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Spectrogram analysis of surface elevation signals due to accelerating ships
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Spectrograms provide an efficient way to analyze surface elevation signals of ship
waves taken from a sensor fixed at a single point in space. Recent work based on
a simplified model for the ship’s disturbance suggests that matching the spectrogram
heat-map patterns to a so-called dispersion curve has the potential for estimating of
properties of a steadily moving ship, such as the ship’s speed and closest distance to the
sensor. Here we extend the theory behind the dispersion curve so that it can be applied
to ships accelerating along arbitrary paths and demonstrate how acceleration affects the
structure of the associated spectrograms. Examples are provided for a simple model of
a ship accelerating/decelerating in a straight line or traveling in a circle with constant
angular speed. We highlight a problem with nonuniqueness of the dispersion curve when
comparing ships moving along different paths. Finally, we validate the new dispersion
curve against experimental results of ship models accelerating in a finite depth basin. Our
work will provide a basis for more comprehensive studies that extend the simplified model
to take into account the shape of the hull in question.

DOI: 10.1103/PhysRevFluids.6.104803

I. INTRODUCTION

A difficult problem in water wave theory is to measure the surface elevation at a single point in a
shipping channel or open water and use only that data to deduce various properties of ships that pass
by [1]. The properties we have in mind include the ships’ velocities and distances from the sensor,
the energy in each ship’s wake, and the shape of the hull of each ship. The possible applications
of this type of research are numerous. For example, predicting the energy from ship wakes in
a shipping channel using only data from a fixed sensor can provide valuable information about
ongoing shoreline erosion or possible damage to moored vessels [2–4]. Other applications relate
to remote monitoring of waterways to determine whether vessels are complying with regulatory
or operating conditions or even monitoring of illegal fishing boats or other unauthorised entry
vessels.

From a mathematical perspective, this problem requires a time-frequency analysis of the given
wave signal with a view to decoding the frequency spectrum in terms of recognisable contributions.
The tool we employ to achieve this goal is the spectrogram, which uses short-time Fourier trans-
forms to decompose each wave signal from the fixed sensor into a time-frequency heat-map. In
recent times, some success has been achieved in using spectrograms to identify different features
of ship wakes (e.g., their transverse and divergent waves) observed in real shipping channels and in
experimental towing tanks [2,3,5–13]. The theory for this line of enquiry has been almost entirely
for steadily moving ships [1,3,5,8], with very brief studies of accelerating ships moving in one
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direction [1,5]. In this paper, we develop a new methodology to use spectrograms to analyze the
signal produced by accelerating ships moving along a general path.

For steadily moving disturbances, there have been many theoretical studies that aim to predict the
details of the wake, using both linear potential theory [14,15] and nonlinear frameworks [16–18],
with simple approximations for ship hulls (e.g., pressure distributions [19–27]) or more complicated
models [28–30]. In the linear regime, we can often represent the exact solution for these steady
problems in integral form, with the method of stationary phase providing a nice description of the
far field, including transverse and divergent waves. On the other hand, there are far fewer theoretical
studies using linear water wave theory of unsteady ship waves. For unsteady motion in a straight line,
the existing studies include results for either impulsively started disturbances [14,31] or disturbances
applied with a prescribed acceleration profile [32–34]. For vessels moving along arbitrary paths,
there is a discussion in Stoker [35], for example, or notable recent work in Ref. [34], where surface
elevation profiles were produced for disturbances moving in a circular arc in a shear current. The
current paper adds to the small body of literature on accelerating ship waves.

We begin our study in Sec. II by briefly reviewing the key results for computing spectrograms
of steady ship wakes [1,8]. In particular, by employing an example with a Gaussian pressure
distribution applied to the free surface, we write down an exact solution for the surface elevation
using linear potential theory and then present a spectrogram computed by taking a cross section of
the ship wake in the direction of flow (the corresponding wave signal is the same as that generated
at a single point as the ship travels steadily past). The region of high intensity in the spectrogram
is shown to be very well approximated by the linear dispersion curve found using the dispersion
relation. The role of transverse and divergent waves is highlighted.

In Sec. III we consider a disturbance moving along an arbitrary path and use the method of
stationary phase and geometric arguments to determine the location of the relevant dispersion curve.
While we are concerned with linear water wave theory, the derivation is written in such a way as to
hold for an arbitrary dispersive medium. In Sec. IV we provide the exact linear solution for the free-
surface height at a fixed sensor due to Gaussian pressure distribution applied to the surface, moving
along an arbitrary path. This pressure distribution is a disturbance that represents a moving ship.
The ideas are illustrated via examples of spectrograms for a disturbance accelerating/decelerating
in one direction and a disturbance turning in a circle. We close that section by providing an example
of an accelerating disturbance and a turning disturbance that have the same dispersion curve. This
result acts to highlight the challenges involved when attempting to uniquely identify properties of
ships via surface elevation data collected at a single point. In Sec. V we extend the theory to apply
to a finite-depth channel and then present experimental results from a towing tank to show how well
the theory transfers to the laboratory. Finally, we discuss our results in Sec. VI.

