköhler number DK, defined as

DK = τK

τθ

= ((ε/ν)1/2τθ )−1, (12)

where τK = (ε/ν)−1/2 is the Kolmogorov time. At low wave numbers the spectrum is close to k−5/3

and becomes horizontal at around kη ≈ 0.038 when DK is very small (large τθ ), meaning that the
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FIG. 3. Variation of exponent α in Eq. (14) against DK. Straight lines show the slope 2β = 10.6 and 5.38,
respectively.

transition from k−5/3 to k−1 occurs at kη = 0.038. When DK increases, the slope of the compensated
spectrum decreases, as expected from the decay term in Eq. (10); however, the transition point
remains unchanged.

Let us apply the Batchelor theory to the above particle temperature spectrum. The point is that the
velocity field is assumed to be smooth and treated as linear in the local coordinates. The spectrum
equation in the steady state is then given by

1

β

(
ε

ν

)−1/2d

dk
kEθ (k) = − 2

τθ

Eθ (k), (13)

where |γ | in Eq. (4) is replaced by the representative Kolmogorov timescale β−1(ε/ν)−1/2, and
β(> 0) is a positive constant. The solution is given by

kEθ (k) ∝χθ

(
ε

ν

)−1/2

(kη)−2βDK ∝ k−α. (14)

The spectrum obeys the power law, and the slope of kEθ (k) decreases with an increase in DK , which
is consistent with the observation in Fig. 2. The computed exponent α against DK is shown in Fig. 3.
For small DK , the slope of the curve is 2β = 10.6, such that β = 5.3 is close to CB = 6.2. In the
analysis to follow, we use β = CB.

We now return to the Batchelor’s problem. The spectral equation of the passive scalar in the
steady state can be written as

− d

dk
�θ (k) = Tθ (k) = 2κk2Eθ (k), (15)

where �θ is the transfer flux of the scalar variance across the wave number k from the band below
k to the one above it. The above DNS data and arguments seem to strongly suggest that in the upper
end of the inertial-convective range for the passive scalar spectrum, the transfer function can well
be approximated as

− d

dk
�θ (k) = Tθ (k) ≈ − 1

CB

(
ε

ν

)1/2d

dk
kEθ (k). (16)

Although the precise mechanism of the successful approximation is not known, and given the
excellent agreement of the analytical results with DNS data, we will use this approximation in
the latter analysis.
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FIG. 4. Domain of cloud turbulence under the consideration. There is a small cubic box of size Lbox well in-
side a cumulus cloud with characteristics length Lcloud � Lbox. Mean water vapor mixing ratio Qv (z) and mean
temperature T (z) vary along the vertical direction, and the mean gradients �T = dT /dz and �q = dQve/dz are
assumed to be constant over the cubic domain. The local coordinate system x′ is introduced. Inside the cubic
domain, small sphere with radius � centered on x′ is taken for coarse graining of the distribution of the water
droplets.

III. GOVERNING EQUATIONS

In this section, we show how, starting from a microscopic description of a cloud, a discrete
distribution of particles can be treated as a continuum by coarse graining, and how the essential
physical mechanisms governing the spectral dynamics of water vapor and liquid water fluctuations
can be derived. The different assumptions are presented, allowing to arrive at a set of two coupled
scalar equations (40) and (41). These will be the principal result of this section.

We consider a small domain well inside the cloud whose typical size Lbox (say tens of meters)
is much smaller than the whole cloud size Lcloud (about a few kilometers) (see Fig. 4). Also, there
exist uniform mean gradients of the water vapor and temperature, �T = dT /dz and �q = dQv/dz,
respectively, along the vertical direction. The water vapor mixing ratio qv , the liquid water mixing
ratio ql , and the condensation-evaporation rate are defined as

qv (x, t ) = mv

ma
, (17)

ql (x, t ) = ml

ma
= 4πρl

3ρa�3

N�(x,t )∑
j=1

R3
j (t ), (18)

Cd (x, t ) ≡ 1

mair

dml (x, t )

dt

= 4πρlK

ρa�3

N�(x,t )∑
k=1

Rj (t )s(X j (t ), t ), (19)

respectively, where

Rj (t )
Rj (t )

dt
= Kss(X j (t ), t ) (20)

is used [30–32]. Here mv, ma, and ml are the masses of the water vapor, dry air, and liquid water in
a small cell of �3, respectively. ρl and ρa are the densities of water and the dry air, respectively, Ks

is the temperature-dependent diffusion coefficient, N�(x, t ) is the number of droplets in the sphere
with radius � at position x and time t , and X j and Rj are the position and radius of the jth droplet,
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respectively. s is the supersaturation, which is defined by

s = qv

qvs
− 1. (21)

Here qvs is the saturation water vapor mixing ratio at a given temperature and pressure.
Because the liquid water mixing ratio corresponds to the LWC spectrum, we refer to the above

variance spectrum as the LWC spectrum in this study. Unlike air and water vapor, which are gases
as a continuum form, the description of ql differs from the gas phase as the typical number density
of water droplets in cloud is on the order of hundreds to thousands per cubic centimeter.

For the continuum description of ql it is necessary to introduce coarse graining in space with a
certain size � which is defined by

A�(x, t ) = P[A] ≡ 1

N�(x, t )

N�(x,t )∑
j=1

A[X j (t )], (22)

where A is any quantity attributed to a droplet at X j (t ). � needs to be as large as �3 to contain a
sufficient number of droplets. Thus, we assume that � is at least larger than about half a centimeter,
fivefold longer than the typical Kolmogorov length η of 1 mm, but much shorter than the Taylor
microscale that is about 50-fold the Kolmogorov length. The liquid water content mixing ratio
ql (x, t ) as a continuum is then given by

ql�(x, t ) = P[ql ]

= 4π

3

ρl

ρa

N�(x, t )

�3

1

N�(x, t )

N�(x,t )∑
j=1

R3
j (t )

≈ λn�(x, t )R
3
(t ), λ = 4π

3

ρl

ρa
, (23)

where n�(x, t ) is the number density of the droplets; here, the passage from the second line to the
third line replaces the local average of the cubic radius R3 by R

3
the cube of its mean R. Similarly,

the continuum representation of the condensation-evaporation rate Cd is as follows:

Cd�(x, t ) = P[Cd ]

= 4π

3

ρl

ρa

N�(x, t )

�3

1

N�(x, t )

N�(x,t )∑
j=1

dR3
j (t )

dt

= 4π

3

ρl

ρa

N�(x, t )

�3
R

3 3K

R
2

1

N�(x, t )

N�(x,t )∑
j=1

(
Rj

R

)
s(X j (t ), t )

≈ 1

τl
ql�(x, t )s�(x, t ), (24)

where s� is the coarse-grained supersaturation, and Eq. (20) and the approximation (Rj / R) ≈ 1
are used. The timescale τl , defined by

τl = R
2

3K
, (25)

characterizes the condensation-evaporation process and is in proportion to the square of the mean
droplet radius in the domain [33]. It should be stressed also that τl is independent of the scale (wave
number).
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The next step is to derive the equation for ql�(x, t ) as continuum. Let us consider the change in
the liquid water mass in �3. Physical processes contributing to the change in mass are (1) transfer
by flow, (2) molecular diffusion, (3) nucleation, (4) condensation-evaporation, (5) collision and
coalescence, (6) break-up, and (7) the fallout of droplets. Process (1) is expressed as the Eulerian
convective term u · ∇ql�. Number (2) is neglected, as the typical size of droplets is about ten micron
meters, and the Brownian motion of droplets estimated with Einstein’s formula is negligible. For (3),
we assume that the mean supersaturation of the water vapor is zero for simplicity [more arguments
follow after Eq. (35)]; thus, this contribution is eliminated. Point (4) is a key process in the present
study to be included. For (5) and (6), the typical radius of droplets under consideration is about ten
micron meters, such that the contributions of the collision-coalescence and break-up processes are
very small and, thus, are not included. Regarding (7), the removal of droplets due to sedimentation
may be expressed as −ql/τr, where τr is the characteristic time of droplet removal that is constant
and considerably longer than the large eddy turnover time of Lbox/u′, where u′ is the root mean
square velocity of the turbulence within the box [34,35].

We assume that the buoyancy force due to the condensation-evaporation is weak and can be
neglected because Lbox � Lcloud The two scalars qv� and ql� interact with each other but not with
the fluid motion; thus, they are treated as passive scalars for simplicity. Under these conditions, the
fundamental equations are the Navier-Stokes equation for an incompressible fluid and the advection
diffusion equations for qv� and ql� as(

∂

∂t
+ u · ∇

)
u = −∇p + ν∇2u + f u, (26)

∇ · u = 0, (27)

∂qv�

∂t
+ u · ∇qv� = κv∇2qv� − 1

τl
ql�s� + �qu3, (28)

∂ql�

∂t
+ u · ∇ql� = 1

τl
ql�s� − 1

τr
ql�, (29)

respectively.
For convenience, the water vapor mixing ratio qv� is changed to the supersaturation s� for

further analysis. For this purpose we follow the steps used in [36], by using Eq. (21) and the
Clasius-Clapeyron equation for relating the saturation pressure to the temperature. After dropping
the subscript � to be more concise, we obtain the equations for supersaturation and the liquid water
mixing ratio as

∂s

∂t
+ u · ∇s = κs∇2s − J

τl
ql s + �su3, (30)

∂ql

∂t
+ u · ∇ql = 1

τl
ql s − 1

τr
ql , (31)

where �s = �q/qvs and κs is the diffusion constant for supersaturation. Also the equation for the
absolute temperature T is given by

∂T

∂t
+ u · ∇T = κT ∇2T + Lv

cpτl
ql s − g

cp
u3, (32)

where κT is the temperature diffusion constant, cp the specific heat for constant pressure, Lv the
latent heat, and g is the gravitational acceleration. A nondimensional constant J arises from the
variation of qvs through the temperature [36] and

J = P

εes
+ εL2

v

cpRd T 2
, (33)
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where P is the static pressure, ε = Rd/Rv = 0.62, es the saturation pressure, and Rd and Rv are the
gas constants for dry air and water vapor, respectively.

We now define for latter use the relaxation time of the supersaturation τs as

1

τs
= J

Ql

τl
= J (4πKnd R)

(
ρl

ρa

)
. (34)

Here nd and Ql are the means of the number density and the water vapor mixing ratio, respectively.
Let us write the variables as the sum of the mean and fluctuation, as

s = S + s̃, ql = Ql + q̃l , T = T + θ̃ , (35)

where S = 〈s〉, Ql = 〈ql〉, T = 〈T 〉, and 〈〉 denotes the ensemble average. We assume that the
turbulent field is statistically steady and homogeneous and the fluctuations are much smaller than
the means. Substitution of Eq. (35) into Eqs. (30), (31), and (32) leads to the equations for the means
as

dS(t )

dt
= − J

τl
(QlS + 〈q̃l s̃〉), (36)

dQl (t )

dt
= 1

τl
(QlS + 〈q̃l s̃〉) − Ql

τr
, (37)

dT (t )

dt
= Lv

cpτl
(QlS + 〈q̃l s̃〉), (38)

where ∇〈us̃〉 = ∇〈uq̃l〉 = ∇〈uθ̃〉 = 0 via the homogeneity is applied. When J is constant in time
and τr is very large so that the second term of the r.h.s. of Eq. (37) is neglected, it is easily found
from Eqs. (36) and (37) that d (S + JQl )/dt = 0 so that the weighted sum (S + JQl ) is constant
in time. If the fluctuating part 〈q̃l s̃〉 is neglected, Eq. (36) means that S(t ) vanishes at latter times
because Ql (t ) > 0, unless there is injection of the systematic (mean) supersaturation from outside.
Therefore, in this study we assume that S(t ) = 0 and the fluctuating term 〈q̃l s̃〉/Ql can be neglected;
thus, the right-hand side of Eq. (36) vanishes, consistent with S(t ) = 0. A similar argument can
be applied to the right-hand side of (38), so that T (t ) is constant in time. When there exists the
mean uniform gradient �T along the vertical direction, this implies that T = T0 + �T z is constant in
time, where T0 is mean temperature in the box. On the other hand, Eq. (37) implies that 〈q̃l s̃〉/Ql =
τl/τr � 1 is necessary for the steady state to be achieved. As such, we drop the term of 1/τr in the
sense of τl � τr in the present analysis.

Given that ql is positive definite, it is convenient to work with its logarithm as

ql = Ql + q̃l > 0,

log ql = ln Ql + ln(1 + φ),

≈ ln Ql + φ, φ = q̃l

Ql

, (39)

where the fluctuation q̃l/Ql is assumed to be small in the last line. Substituting Eqs. (35) and (39)
into Eqs. (30) and (31), subtracting Eqs. (36) and (37) from the resulting equations, and using the
assumption S = 0 and neglecting the second-order terms in the fluctuations, we obtain the equations
for the fluctuations of the supersaturation s [37,38] and the (normalized) LWC φ as

∂s

∂t
+ u · ∇s = − 1

τs
s + κs∇2s + �su3, (40)

∂φ

∂t
+ u · ∇φ = κφ∇2φ + 1

τl
s, (41)
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where˜of s̃ is again dropped for ease of writing. Also the temperature fluctuation obeys the equation

∂θ

∂t
+ u · ∇θ = κθ∇2θ + �θu3 + Lv

cpτs
s, (42)

where �θ = �T − g/cp.
We observe the following: (1) The supersaturation s is damped at the constant rate 1/τs in

addition to the molecular diffusivity and excited by the turbulent velocity through the mean uniform
gradient �s. On the other hand, (2) the LWC and temperature fluctuations are dissipated only by the
diffusion term, but excited by the supersaturation s at the rates 1/τl for the LWC and Lv/(cpτl ) for
the temperature, respectively, and excited also by �su3 for the temperature.