II. SPECTROGRAMS OF STEADY SHIP WAKES

For the theoretical aspects of this paper, we are focused on linear surface gravity waves generated
by an axisymmetric pressure distribution applied to the surface and moving along some trajectory
X(t ) = (X (t ),Y (t )). The pressure patch we consider is a Gaussian distribution of strength P0 and
characteristic length L. We nondimensionalize our problem by scaling speeds by a representative
velocity U , lengths by U 2/g, and time by U/g, where g is acceleration due to gravity. Using
these variables, the dimensionless pressure is given by p(x − X (t ), y − Y (t )), where p(x, y) =
ε exp[−π2F 4(x2 + y2)] is the Gaussian, ε = P0/ρU 2 is the dimensionless pressure strength, and
F = U/

√
gL is the Froude number. The use of applied pressure distributions to act as a simple

proxy for a ship is widespread in physics [19–27,36,37]. While such a basic model is unable to
capture the effects of the shape of a given ship hull, it allows us to study the key features of ship
waves in the time-frequency domain [1,3,5,8], which is the goal of this work.

To illustrate the key ideas that support the application of spectrograms to analyze ship wave
patterns, we begin by considering the case in which the Gaussian pressure distribution is moving
steadily in one direction with unit dimensionless speed [1]. Supposing the pressure moves along the
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(a) Free surface (b)  Spectrogram

FIG. 1. (a) A plan view of the free-surface height for steady flow past an applied Gaussian pressure
distribution with F = 0.7 at the time t = tc, which is when the center of the distribution is closest to the sensor
(represented by the black dot). (b) The signal detected by the sensor placed rmin = 35 from the sailing line
and its associated spectrogram. The black curve is the classical dispersion curve which predicts the location of
the highest intensity region, including the constant-frequency mode around ω = 1, the rising-frequency mode
around ω = (t − tc )/2rmin, and the fold where these two modes meet.

path (X (t ),Y (t )) = (x0 + t, y0), the dimensionless solution for the surface elevation is [14]

ζ (x, y, t )

= −p(x − (x0 + t ), y − y0)

+ 1

2π2

∫ π/2

−π/2

∫ ∞

0

k2 p̃(k, ψ ) cos(k[|x − (x0 + t )| cos ψ + (y − y0) sin ψ])

k − k0
dk dψ

+ H[−x + (x0 + t )]

π

∫ π/2

−π/2
k2

0 p̃(k0, ψ ) sin{k0[[x − (x0 + t )] cos ψ + (y − y0) sin ψ]} dψ, (1)

where p̃(k, ψ ) = ε exp[−k2/(4π2F 4)]/(πF 4) is the Fourier transform of the pressure distribution,
H (·) is the Heaviside function and the path of integration with respect to k is taken below the pole
k = k0, where k0 = sec2 ψ . A plan view of a wake pattern for this solution is provided in Fig. 1(a),
computed for the representative value F = 0.7. The qualitative features of this V-shaped steady
wake are well known. For example, the transverse waves appear with crestlines that are roughly
perpendicular to the direction of flow, while the divergent waves have crest lines that appear at an
angle on the periphery of the wake. A key observation is that these broad features are common to
wakes behind all steadily moving disturbances, whether the disturbance is an applied pressure, a
waterborne vessel, or even a duck swimming in one direction. This is one of the reasons that the
problem of deducing properties of ships from a subset of their wake is so difficult.

We now suppose there is a sensor located at the origin, a dimensionless distance rmin = |y0| from
the sailing line. The fixed sensor measures the wave elevation as the pressure patch travels past,
giving rise to the wave signal s(t ) = ζ (0, 0, t ), which is also plotted in Fig. 1(b) (top panel) for
rmin = 35. The spectrogram data for a signal s(t ) is given by the square magnitude of the short-time
Fourier transform

S(t, ω) =
∣∣∣∣
∫ ∞

−∞
h(τ − t )s(t )e−iωτ dτ

∣∣∣∣
2

,

where the window function, h(t ), is an even function with compact support. In this paper we use
the Blackman-Harris 92 dB window function [38]. All spectrograms are plotted on the scaled axis
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((t − tc)/rmin, ω), where tc and rmin are the time and distance for when the ship is closest to the
sensor, that is min[r(t )] = r(tc) = rmin, where r(t ) is the distance from the sensor to the ship.

The spectrogram for the signal detected by a sensor at rmin = 35 from the sailing line of a
steadily moving applied pressure distribution is presented in Fig. 1(b) (bottom panel), where the
color scheme indicates the magnitude of the spectrogram data on the log10 scale. This heat map
exhibits a clear region of high color intensity that can be separated into three main parts. The
first is the constant-frequency mode (the roughly horizontal component), indicating the presence
of transverse waves. The second is the rising-frequency mode (or sliding-frequency mode, which
increases with time), caused by the divergent waves. Finally, these two modes meet at a fold, which
represents the cuspline.

Also presented in Fig. 1(b) (bottom panel) is the linear dispersion curve (solid black curve)
[1]. This curve, calculated through the use of geometric arguments on wave propagation together
with the dispersion relationship, predicts the frequency of a ship wave arriving at the sensor at a
given time for a localized disturbance. We can see from Fig. 1(b) that the linear dispersion curve
does an excellent job of indicating the location of high color intensity in the spectrogram, and
therefore provides a useful tool for associating features of spectrograms to properties of ships (or
disturbances) that created the wave signal in question. In particular, the dispersion curve successfully
predicts the location of the constant-frequency mode that approaches ω = 1 for large (t − tc)/rmin,
the rising-frequency mode that asymptotes to the line ω = (t − tc)/(2rmin), and the fold at
((t − tc)/rmin, ω) = (2

√
2,

√
6/2), corresponding to the well-known Kelvin wake angle

arctan (1/
√

8). One of the key outcomes of the present study is to extend this linear dispersion
curve to examples for which the ship is no longer moving with constant velocity.