These facts indicate that the temperature fluctuations affect indirectly s and φ through the
characteristic times τs, τl and the mean gradient for the supersaturation �s = �q/qvs via J , Ks, and
qvs. Therefore, it is reasonable to primarily consider two equations for the supersaturation and the
LWC, and we neglect the temperature fluctuation effects. Equations (40) for the supersaturation and
(41) for the LWC are main results of this section.

Note that the diffusive term in Eq. (41) is now added, based on the following. The properties of
qv� (s�) and ql� (φ�) as continuum below the size � are lost due to the coarse graining, in which
the loss of information appears as memory decay effects, which is well known in nonequilibrium
statistical mechanics [39]. A simple way to represent this is to introduce the effective diffusivity
κφ . The amplitude of the effective diffusivity is estimated as κφ ∼ u�� on the dimensional ground
where u� is the velocity at the scale of �. An estimate of κφ may be obtained from the data of
Ref. [6]. From the turbulence data ε = 8.5 × 10−2 m2 s−3 and ν = 1.33 × 10−5 m2 s−1, we have
u� ∼ (εν)1/4 ≈ 3.2 × 10−2 m s−1 and � = η ∼ 4.1 × 10−4 m, such that the effective diffusivity
is about κφ ≈ 1.3 × 10−5 m2 s−1; this is the same order as the kinetic viscosity and the effective
Schmidt number Scφ = ν/κφ ≈ 1. A similar estimate can be applied to s� in which κs is understood
to be the augmented diffusivity for supersaturation. However, since the wave-number range under
the present consideration is much smaller than the diffusive wave-number range originating from
the above coarse graining, the details of the diffusive effects are irrelevant for the present purpose.
On the other hand, the fluid variables u and p are free from the coarse graining, because the scalars
are assumed to be passive in the present study.

Both equations for s and φ are passive scalar equations convected by the turbulence. Unlike
the conventional passive scalar equations, the equation for s contains a linear damping term whose
timescale is scale-independent. Although τl is the timescale of condensation-evaporation, it is not
the timescale of the dynamics of φ, but it controls the excitation by s.

Based on this discussion, it is important to estimate the characteristic times τl and τs. According
to the data of October 26, 2009, of Ref. [6], the mean diameter of droplets is about 13 μm, the mean
number density is about 275 cm−3, and we have Ql ≈ 2.63 × 10−4, J ≈ 265 at 273 K, and τl ≈ 0.13
s, τs ≈ 1.84 s. For turbulence, using the values of ε and ν, the Kolmogorov time is estimated to be
τK = (ν3/ε)1/4 ≈ 1.25 × 10−2 s. The large-scale L is estimated by ε = 0.4u′3/L, where 0.4 is the
value reported in the literature [40] and L ≈ 13 m, while τL = L/u′ ≈ 9.3 s. From these values, we
obtain the characteristic times normalized by the Kolmogorov time as

τs

τK

≈1.5 × 102,
τl

τK

≈ 1.0 × 101,
τL

τK

≈ 7.4 × 102, (43)

and the characteristic Damköhler numbers are

DK = τK

τs
≈ 6.7 × 10−3, DL = τL

τs
≈ 5.1, (44)

respectively.

110512-11



GOTOH, SAITO, AND WATANABE

IV. SPECTRAL EQUATIONS

In this section, the spectral equations for the supersaturation and LWC variances are derived by
using the LRA theory. The importance of the different timescales is stressed and the wave-number-
dependent Damköhler number is introduced.

We now assume that the Reynolds number is very high and that the fluctuations of turbulent
flow, the water vapor mixing ratio, and the liquid water content are statistically homogeneous, and
the turbulence is further assumed to be statistically isotropic. The spectral densities are defined by

Uu(k, t ) = 1
2 〈ui(k, t )ui(−k, t )〉, (45)

Us(k, t ) = 〈s(k, t )s(−k, t )〉, (46)

Uφ (k, t ) = 〈φ(k, t )φ(−k, t )〉, (47)

where k is the wave vector. Since there exists the mean uniform gradient of the supersaturation
along the vertical direction, the two scalars are statistically axially symmetric and can be expanded
in terms of Legendre polynomials as follows:

QA(k) = QA(k) + Q(2)
A P2(cos θ ) + · · · , (48)

where A stands for s or φ and P2n(cos θ ) is the 2n-order Legendre polynomial [13,19]. However,
given that the isotropy of the scalars is restored at small scales, provided that the Schmidt number is
not too small, the contributions from higher-order Legendre polynomials can be neglected [19,41].
Therefore, we consider only the zeroth order (isotropic part) in what follows. The spectra of the
kinetic energy and the scalar variances per unit mass are defined by

Eu(t ) = 1

2
〈u2(x, t )〉 ≡ 3

2
u′2(t ) =

∫ ∞

0
Eu(k, t ) dk, (49)

Es(t ) = 〈s2(x, t )〉 ≡ s′2(t ) =
∫ ∞

0
Es(k, t ) dk, (50)

Eφ (t ) = 〈φ2(x, t )〉 ≡ φ′2(t ) =
∫ ∞

0
Eφ (k, t ) dk, (51)

respectively, where

Eu(k, t ) = 2πk2Uu(k, t ), (52)

Es(k, t ) = 4πk2Us(k, t ), (53)

Eφ (k, t ) = 4πk2Uφ (k, t ). (54)

The spectral equations for the isotropic parts can be written as(
∂

∂t
+ 2νk2

)
Eu(k, t ) = Tu(k, t ) + Fu(k, t ), (55)(

∂

∂t
+ 2

τs
+ 2κsk

2

)
Es(k, t ) = Ts(k, t ) + Fs(k, t ), (56)(

∂

∂t
+ 2κφk2

)
Eφ (k, t ) = Tφ (k, t ) + Fφ (k, t ), (57)

where TA (A = u, s, or φ) is the transfer function defined by

Tu(k, t ) = 4πk2R〈Nu(k, t ) · u(−k, t )〉, (58)

Ts(k, t ) = 8πk2R〈Cs(k, t )s(−k, t )〉, (59)
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Tφ (k, t ) = 8πk2R〈Cφ (k, t )φ(−k, t )〉, (60)

where R denotes the real part, Nu(k, t ) is the Fourier transform of the convective plus pressure term
for the velocity, and Cs and Cφ are those of the convective terms. Fu is the forcing, and Fs and Fφ are
the scalar injections:

Fu(k, t ) = 4πk2R〈 f u(k, t ) · u(−k, t )〉, (61)

Fs(k, t ) = �s 8πk2R〈u3(k, t )s(−k, t )〉, (62)

Fφ (k, t ) = 1

τl
8πk2R〈φ(k, t )s(−k, t )〉. (63)

Equations (55), (56), and (57) indicate that the external force Fu(k, t ) applied at large scales, say, a
large-scale mean shear, maintains the turbulence Eu(k, t ), which excites the supersaturation Es(k, t )
through the mean uniform gradient by Fs(k, t ). Thus, excited supersaturation fluctuations Es(k)
drive the LWC fluctuations Eφ (k, t ) by Fφ (k, t ). From this observation of the chain of excitations,
we assume in what follows that the turbulent velocity and scalars are in a statistically steady state.

The next step is to obtain a closed set of spectral equations for the above three spectra. For this
purpose, we use the Lagrangian renormalized approximation (LRA), which is a spectral closure
theory fully formulated in the Lagrangian framework [42,43]. The properties of the LRA are that
the procedure is fully systematic, no ad hoc parameters are contained, and the spectra of the
kinetic energy and scalar variance are consistent with the Kolmogorov spectrum with a Kolmogorov
constant of 1.72 and the Obukhov-Corrsin spectrum in the inertial-convective range [42–44].

Although we do not discuss the LRA in detail here, we provide a brief description of the
derivation of the external source terms Fs(K, t ) and Fφ (k, t ) in the LRA in a symbolic way to avoid
complication, as Fs(K, t ) and Fφ (k, t ) are key quantities for obtaining the spectra Es(k) and Eφ (k),
respectively, and because it is essential and useful to understand how the timescales of turbulence
and phase relaxation affect the spectral dynamics. For details regarding the derivation of the LRA
equations, the reader can consult Refs. [42,43].

Let us consider first the evolution of s in Eq. (40) in the Lagrangian frame moving along with a
fluid particle. The supersaturation in the wave-vector space sL(k, t ) at time t is written symbolically,

sL(k, t ) =
∫ t

−∞
GL

s (k, t, ξ )�su
L
3 (k, ξ ) dξ, (64)

where GL
s (k, t, s) is the Lagrangian response function and uL

3 (k, s) is the Lagrangian velocity.
Substituting this into Eq. (62) and splitting the triple correlation into the product of the mean
response function and the Lagrangian two-time correlation of the velocity, we have

Fs(k, t ) = 8πk2�2
s

∫ t

−∞

〈
GL

s (k, t, ξ )uL
3 (k, ξ )uL

3 (−k, t )
〉
dξ

≈ 8πk2�2
s

∫ t

−∞

〈
GL

s (k, t, ξ )
〉〈

uL
3 (k, ξ )uL

3 (−k, t )
〉
dξ . (65)

Here 〈uL
3 (k, ξ )uL

3 (−k, t )〉 is the Lagrangian two-time velocity correlation, and we assume that

〈
uL

3 (k, ξ )uL
3 (−k, t )

〉 = e−(t−ξ )/σ (k)P33(k)Uu(k), (66)〈
GL

s (k, t, ξ )
〉 = e−(t−ξ )/σs (k), (67)
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where Pi j (k) = δi j − kik j/k2 is the projection operator, and the characteristic times σ (k) and σs(k)
are approximately given by

1

σ (k)
= νk2 +

(∫ k

0
p′2Eu(p′) d p

)1/2

, (68)

1

σs(k)
= 1

τs
+ κsk

2. (69)

In the inertial range, the energy spectrum is

Eu(k) = Kε2/3k−5/3, (70)

where K is the Kolmogorov constant [27], and substitution yields the eddy turn over time at k as

σ (k) = λuε
−1/3k−2/3. (71)

In what follows, we set λu = 1 for making the analysis simpler, and when the wave-number-
dependent timescale is intended, the argument k is explicitly written. Note that even for zero
viscosity, the two-time velocity correlation (66) decays in time with the eddy damping rate σ (k) due
to the pressure gradient. On the other hand, when κs is zero, σs(k) is equal to τs which is independent
of the wave number, so that 〈GL

s 〉 decays at the phase relaxation time rate τs. Fundamental idea of
the eddy damping in the Lagrangian spectral theory is described in [42,45,46], and in [43,44] for
the isotropic passive scalar and in [47] for the anisotropic passive scalar under mean scalar gradient.

Similarly, the expression for the LWC source term is given as

Fφ (k, t ) = 1

τ 2
l

8πk2〈φ(k.t )s(−k, t )〉

≈ 1

τ 2
l

8πk2
∫ t

−∞

〈
GL

φ (k, t, ξ )
〉〈sL(k, ξ )sL(−k, t )〉 dξ, (72)

where 〈sL(k, ξ )sL(−k, t )〉 is the Lagrangian two-time correlation of the supersaturation. We assume
that

〈sL(k, ξ )sL(−k, t )〉L = GL
s (k, t, s)Us(k)

= e−(t−ξ )/σs (k)Us(k), (73)〈
GL

φ (k, t, ξ )
〉 = e−κφk2(t−ξ ). (74)

It should be noted that when κφ = 0, the response function 〈GL
φ (k, t, ξ )〉 = 1 does not decay at all,

which is readily seen from Eq. (41). It is this difference in the characteristic times σ (k), σs(k), and
σφ (k) that leads to the different behaviors of the transfer functions in spectral space.

Substitution of Eqs. (66) and (67) into Eq. (65) and of Eqs. (73) and(74) into Eq. (72) yields

Fs(k, t ) = 4

3
�2

s �F (k)Eu(k), (75)

Fφ (k) = 2
τs

τ 2
l

Es(k), (76)

and

�F (k) = σ (k)

1 + Da(k)
for kη � 1, (77)

Da(k) = σ (k)

τs
, (78)
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FIG. 5. Timescales of the triple relaxation �s(k) (red), the eddy turnover time σ (k) (navy), phase relaxation
τs (green), the straining time (ε/ν )−1/2, and the viscous dissipation time (νk2)−1.

where �F (k) is the characteristic time of the supersaturation source term and Da(k) is the wave-
number-dependent Damköhler number.