III. DISPERSION CURVES FOR UNSTEADY MOTION

In this section we develop our theoretical results for disturbances moving along arbitrary paths.
In Sec. III A we present the exact solution for the surface elevation due to moving disturbance. This
solution allows us to simulate wave elevation signals measured at a single point and visualise the
wave frequencies via a spectrogram. In Sec. III B we apply the method of stationary phase to the
exact solution to derive the classical dispersion curve, which predicts the location of the highest
intensity color in the spectrogram. We also consider end-point contributions to the integral, which
lead to curves we call start-point and final-point dispersion curves. Alternative arguments to derive
these dispersion curves are provided in Sec. III C; these arguments are based in part on preliminary
ideas outlined in Ref. [1].

A. Signal produced by a pressure moving along an arbitrary path

In dimensionless variables, suppose we have a stationary sensor at the origin and a moving
disturbance whose relative position to the sensor and velocity are given by X(t ) and X′(t ) = U(t ),
respectively. The associated ship speed is given by U (t ) = |U(t )|, which is of order one. As with
any dispersive medium, we can define the dispersion relation, phase and group velocities as

ω = 	(k), cp = 	(k)

k
, cg = d	(k)

dk
, (2)

respectively, where ω is the wave frequency, 	(k) is the wave function, and k is the wave number.
Our focus in this paper is on linear water wave theory, for which 	(k) will depend on whether we
assume infinitely deep water [	(k) = √

k] or take into account a bottom topography [for a channel
of constant depth, 	(k) =

√
k tanh(k/F 2

H ), where FH = U/
√

gH is the depth-based Froude number
and H is the dimensional water depth]. However, we shall keep 	(k) general in this section to cover
these and other possibilities.
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Following Ref. [35], we construct the surface elevation of a moving disturbance to be the
superposition of pressure pulses applied along the ship’s path X(t ), giving

ζ (x, t ) =
∫ t

0
ζp(r(x, τ ), θ (x, τ ), t − τ ) dτ, (3)

where

ζp(r, θ, t ) = − 1

4π2

∫ ∞

0

∫ π

−π

k2

	(k)
p̃(k, ψ ) sin [	(k)t]eikr cos(θ−ψ ) dψ dk, (4)

is the surface elevation for a pressure impulse in polar coordinates (x = r cos θ, y = r sin θ ),
r(x, τ ) = |X(τ ) − x| is the radial distance between the center of the pressure and a point on the
surface, θ (x, τ ) = cos−1[−(X − x) · U/rU ] is chosen under the assumption that the “front” of the
pressure distribution, p(x, y), is located on the positive x axis and will be orientated to point in
the direction of travel when moving along the path. For completeness the derivation of (4) is given
in Appendix A. The above integral can be used to generate a wave signal cause by an impulsively
switched-on pressure distribution by evaluating (3) at the origin s(t ) = ζ (0, t ), where the sensor is
situated.

B. Method of stationary phase

To construct the linear dispersion curve as a multivalued function of the horizontal time axis of
the spectrogram, t , we determine the important frequency values ω for a given value of t . We begin
by rearranging the signal function (3) by separating the oscillating and nonoscillating components,

s(t ) =
∫ t

0

∫ ∞

0

∫ π

−π

A(k, ψ )[eig1(k,ψ,τ ) − eig2(k,ψ,τ )] dψ dk dτ, (5)

where A(k, ψ ) is the nonoscillating amplitude function and g1,2(k, ψ, τ ) = kr(τ ) cos(θ (τ ) − ψ ) ±
	(k)(t − τ ) is the phase function. Note we are simplifying our notation by setting r(τ ) = r(0, τ ),
θ (τ ) = θ (0, τ ), since we are concerned with measuring our signal at the sensor, which we have
fixed to be at the origin.

For a given path of the ship, there will be a characteristic (dimensional) acceleration, a say,
which will lead to a dimensionless parameter α = a/g. For the stipulated velocity of the ship to
be dimensionally correct, it must be of the form U(t ) = function (αt ), where the function is an
order-one quantity. Assuming that α � 1, which is the physically realistic limit, then this ansatz for
the velocity implies the position vector [and therefore r(t )] is O(1/α). Therefore, by introducing
a shorter timescale t̃ = αt in (5), we see the integral is in the appropriate form for the method of
stationary phase, provided α � 1. In practice the method appears to work quite well even when α

is not small.
Following the methodology of stationary phase for multiple integrals [35,39], the main contribu-

tion to the integral (5) occurs at the stationary points, namely when all three partial derivatives of
g1,2 vanish. The relevant partial derivatives are

∂g1,2

∂ψ
= kr(τ ) sin[θ (τ ) − ψ] = 0, (6)

∂g1,2

∂k
= r(τ ) cos[θ (τ ) − ψ] ± 	′(k)(t − τ ) = 0, (7)