The spectral equations for Es(k) and Eφ (k) in the steady state by the LRA are as follows:

2

(
κsk

2 + 1

τs

)
Es(k) = Ts(k) + 4

3
�2

s �F (k)Eu(k), (79)

2κφk2Eφ (k) = Tφ (k) + 2
τs

τ 2
l

Es(k), (80)

and the transfer functions are

Ts(k) = 16π2k3
∫∫

�k

d p dq pq(1 − y2)�s(k, p, q)U (q) [Us(p) − Us(k)],

(81)

Tφ (k) = 16π2k3
∫∫

�k

d p dq pq(1 − y2)�φ (k, p, q) U (q) [Uφ (p) − Uφ (k)], (82)

where �k denotes the domain of integrals satisfying k = p + q and y is the cosine of the angle
opposite to the leg p of the triangle with legs (k, p, q). �s(k, p, q) and �φ (k, p, q) are the triple
relaxation time defined by

�s(k, p, q) = σ (q)

1 + 2Da(q)
, (83)

�φ (k, p, q) = σ (q). (84)

It should be noted that in the inertial-convective range, the κsk2 and κφk2 terms in �s and �φ are
neglected, and that only σ (q) controls Tφ (k) and no τs is included. The wave-number dependence
of �s(k) and σ (k) are described in Fig. 5. The wave number ks is defined at which the Damköhler
number becomes unity as

Da(ks) = 1, ε−1/3k−2/3
s = τs. (85)

For k < ks, �s(k) tends to be more affected by τs with a decrease in k; whereas for k > ks, σ (k)
controls the transfer of the supersaturation excitation in the inertial-convective range. In the upper
end of the inertial range, σ (k) is considered to be nearly constant or very slowly decreasing in wave
number until the diffusive time becomes important, as suggested in the DNS data (Sec. III). We note
that the ratio τs/τK ≈ 1.5 × 102 in Eq. (43) implies ksη ∼ (τs/τK )−3/2 ≈ 5.4 × 10−4 which is well
inside the inertial-convective range.
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FIG. 6. Various ranges and spectra. �∞ψs and �∞(1 − ψs ) are inputs for Es(k) in the ranges 1 and 2 due
to the turbulent velocity, respectively. In Range 1, Es1 excites Eφ1 and �φ1 is transferred to the strain convective
range without loss. In Range 2, the flux �s2 is transferred to the strain convective range without loss. In the
strain convective range, E SC

s (k) drives E SC
φ,nh with an amplitude proportional to �s2. The enhanced spectrum E SC

φ2

matches that of Eφ1 at the transition wave number kφ∗η.

V. SCALING OF SUPERSATURATION SPECTRUM

In this section we consider the scaling of the supersaturation spectrum at very large Reynolds
numbers. Because the turbulence is in a steady state, the kinetic energy spectrum in the inertial
range is assumed to be the Kolmogorov spectrum (70). The analysis is made first for Es(k) and then
for Eφ (k). Figure 6 is a map of our analyses.

A. Inertial-convective range

Because the spectrum of the input term of Eq. (79) has excitations at all wave numbers, it is
important to know which wave-number range contributes most to the flux of the supersaturation
variance. Integrating Eq. (79) from kL to k(< ks), where kL is the wave number of the supersaturation
energy range or 1/Lbox, yields

�s(k) − �s(kL ) =
∫ k

kL

∂�(k′)
∂k′ dk′ = −

∫ k

kL

Ts(k
′) dk′

= −2κs

∫ k

kL

k′2Es(k
′) dk′ − 2

τs

∫ k

kL

Es(k
′) dk′ +

∫ k

kL

Fs(k
′) dk′. (86)

In the literature, the mean scalar dissipation rate χ s is used in the expression of the Obukhov-Corrsin
spectrum, as Es = COCχ sε

−1/3k−5/3. However, we stress that the essential quantity characterizing the
inertial-convective range dynamics is the scalar transfer flux �s, as opposed to the mean dissipation
rate χ s, and they are equal in the steady state. It is this understanding on which we analyze the
spectrum [48]. The third term of the r.h.s. of Eq. (86) has the following analytical expression:∫ k

kL

Fs(k
′) dk′ = �∞ψ (x), (87)

ψ (x) = 1 − x + 1

DL
log

(
1

DL
+ x

1
DL

+ 1

)
, (88)
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FIG. 7. Variation of ψ (x) for various Damköhler number and x = Da(k)/DL , where kL is the low end of
the inertial range. The curves are for Da(kL ) = DL = 2, 3, 4, 5, 10, 20, 100, ∞ from the lowest curve.

�∞ = 2K�2
s ετ

2
s DL, (89)

x = Da(k)

DL
=

(
k

kL

)−2/3

, 0 < x < 1, (90)

where DL = Da(kL ). ψ (x) is plotted in Fig. 7 and �∞ corresponds to the maximum supersaturation
variance input as DL → ∞. ψ (x) indicates the cumulative input of the supersaturation variances
from the wave-number range kL to k. Note that ks corresponds to xs = Da(ks)/DL = 1/DL. Figure 7
shows, for example, that when DL = 5 and k = ks(xs = 1/5), ψ (xs) ≈ 0.6, and when DL = 10 and
k = ks(xs = 1/10), ψ (xs) ≈ 0.75 are input between kL and ks. Hereafter we denote ψ (xs) = ψs.

1. Range 1, k < ks

Suppose that Da(k) � 1. The diffusive effects can be neglected in this range and the relaxation
time τs is much shorter than the turbulence time σ (k), such that in Eq. (40), the phase relaxation
term −s/τs quickly responds to �su3 and attains the balance

2

τs
Es(k) = A

4

3
�2

s �F (k)Eu(k), (91)

where A is a proportional constant to be determined via the flux balance given by

0 = − 2

τs

∫ k

kL

Es(k
′) dk′ +

∫ k

kL

Fs(k
′) dk′. (92)

It is shown in the Appendix that the contributions �s(k) and �s(kL ) in Eq. (86) arising from the
convective term Ts(k) are negligible when compared to the above two terms. In this approximation,
the s fluctuations are just a footprint of the turbulence, and the spectrum Es(k) is thus

Es1(k) = 1

3DL
�∞ψsε

−1/3k−5/3 for k < ks, (93)

where ψ (x) is estimated by ψ (xs), which counts the maximum amount of the input for [kL, ks].

2. Range 2, ks < k < ks∗

The wave number ks∗ is the transition wave number from k−5/3 to k−1, as discussed below. We
assume that the turbulent eddy time σ (k) is much shorter than τs, meaning (Da(k) � 1), and the
term of 1/τs is dropped. The turbulent transfer is fully developed and the triple relaxation time is
given by �s(k) = σ (k), such that the scalar turbulence prevails. The convective term conserves the
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supersaturation variance, and a constant flux is transferred toward high wave numbers throughout
this range. Then the Obukhov-Corrsin spectrum (7) is well established with the flux �s2 as Es2(k) =
COC�s2ε

−1/3k−5/3. The flux balance (86) is then given by

�s2 ≡ �s(k) = − 2

τs

∫ k

kL

Es(k
′) dk′ +

∫ k

kL

Fs(k
′) dk′

= − 2

τs

∫ ks

kL

Es(k
′) dk′ +

∫ ks

kL

Fs(k
′) dk′ +

∫ k

ks

Fs(k
′) dk′

≈ �∞(1 − ψs) (94)

for ks � k < ks∗. The terms of the integrations over [kL, ks] in the second line cancel each other
because of Eq. (92), and the contributions of the integral of 1/τs term over [ks, k] is dropped by the
assumption. The spectrum in this range is thus given by

Es2(k) = COC�s2ε
−1/3k−5/3

= COC(1 − ψs)�∞ ε−1/3k−5/3. (95)

It is interesting to observe that Es1(k) and Es2(k) obey the power law k−5/3 and their ratio is

Es2(k)

Es1(k)
= 3DL

1 − ψs

ψs
. (96)

It should be noted that when ks is close to the upper end of the inertial convective range, the
Obukhov-Corrsin spectrum Eq. (95) does not exist, because the wave-number range is too narrow
for the cascade process to develop.

B. Strain-convective range

Now consider the spectrum E SC
s (k) at wave numbers much higher than ks∗. The saturation

variance flux �s2 in Range 2 is transferred to the high wave numbers without loss according to
the 4/3 law. As explained in Sec. II, we substitute the approximate transfer function Ts(k) into
Eq. (79) and obtain

1

CB

(
ε

ν

)1/2d

dk
kE SC

s (k) = −2

(
1

τs
+ κsk

2

)
E SC

s (k) + Fs(k). (97)

The solution is given by the sum of homogeneous and inhomogeneous solutions. The homogeneous
solution corresponds to �s2. The inhomogeneous solution to the input Fs(k) is very small compared
to the homogeneous solution because, as seen in Fig. 7, ψ (x) is almost saturated for 0.01 < x <

0.05, which contributes to Range 2. Thus, the contributions dψ (x) for x < 0.01 in this range are
negligible. The homogeneous solution is of the form

E SC
s (k) = Nsk

−1(kηBs)−2CBDK e−CB(kηBs )2
, (98)

where ηBs = Sc−1/2
s η with Scs = ν/κs and the constant Ns is fixed by the normalization

�s2 = 2κs

∫ ∞

0
k2E SC

s (k) dk. (99)

The spectrum is

E SC
s (k) = CBI (ξ )�s2

(
ε

ν

)−1/2

k−1(kηBs)−2CBDK e−CB(kηBs )2
, (100)

∼ CBI (ξ )�s2

(
ε

ν

)−1/2

k−1(kηBs)−2CBDK , for kηBs � 1 (101)
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to the leading order and I (ξ ) is given by

I (ξ ) = Cξ
B

�(1 + ξ )
, ξ = CBDK, (102)

where �(x) is the gamma function. For kηBs � 1, the spectrum is algebraic as k−1−2CBDK and I tend
to unity as DK → 0.

The transition wave number ks∗ is determined by the condition Es2(ks∗) = E SC
s (ks∗) and is found

to be

ks∗η =
(

COC

CB

)3/2

≈ 0.038 (103)

for DK → 0, which is the same as the case of passive scalar Eq. (8).

VI. SCALING OF LWC SPECTRUM

A. Inertial-convective range

The analysis proceeds in the same way as before. The transfer function (82) does not contain
characteristic time other than the turbulence time σ (k). Thus, the inertial-convective range is well
developed, and Eφ (k) follows the Obukhov-Corrsin spectrum with the transfer flux �φ1 over the
range [kL, kφ∗], where kφ∗ is a transition wave number to be determined later at which the spectrum
changes from k−5/3 to a shallower spectrum.

The transfer flux is found as follows. Integrating Eq. (80) from kL to k(kL � k < kφ∗), we have

�φ1(k) = 2
τs

τ 2
l

∫ k

kL

Es(k
′) dk′

= 2
τs

τ 2
l

(∫ ks

kL

Es1(k′) dk′ +
∫ k

ks

Es2(k′) dk′
)

, (104)

where the diffusion term is dropped. Substituting Eqs. (93) and (95) into Eq. (104), using Da(ks) = 1
and noting that the contribution of the second term is negligible compared to the first term for
kL � ks � k, we obtain Eφ1(k) as

Eφ1(k) = COC�φ1ε
−1/3k−5/3, (105)

�φ1 =
(

τs

τl

)2

�∞ψs for kL < k < kφ∗. (106)

Again �φ1 is constant and consistent with Eφ1 ∝ k−5/3.

B. Strain-convective range

The 4/3 law for scalar turbulence means that the scalar flux �φ1 injected in Range 1 is constant
until the diffusive effect becomes dominant. In addition to �φ1, there exists the additional flux �φ2

from the source term 2(τs/τ
2
l )E SC

s , due to its slow decay in the range kηBs � 1, as seen in Eq. (101).
The equation for E SC

φ in this range is given as

1

CB

(
ε

ν

)1/2 d

dk
kE SC

φ (k) = −2κφk2E SC
φ (k) + 2

τs

τ 2
l

E SC
s (k). (107)

The spectrum E SC
φ,h corresponding to �φ1 that is the homogeneous solution to Eq. (107) is given by

E SC
φ,h(k) = Nφ1�φ1

(
ε

ν

)−1/2

k−1e−CB(kζ B )2
, (108)
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where ζ B = Sc−1/2
φ η with Scφ = ν/κφ and the constant Nφ1 is determined by the normalization

condition

�φ1 = 2κφ

∫ ∞

0
k2E SC

φ,h(k) dk. (109)

We obtain as

E SC
φ,h(k) = CB�φ1

(
ε

ν

)−1/2

k−1e−CB(kζ B )2
. (110)

Now consider the flux �φ2 due to the second term of the r.h.s. of Eq. (107). Integrating Eq. (80)
from kφ∗ to k < kφd = 1/ζ B and substituting Eq. (100) into the integral and changing the variables,
we have

�φ2(k) = 2
τs

τ 2
l

∫ k

kφ∗
E SC

s (k′) dk′

=
(τs

τl

)2
I (ξ )�s2(kφ∗ζ B)−2CBDK , (111)

for kζ B � 1. The spectrum satisfying the normalization condition similar to Eq. (109) [nonhomo-
geneous solution to Eq. (107)] is

E SC
φ,nh(k) = CB�φ2

(
ε

ν

)−1/2

k−1e−CB(kζ B )2
. (112)

Therefore, the spectrum in this range is the sum of two spectra as

Eφ2(k) = CB�φ1

(
ε

ν

)−1/2

k−1

[
1 +

(
τs

τl

)2

I (ξ )
�s2

�φ1
(kφ∗ζ B)−2CBDK

]
e−CB(kζ B )2

for kφ∗ � k.