∂g1,2

∂τ
= kr′(τ ) cos[θ (τ ) − ψ] − kr(τ ) sin[θ (τ ) − ψ]θ ′(τ ) ∓ 	(k) = 0, (8)

where the prime indicates a derivative of the function with regard to the argument. Note we are only
interested in the stationary points and do not require the approximation itself. From Eq. (6) we have
ψ = θ (τ ) which, when substituted into (7) and (8), gives the relations

r(τ ) ± 	′(k)(t − τ ) = 0, kr′(τ ) ∓ 	(k) = 0, (9)
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respectively. Equations (9) can be rearranged and further simplified by assuming that we are only
interested in positive group and phase velocities,

cg(k) = r(τ )

t − τ
, (10)

cp(k) = −r′(τ ), (11)

where cg is the group velocity and cp is the phase velocity. Equations (10) and (11) can be taken
simultaneously to give solutions of interest τ = τ j and k = k j for j = 1, . . . , n (for surface gravity
waves, n = 0, 1 or 2, depending on whether the sensor is situation outside, on, or inside the caustics
at a given time). The values k j are then used to give the frequency location, ω, of color intensity
on the spectrogram using the dispersion function (2). The curves generated by these solutions of
interest are the unsteady analog to the steady dispersion curve derived in Ref. [1] [and presented in
Fig. 1(b)].

We consider two additional contributions of interest, namely those from the start time t = 0 and
the final time t = t f . According to the method of stationary phase, these end-point contributions are
formally smaller than those associated with the stationary points (where partial derivatives of g1,2

vanish), however in certain instances (for example, when the dimensionless measure of acceleration
is large) they help explain unexpected features in the time-frequency domain. For these end-point
contributions, we say they occur at t = τe, so that at the start and final times, we have τ = τe = 0
and τ = τe = t f , respectively; in both cases, the relevant k is given implicitly through (10) and
the frequency is then computed via by the dispersion function (2). These contributions therefore
correspond to frequencies ω as a function of time that can be plotted on top of the spectrograms. The
two such curves on each spectrogram will be referred to as the start-point and final-point dispersion
curves, respectively (these will be colored red in our figures). Note that if the ship is still moving at
t = t f then the final-point dispersion curve’s frequency is ω = 0.

It is worth clarifying the physical interpretation of these start-point and final-point contributions.
First, the start-point contribution is equivalent to that due to a single pulse of a pressure distribution
p, centered at X(0), applied at t = 0, which emits waves of every wave number, each moving at a
wave-number-dependent speed. Low-frequency waves that travel faster than the ship will arrive at
the sensor before the actual wake does. For ships moving with large acceleration, these frequencies
are picked up by spectrograms. Similarly, the final-point contribution is equivalent to a negative
pulse of a pressure distribution centered at X(t f ), applied at t = t f ; for gravity waves propagating on
an infinitely deep fluid, this contribution gives rise to a dispersion curve that is a line with slope 1/2.
For this final-point contribution, the frequencies may be observable in the time-frequency domain
for decelerating ships, especially if the rate of deceleration is high.

C. Geometric arguments

It is possible to use geometry to interpret the different dispersion curves in terms of physical
properties for a better understanding of how the disturbance influences the wave elevation signal.
By referring to the schematic in Fig. 2 we infer that a ship moving along an arbitrary path (dotted
curve) with velocity U will generate wave packets traveling with group velocity cg [35]. We can
define a dispersion curve parametrically by assuming that the time a wave packet arrives at the
sensor, t , is given by the time the wave packet was generated, τ , plus the time taken for the wave
packet to travel from the ship to the sensor. The frequency of the wave packet is then given by the
dispersion relation (2). That is, each dispersion curve is given by

(t, ω) =
(

τ + r(τ )

cg(k)
,	(k)

)
, (12)

where the time coordinate is equivalent to (10).
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FIG. 2. A schematic of a ship (gray object) traveling along an arbitrary path (dotted curve) with velocity
U. A sensor is located at S where r is the radial distance from sensor to the ship and ψ is the angle between
the sailing line and the direction to the sensor. Waves generated by the ship travel with phase velocity cp and
group velocity cg. The right angle triangle between U and cp is a consequence of (11).

In order to derive the classical dispersion curve, we rewrite (11) as

cp = U cos(ψ ), (13)

where

ψ = cos−1

(−X · U
rU

)
(14)

is the angle between the sailing line and direction to the sensor (Fig. 2). We can then use (13)
to define the in-phase wave number k j as a function of the wave packet generation time τ and,
therefore, the classical dispersion curve can be defined as

(t (τ ), ω(τ )) =
(

τ + r(τ )

cg[k j (τ )]
,	[k j (τ )]

)
for 0 � τ � t . (15)

Now turning to the additional dispersion curves, we recall that the start-point and final-point
contributions can be thought to be due to a pulse disturbance (that is, a disturbance that produces
waves of all wave numbers k at a single instance) at the ship’s location when it starts and
finishes its movement. As such, the start-point and final-point dispersion curves can be expressed
parametrically by

(t (k), ω(k)) =
(

τe + r(τe)

cg(k)
,	(k)

)
, for k � 0, (16)

where here τe = 0 and τe = t f , respectively.