(113)

C. Transition in Eφ(k)

The transition from k−5/3 to the shallower spectrum occurs at the wave number kφ∗ζ B � 1.
The transition wave number kφ∗ in Eφ (k) is determined by equating Eq. (105) to Eq. (113), by
substituting Eqs. (94) and (106). In the limit of kζ B → 0, we obtain

COC�φε−1/3k−5/3
φ∗ = CB�φ

(
ε

ν

)−1/2

k−1
φ∗ [1 + γ (kφ∗ζ B)−2CBDK ], (114)

γ = I (ξ )
1 − ψs

ψs
. (115)

Therefore, the transition wave number kφ∗ is obtained as the solution of the following equation:

(kφ∗η)2/3 = [1 + γ (kφ∗η)−2CBDK ]−1

(
COC

CB

)
, (116)

where we set Scφ = 1 for simplicity so that ζ B = η. When DK → 0, (kφ∗η)−2CBDK → 1, the above
formula simplifies to

kφ∗η = ψ3/2
s

(
COC

CB

)3/2

= ψ3/2
s (k∗η), (117)

where k∗η = (COC/CB)3/2 is the transition wave number given by Eq. (8). The transition wave
number kφ∗η changes by the factor ψ3/2

s , and we obtain kφ∗η < k∗η ≈ 0.038, because ψs < 1
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FIG. 8. Zeros of equation h(y) = y−2/3+2ξ − y2ξ − aγ , where y = k/k∗, a = (kφ∗η)−2ξ = (COC/CB)−3ξ ,
where, ξ = CBDK. The curves are for ψs = 0.2, 0.3, 0.4, 0.5 from the leftmost to the rightmost, respectively.

as shown in Fig. 7. Notably, the correction term depends on the ratio of the total input of the
supersaturation fluctuation over Range 2 (ks < k) to the one in Range 1 (k < ks). The smaller the
input for Es1 in Range 1 becomes, the bigger the correction is, lowering the transition wave number,
which can be restated as the longer the τs is the bigger the correction becomes.

Let us examine numerically the transition wave number. First, we use the formula Eq. (117).
From the data of Siebert et al. [6], fc ≈ 3 Hz, ε = 8.5 × 10−2 m2 s−3, ν = 1.33 × 10−5 m2 s−1,
U = 4.2 m/s, and u′ = 1.4 m/s, we have kcη = (2π/U ) fcη ≈ 0.0018. As discussed in Sec. III,
DL is approximately 5; however, here we consider the range of DL = 2–5. When we choose xs =
Da(ks)/DL = 1/DL, DL = 2–5 corresponds to xs ≈ 0.5–0.2, and ψs ≈ 0.3–0.4, as read from Fig. 7.
Equation (117) leads to kφ∗η ≈ 0.0062–0.0096, which is of the same order as the measurements, but
about three times larger than the observed value. As a reference, for smaller values of ψs = 1/4, 1/5,
Eq. (116) gives kφ∗η ≈ 0.0048 and 0.0034, respectively.

Now we apply Eq. (116). The approximate solution is numerically obtained as the zero point
of the function h(y) = y−2/3+2ξ − y2ξ − aγ , which is plotted in Fig. 8, where y = k/k∗, a =
(k∗η)−2ξ = (COC/CB)−3ξ , and ξ = CBDK, here k∗ is given by Eq. (8). From the data of Ref. [6],
DK = 7.0 × 10−3 and CB = 6.2 from the DNS, we estimate ξ = 0.04. For the four values of
ψs = 0.5, 0.4, 0.3, 0.2, the transition wave numbers are kφ∗η = 0.012, 0.0078, 0.0047, 0.0023, re-
spectively, and the latter two values are close to the observed value. It is interesting to note the
transition frequency f∗ corresponding to the above wave numbers. From σ (kφ∗) = ε−1/3k−2/3

φ∗ , we
obtain the f∗ = 4.2, 3.3, 2.4, 1.5 Hz, which is close to the transition frequency shown in Fig. 12
of Siebert et al. [6] where the power spectrum deviates from f −5/3 at around f∗ ≈ 2–3 Hz. On the
other hand, the frequency corresponding to the phase relaxation time τs = 2–5 s is about 0.2–0.5
Hz, one order smaller than the above estimates, which means that ks < kφ∗.

VII. DISCUSSION

The supersaturation spectrum has three ranges before the exponential falls off in the diffusive
range. In ranges 1 and 2, Es(k) is of the power law k−5/3; however, the dynamics differs. In the
present theory, the variation in the relative importance of the characteristic time τs and σ (k) is
described by the wave-number-dependent Damköhler number Da(k) of the triple relaxation time �s

of transfer function Ts(k) (see Fig. 5). In Range 1, Es1(k) is excited at each wave number directly
by the velocity component along the uniform mean gradient, due to the short τs; the contribution
of the convective term is negligible. On the other hand, in Range 2, the excitation at each k is
maintained by the cascade process of the turbulent convection, because the turbulence time σ (k)
is shorter than τs. The change in dynamics occurs at the wave number ks, which is determined by
Da(ks) = 1. This is the state Mazin argued phenomenologically [8] for the LWC spectrum; however,
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here our arguments are not for Eφ (k) but for Es(k) (see Fig. 6). The ratio Es2(k)/Es1(k) depends
on 3DL(1 − ψs)/ψs.

The LWC spectrum in the present theory has a unique k−5/3 power-law scaling range. The
supersaturation appears as the driving term in the equation for the logarithm of log ql . If we neglect
the κφ term in Eq. (41), φ is just the sum of the supersaturation with decorrelation time τs along
the Lagrangian trajectory of the droplet; therefore, the convective term is governed only by the
turbulent dynamics, i.e., only σ (k) controls the LWC transfer through the wave-number space. The
characteristic time τl for log ql affects the intensity of excitation by the supersaturation. The effect
of the phase relaxation time of the supersaturation is indirect, and the main source of the transfer
flux of the LWC variance comes from the Range 1.

The variance fluxes of the supersaturation and LWC cascaded in the inertial-convective range are
passed, without loss, in the strain-convective range according to the 4/3 law for the scalar. In the
strain-convective range, the spectrum E SC

s (k) is of the power law k−1−2CBDK that decays slowly as
the wave number increases. The LWC spectrum in the strain-convective range has two flows of the
variance fluxes: one is from �φ1 in the inertial-convective range as the cascaded flux, and the other
is �s2 by the excitation E SC

s (k), such that the flux of the LWC variance in this range is augmented by
(τs/τl )2�s2. This, in turn, leads to the enhancement of E SC

φ and makes the transition wave number
lower (see Fig. 6).

The explanation for the smaller transition wave number in terms of the enhanced spectrum E SC
φ

is the same as that given in the study by Jefferey [10]; however, the physical process differs. In
[10] the anisotropy of the mean field is considered. In contrast, the chain of excitations, first, the
supersaturation excited by the turbulence and, second, the excitation of the LWC by supersaturation
through the cascade and direct input, are the main processes responsible for the enhanced level
of E SC

φ (k) in the present theory. Turbulence has its own timescale depending on the wave number
which is not delta correlated. However, the velocity of rapidly changing in time as an approximation
corresponds to the relatively infinitely long phase relaxation time, i.e., Da(k) = σ (k)/τs � 1. As
discussed in Secs. IV and V, and seen in Fig. 5, the analysis of Jefferey [9–11] with the Batchelor
approximation for the strain-convective range cloud be justified in the above sense.