IV. ACCELERATING SHIPS ON AN INFINITELY DEEP BODY OF WATER

For the linear ship wave examples we consider here, we apply the axisymmetric pres-
sure distribution, p(x, y) = ε exp[−π2F 4(x2 + y2)], whose Fourier transform is given by p̃(k) =
ε exp(−k2/4π2F 4)/(πF 4). Simplifying (4) for an axisymmetric pressure distribution gives

ζp(r, t ) = − 1

2π

∫ ∞

0

k2 p̃(k)

	(k)
sin [	(k)t]J0(kr) dk, (17)

where J0(x) is the Bessel function of the first kind of order zero.
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In order to remove the effect of impulsively switching on the pressure distribution we assume the
pressure distribution has been stationary at its starting location for all time t < 0. The equations for
this initial disturbance are

d2ζ̃i

dt2
+ 	(k)2ζ̃i = 0, (18)

ζ̃i|t=0 = − k p̃(k)

	(k)2
, (19)

d ζ̃i

dt

∣∣∣∣
t=0

= 0, (20)

where ζ̃i is the Fourier transform of the surface elevation due to the initial disturbance. Solving
(18)–(20) and inverting the Fourier transform gives

ζi(r, t ) = − 1

2π

∫ ∞

0

k2 p̃(k)

	(k)2
cos (	(k)t )J0(kr) dk. (21)

We can now consider the surface elevation of a moving ship to be the superposition of the initial
disturbance and the pressure pulses applied along the ships path X(t ), giving

ζ (x, t ) = ζi(r(x, 0), t ) +
∫ t

0
ζp(r(x, τ ), t − τ ) dτ, (22)

recalling that the signal at the sensor is given by s(t ) = ζ (0, t ), where r(x, t ) = |X(t ) − x|. For the
remainder Sec. IV we will only study infinite-depth gravity waves so that 	(k) = √

k (finite-depth
examples will be considered in Sec. V).

A. Ship accelerating in a straight line

The first example we will consider is a ship accelerating in a straight line represented by

X(t ) =
(

x0 +
∫ t

0
u(τ ) dτ, y0

)
, U(t ) = (u(t ), 0), (23)

where the ship’s starting location is positioned at the point (x0, y0) relative to the sensor, and u(t ) is
the ship’s speed in the positive x direction given by

u(t ) = erf

(√
παt

2

)
, (24)

where α is the initial dimensionless acceleration. As an example, wave patterns for disturbances
traveling with velocity (24) are shown in Figs. 3(a) and 3(b). Here F = 0.7 and α = 0.01. These
plots show that, even though the disturbance is accelerating, the wake still exhibits the characteristic
transverse and divergent waves that are observed for steady ships, with shorter wavelengths toward
the end of the wake. The effect of acceleration is to bend the edges of the V-shaped pattern toward
the centreline.

Figure 3 shows the spectrogram produced by the ship for α = 0.01, 0.1, 0.25,∞ (α = ∞ refers
to an impulsively accelerated ship), where the (black) classical and (red) start-point dispersion
curves are overlaid. For this example, the final-point dispersion curve has a frequency of zero and so
is not present. The classical dispersion curve is comprised of two branches in the same way as the
uniform-velocity version presented in Fig. 1(b). Following the terminology used with steady ship
wakes [1], we refer to the lower (upper) branch of the classical dispersion curve as the transverse
(divergent) branch due to its relationship with the transverse (divergent) waves. Interestingly, if we
were to attempt an analogous classification here and define a transverse wave as being associated
with ψ < tan−1(1/

√
2) and divergent waves with ψ > tan−1(1/

√
2), where ψ is given by (14),

then for the accelerating disturbance presented in this section the borderline between transverse and
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FIG. 3. [(a) and (b)] Shows the free-surface height, evaluated using (22), for a pressure distribution with
F = 0.7 starting at the point (−200, 35) and moving with speed profile (24) for α = 0.01 at two different
times t = tc and tc + 4rmin, the black dot is the location of the sensor. [(c)–(f)] Spectrograms computed for
acceleration α = ∞, 0.25, 0.1, 0.01 (note that α = ∞ refers to an impulsively moved ship). The classical
(black) and start-point (red) dispersion curves are overlaid.

104803-9



RAVINDRA PETHIYAGODA et al.

divergent waves occurs below the fold toward the beginning of the lower branch (recall that for
steady waves this delineation point occurs precisely at the fold itself). In fact, for an accelerating
disturbance, the borderline propagation direction ψ and wave number k depend heavily on the path
taken, so the distinction between transverse and divergent waves is not as clear.

From Fig. 3 we can see that, in all cases, the divergent branch approaches the line ω = (t −
tc)/2rmin in the same way as it does for a steadily moving disturbance [1]; given a spectrogram
computed from experimental data, this branch can be used to estimate the values of tc and y0. For
an impulsively moved ship [Fig. 3(c)] the transverse branch roughly follows the constant frequency
mode ω = 1, but is truncated when it touches the start-point dispersion curve; this is because any
waves along the transverse branch for later times would have been produced by the ship before it
started moving. Alternatively, when a ship has finite acceleration the transverse branch increases in
frequency as time increases, asymptotically approaching the start-point dispersion curve, given for
infinite depth by ω = t/2r(0). As with the divergent branch, the start-point dispersion curve can be
used to estimate the initial location of the ship (x0, y0) (recall y0 is given by the divergent branch).

When using the spectrogram to estimate the speed of a steadily moving ship, Pethiyagoda
et al. [1] made use of the property that the transverse branch asymptotically approaches ω = 1
for disturbances moving at constant velocity. Unfortunately, in the case of an accelerating ship,
the asymptote is dictated by the ship’s initial position and cannot be directly used to estimate the
ship’s speed. However, the minimum frequency of the classical dispersion curve can be used as a
lower bound on the ship’s speed, where the farther along the transverse branch the minimum occurs
the closer the lower bound is to the true ship speed. To approximate the full velocity profile, the
parametric form of the dispersion curve must be sampled to form a system of equations given by
(15) where the speed u(τ ) is calculated using a finite-difference approximation and the unknowns
are time τ and the x-position of the ship.

Focusing on the color intensity of the spectrograms in Fig. 3, we can see that the classical
dispersion curve accurately predicts the location of color intensity for all examples. The start-point
dispersion curve indicates another region of color intensity that is more prominent for higher values
of the acceleration α. As such, this example demonstrates the effectiveness of the theory behind the
dispersion curves, especially when acceleration is important.

B. Ship decelerating in a straight line

As a complement to Sec. IV A we will now examine spectrograms produced by a disturbance
decelerating to a stop from a unit cruising velocity. The position and velocity vectors are given by
(23), while the ship’s speed is

u(t ) =
{

erf
[√

πα(t−ts )
2

]
t < ts

0 t � ts
, (25)

where ts is the time the ship stops and α < 0 is the final deceleration rate. Wave patterns for this
example are shown in Figs. 4(a) and 4(b), drawn for the case F = 0.7, α = −0.01. We see that this
small amount of deceleration affects the wave pattern in an observable manner. The divergent waves
are cut off or diminished. After the disturbance has stopped moving, the wave pattern is composed
primarily of transverse waves.

Figure 4 presents spectrograms for a decelerating disturbance with a final acceleration of
α = −∞,−0.25,−0.1, and −0.01 (α = −∞ refers to an impulsively stopped ship). All examples
are for a disturbance that comes to a stop at X (ts) = (−50, 35). As with Fig. 3, the classical
dispersion curve is drawn in black; however, here the curve in red is the final-point dispersion
curve. As with the impulsively accelerated ship [Fig. 3(c)] the classical dispersion curve is a
truncated version of the steady dispersion curve presented in Ref. [1]. The difference here is
that it is the divergent branch that is truncated, not the transverse branch. For finite values of the
deceleration, the upper branch of the dispersion curves will still asymptotically approach the line
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FIG. 4. [(a) and (b)] Shows the free-surface height, evaluated using (22), for a pressure distribution starting
at the point (−1000, 35) and moving with speed profile (25) for α = −0.01 at two different times t = tc

and tc + 4rmin, the black dot is the location of the sensor. The ship comes to a stop at the point (−50, 35).
[(c)–(f)] Spectrograms computed for acceleration α = −∞, −0.25, −0.1, −0.01 (note that α = −∞ refers to
an impulsively stopped ship). The classical (black), and final-point (red) dispersion curves are overlaid.
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ω = (t − tc)/2rmin. This means that matching the asymptotes of the upper and lower branch to an
experimental spectrogram will give the ship speed and its minimum distance to the sensor; however,
it must be noted that this minimum distance may not be the same as the distance between the sensor
and the sailing line (had the ship continued forward).

C. Turning ship

For the next example, we will consider a ship moving with unit dimensionless angular speed in a
circle of radius R (the magnitude of the acceleration is α = 1/R). The ship’s movement is given by

X(t ) =
{(

xc + R cos t
R , R sin t

R

)
0 < t < 2πR

(xc + R, 0) otherwise
, U(t ) =

{(− sin t
R , cos t

R

)
0 < t < 2πR

(0, 0) otherwise
,

(26)
where xc is the center of the turning circle. This example was treated briefly in Ref. [40]. As a
representative solution, Figs. 5(a) and 5(b) presents the wake pattern for a turning ship with F = 0.7
and turning radius R = 100 (α = 0.01). We observe the familiar wake pattern being distorted onto
the circular path by compressing the divergent waves within the circle and stretching the divergent
waves outside the circle. Additionally, the transverse waves appear to fan out from the center.

It can be shown that the dispersion curves for infinite-depth flow are identical for constant values
of R/xc when plotted on our chosen scaled axis. We will present solutions for when the sensor is
outside the turning circle R/xc < 1 and inside the turning circle R/xc > 1.

Figure 5 presents spectrograms for a turning ship where the sensor is located [Figs. 5(c) and 5(d)]
outside and [Figs. 5(e) and 5(f)] inside of the turning circle, with the (black) classical dispersion
curve overlaid. In all cases, as with the examples in Sec. IV A, the classical dispersion curve is
comprised of two branches with the divergent branch approaching the line ω = (t − tc)/2rmin and
the transverse branch approaching the final-time dispersion curve given by (16), where τe is the
time the ship is farthest away from the sensor (because this is when the ship’s movement starts
contributing to the dispersion curve). Additionally, for R/xc < 1, the classical dispersion curve has
a minimum frequency of ω = 1 which occurs at the time when the ship is moving directly toward
the sensor.