The present analysis suggests that Es(k) and Eφ (k) are not necessarily the same but may change
in different ways; for example, different transition points may exist from k−5/3 to the shallower
spectrum or the spectra of the supersaturation, and the LWC is to be measured independently.

Among the assumptions introduced in the present analysis, two assumptions are of note. The first
one is that at the scales corresponding to the high end of the inertial-convective range, the turbulence
acts as if the rate of strain is effectively uniform. In this case, the Batchelor approximation (16) to the
transfer function can be used. Originally, the above approximation was introduced by Batchelor [12]
for a large Schmidt number and was theoretically justified only for kη � 1. However, it has been
confirmed numerically that the theoretical prediction k∗η = 0.038 is in excellent agreement with
the DNS data. Unfortunately, we cannot explain these results; however, it is an important problem
in the fundamental physics of turbulence and should be investigated further.

The second assumption of note is the neglect of the second-order term in the fluctuations, 〈q̃l s̃〉
in Eq. (30) by assuming their smallness. Therefore, the present theory is a linear theory. When the
second-order terms are included, it is expected that the interaction between q̃l and s̃ may generate
a spectral transfer from high to low wave numbers. Indeed, in the DNS of the cloud turbulence by
Saito and Gotoh [30], their Figs. 8 and 9 show that the enhancement of the water vapor spectrum
Eq(k, t ) initially begins in the diffusive range and then propagates toward low wave numbers over
time, although it is not certain as to whether the propagation ceases at certain wave numbers. This
observation suggests that the inclusion of the second-order term may lead to a further shift of the
transition point toward lower wave number.

Finally, we consider the effects of temperature. In the present study, the buoyancy force is
neglected so that the scalars, the supersaturation, LWC and temperature are passive. In this situation,
the temperature fluctuations is simply the third passive scalar with excitation by the mean uniform
gradient �θ and the supersaturation (Lv/cpτs)s in Eq. (42). Therefore, the steady spectrum Eθ (k)
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would be similar to that of Eφ (k), one k−5/3 scaling in the inertial convective range and nearly
k−1 scaling in the strain-convective range. The effects of the temperature on the supersaturation
and LWC via the constants τs, τl , and �s are indirect and small, we consider that the results
remain unchanged in the present setup. When the buoyancy force is included, the physics becomes
complicated. However, when the length scales of turbulence under the consideration are smaller
than the Bolgiano length LB = ε5/4χ

−3/4
θ (g/T0)−3/2, ksLB � 1, it is expected that the scaling of

Eu(k), Es(k) and Eφ (k) is valid [49,50].

VIII. SUMMARY

We theoretically analyzed the variance spectra of the supersaturation and LWC with the help
of DNSs. We showed that the variance spectrum of the scalar, which has its own characteristic
time and is carried by the particles without the inertia corresponding to an infinite Schmidt number
scalar, has the k−5/3 and k−1−2CBDK power-law ranges. Transition occurs at the wave number k∗η ≈
0.038, which is in good agreement with theoretical predictions, in terms of the extended Batchelor
approximation for the transfer function of the passive scalar.

The equations for the supersaturation and LWC with continuum expression for the condensation-
evaporation rate, which is corpuscular from a microscopic perspective, are derived by coarse
graining. The spectral equations of the supersaturation and the LWC variances are derived using
the LRA, which is based on Lagrangian dynamics. The spectral equations indicate the chain of
the excitations of scalars: first, the excitation of the supersaturation by turbulence, and second
supersaturation driving the LWC. The wave-number-dependent Damköhler number determines the
transfer of the supersaturation variance in wave-number space. Asymptotic analysis of the transfer
flux of the variance of the supersaturation revealed that there exists two k−5/3 ranges in the inertial-
convective range depending on whether or not Da(k) > 1. The crossover of the two ranges occurs
at ks, defined by Da(ks) = 1. The ratio of amplitudes of the two spectra depends on the large-scale
Damköhler number and the ratio of the supersaturation inputs in the two ranges. The transition of
the supersaturation spectrum from k−5/3 to a shallower spectrum occurs at k∗η = ks∗η ≈ 0.038.

By applying the same asymptotic analysis to the scalar transfer flux for the LWC variance, we
have shown that the LWC spectrum has one k−5/3 power-law range and one shallower spectrum
range; they match at the transition wave number kφ∗, which is a function of the ratio of the
supersaturation inputs in the two ranges and is dependent on the product of the Batchelor constant
and Damköhler number DK corresponding to the Kolmogorov time. Using the observation data
measured from the mountain top, we found that the transition wave number in the present theory is
close to the observed value.

The present results are based on the asymptotic analysis of the spectral equations so that the
computed value of the transition wave number for the LWC spectrum is to be understood qualita-
tively. However, the physics generating the low-transition wave number for the LWC spectrum are
explained as a two-step excitation, consisting of supersaturation driven by turbulence and the LWC
excited by supersaturation. For a more precise comparison and deeper understanding, numerical
integration of the spectral equations is necessary. The explanation of the success of the Batchelor
approximation for the transfer function at much lower wave numbers than the theoretical condition
is important and requires closer examination. The extension of the present theory to the nonlinear
regime, with the inclusion of the second-order term q̃l s̃, is also an important issue. Currently, this
work is in progress.
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APPENDIX: TRANSFER FLUX IN RANGE 1

Substituting Uu(k) = (2π )−1Kε2/3k−11/3 and Us = Ak−a (A > 0, a > 0) into Eq. (81) and using
the fact that �S (k) = τ/2 and �F (k) = τs in this range, we have

Ts(k) = 4πKAτsε
2/3k10/3−aJ (a), (A1)

J (a) =
∫∫

�′
d p̂ dq̂ p̂q̂(1 − y2)q̂−11/3( p̂−a − 1), (A2)

where p̂ = p/k, q̂ = q/k and �′ is the domain Max(1 − p̂, p̂ − 1) < q̂ < p̂ + 1, and the integral
converges and J (a) is finite. Substituting Eq. (A1) into Eq. (79), we have

−4πKAτsε
2/3J (a)k10/3−a = −Es(k) + 2

3
�2

s τ
2
s Eu(k). (A3)

Integrating both sides, we obtain an estimate for the flux as

4πKAτsε
2/3 J (a)

13
3 − a

k13/3−a
L = −

∫ k

kL

Es(k
′) dk′ + 2

3
�2

s τ
2
s

∫ k

kL

Eu(k′) dk′

to the leading order. When a = 11/3 and kL � k < ks, the left-hand side is O(k2/3
L ), whereas

the right-hand-side terms are O(k−2/3
L ) such that the contributions from the transfer function are

negligible compared to the other two terms.
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