D. Nonuniqueness of the dispersion curve

As can be seen in Figs. 3 and 5 the classical dispersion curves for a ship accelerating in a straight
line and a turning ship both have two rising frequency branches. Therefore, it seems possible for
a ship traveling in a straight line to produce the same dispersion curve as a turning ship. Indeed,
we can determine the values x0, y0 and u(t ) in (23) that will produce the same dispersion curve by
equating the radial distance r(t ) = |X(t )| for 0 < t < πR of a ship moving in a straight line (23)
and a turning ship (26) to give

x0 = −2
√

xcR, y0 = xc − R, u(t ) =

⎧⎪⎪⎨
⎪⎪⎩

0, t < 0√ xc
2R

sin t
R√

cos t
R +1

, 0 � t < πR√ xc
R , t � πR

. (27)

Figure 6(a) shows the computed velocity profile for the accelerating ship with [Fig. 6(b)] its
free-surface profile at t = 200π and [Fig. 6(c)] the free-surface profile for the associated turning
ship for reference where xc = 150 and R = 100. The signals for these two ships are presented with
their spectrograms in Figs. 6(d) and 6(e). While the produced signals are not technically identical,
both the signals and their associated spectrograms are visually indistinguishable. This agreement is
remarkable because the wave patterns themselves in Figs. 6(b) and 6(c) are clearly very different.
We have therefore demonstrated, via an example, how the issue of nonuniqueness could make it
difficult to unpick properties of a wavemaker simply from a single spectrogram.
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FIG. 5. [(a) and (b)] Shows the free-surface height evaluated using (22) for a pressure distribution traveling
in a circle with speed unity and turning radius R = 100 at two different times t = πR, 2πR, the black dot is
the location of the sensor. [(c)–(f)] Spectrograms computed for the same disturbance traveling in a circle with
speed unity and circle center xc = 150. The sensor positioned either [(c) and (d)] outside or [(e) and (f)] inside
the turning circle. The classical dispersion curve is overlaid.
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FIG. 6. (a) A plot of the velocity profile for a ship accelerating in one direction along with (b) the free sur-
face height. (c) The free-surface height for the turning ship with the same dispersion curve as (b) [reproduction
of Fig. 5(b)]. The black dot indicates the location of the sensor. The associated spectrograms are given for the
(d) accelerating (e) turning ship [reproduction of Fig. 5(d)].

The similarity of the signals in Figs. 6(d) and 6(e) is possible in part due to the axisymmetric
nature of the pressure distribution. In reality, ships are not axisymmetric and therefore the additional
information from the ship’s hull shape could possibly be used to differentiate between spectrograms
for different sailing paths. To briefly explore the effects of hull aspect ratio, we consider the nonax-
isymmetric pressure distribution p(x, y) = ε exp[−π2F 4(x2 + y2/β2)], where β is the width-length
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FIG. 7. Spectrograms for a nonaxisymmetric pressure distribution with aspect ratio β = 1/8 (a) accelerat-
ing in a straight line and (b) turning in a circle.

aspect ratio of the disturbance [19,24,37]. The Fourier transform of the pressure distribution is
p̃(k, ψ ) = εβ exp[−k2(cos2 ψ + β2 sin2 ψ )/4π2F 4]/(πF 4) and the surface profile is given by

ζ (x, t ) = ζi(r(x, 0), θ (x, 0), t ) +
∫ t

0
ζp(r(x, τ ), θ (x, τ ), t − τ ) dτ,

ζi(r, t ) = − 1

2π

∫ ∞

0

k2

	(k)2
f (k) cos [	(k)t] dk,

ζp(r, t ) = − 1

2π

∫ ∞

0

k2

	(k)
f (k) sin [	(k)t] dk,

f (k) = β

πF 4
e− k2 (1+β2 )

8π2F4

{
I0

[
k2(1 − β2)

8π2F 4

]
J0(kr) + 2

∞∑
n=1

In

[
k2(1 − β2)

8π2F 4

]
J2n(kr) cos(2nθ )

}
,

where In(x) is the modified Bessel function of the first kind of order n.
Figure 7 presents spectrograms for the nonaxisymmetric pressure distribution with aspect ratio

β = 1/8 for the same sailing paths shown in Figs. 6(d) and 6(e). The spectrogram color intensities
in Fig. 7 follow the same dispersion curve (not shown), as expected; however, the intensity along
the dispersion curves differ between the sailing paths. For the ship accelerating in a straight line, the
spectrogram has a maximum color intensity along the upper branch and a monotonically decreasing
intensity along the lower branch. The spectrogram for the ship moving a circle also exhibits a
maximum color intensity along the upper branch; however, unlike the straight-path spectrogram,
there is a local minimum of intensity along the lower branch. This local minimum corresponds
the when the ship is traveling directly toward the sensor. Therefore, we see from this example that
specific features in the spectrogram color intensity, such as this local minimum, could be used to
infer additional information about the sailing path of the ship. Of course, on open water the presence
of noise in the signal could obscure these distinguishing features, although wind waves can occupy
higher-frequency bands of the spectrogram than ship waves and are therefore relatively easy to
identify [2].

We note the nonuniqueness of the dispersion curve is to be expected from sampling the free-
surface elevation at a single fixed location. From (27), we see that the velocity of the accelerating
ship only approaches unity if the associated turning ship sails directly into the sensor. This feature
means that if a turning ship wake is misidentified as an accelerating ship, the cruising speed of the
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FIG. 8. Spectrograms for a pressure moving over a finite depth fluid (a) in a straight line starting at the point
(−13.08, 4.36) with constant acceleration α = 0.038, and FH = 1.23, F = 1.14 and (b) turning in a circle with
xc = 12.49, R = 16.65, FH = 0.89, and F = 0.82. The modified (black), and start-point (red) dispersion curves
are overlaid.

ship will be overestimated (underestimated) by the spectrogram analysis if the sensor is outside
(inside) the turning circle.

As a final comment in this subsection, the example we highlight was constructed by equating
the radial distance functions for the straight line and circular paths; however, any two paths that
exhibit the same radial distance r(t ) will produce the same linear dispersion curve. Therefore, the
true nature of the ship’s sailing path must be verified before performing any analysis, either by
pre-existing knowledge of the environment (e.g., a shipping channel where no turning is expected)
or perhaps using information from multiple sensors (e.g., triangulation) or the distribution of color
intensity along the dispersion curve.

V. FINITE-DEPTH EFFECTS AND EXPERIMENTAL RESULTS

In this section, we compare our theoretical predictions against experimental data collected in a
model test basin. As finite-depth effects play a role in these experiments, we will briefly present
spectrograms and dispersion curves for accelerating disturbances where we take into account the
effects of fluid depth. This unsteady theory generalizes that outlined in Ref. [8], which was for
steadily moving disturbances in a finite-depth channel.

A. Theoretical results

The surface elevation for a moving disturbance in a finite-depth channel is calculated using (22)
with

ζp(r, t ) = − 1

2π

∫ ∞

0

k2 tanh
(
k/F 2

H

)
	(k)

p̃(k) sin [	(k)t]J0(kr) dk,

ζi(r, t ) = − 1

2π

∫ ∞

0

k2 tanh
(
k/F 2

H

)
	(k)2

p̃(k) cos [	(k)t]J0(kr) dk,

where the dispersion function is 	(k) =
√

k tanh(k/F 2
H ) (and, as mentioned earlier, FH = U/

√
gH

is the depth-based Froude number).
We consider two example paths. The first path is a ship moving in a straight line with constant

acceleration (23), where u(t ) = αt . Figure 8(a) shows the spectrogram associated with this path,
for the dimensionless acceleration α = 0.038, chosen to match the experimental data in Fig. 9(a).
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FIG. 9. Spectrograms computed from experimental measurements taken for a model undergoing constant
acceleration of 0.375 ms−2 by sensors (a) S1 and (b) S2 positioned 5 and 11 m downstream from the initial
location of the bow, respectively. The modified dispersion curve is overlaid.

In this spectrogram, the classical linear dispersion curve (solid black curve), with its divergent and
transverse branches, appears to do a good job of predicting the highest intensity color regions.

A close inspection of Fig. 8(a) suggests there is a significant region of high color intensity to the
left of, and below, the fold in the classical dispersion curve. A similar region of high color intensity
was identified by Torsvik et al. [3] in their experimental spectrograms taken from data collected
in open water; these authors speculated that these low-frequency waves corresponded to precursor
waves propagating ahead of the ship. Whether or not there is a direct connection with real precursor
waves, it is clear that these waves appear outside of the caustic and are not picked up by the classical
dispersion curve, nor the start-point dispersion curve (solid red curve).

We attempt to explain the low-frequency waves in Fig. 8(a) by deriving a modified dispersion
curve as follows. Instead of solving (11) or (13) for k, which is not possible outside of the caustic,
we set k such that

min
k

|kr′(τ ) + 	(k)| or min
k

|kU cos(ψ ) + 	(k)|,

respectively. That is, we move as close as possible to the solutions of the second equation in (9). In
terms of the method of stationary phase, instead of forcing the derivatives ∂g1,2/∂τ to vanish, we
minimize them. This is equivalent to generating an asymptotic expansion in the neighborhood of
the caustic, which would lead to an Airy-function representation of the surface [41]. This modified
dispersion curve, which can be thought of as an extension of the classical dispersion curve, has an
additional segment which we have drawn as a black dashed curve in Fig. 8(a). This new component
shows excellent agreement with the low-frequency region of the spectrogram.

The second path we consider is a ship turning in a circle (26) without stopping, which gives
rise to the spectrogram in Fig. 8(b). Here we have chosen the parameter set FH = 0.89, F = 0.82,
xc = 12.49, and R = 16.65, to match with our experimental results in Fig. 10. We see in Fig. 8(b)
the classical dispersion curve (black curve) is an excellent predictor of the main location of high
intensity color in the spectrogram. We observe a second copy of the classical dispersion curve as
the ship turns a full circle and continues on. Also drawn in Fig. 8(b) is the (black dashed) modified
dispersion curve, which accounts for low-frequency waves outside of the caustic. Note the (red)
start-point dispersion curve is included to demonstrate that these low-frequency waves cannot be
ascribed to transient effects from the initial impulse in speed.
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FIG. 10. A spectrogram computed from experimental measurements taken for a model moving in a circular
path of radius 4 m with a constant speed of 1.535 ms−1. The modified (black), and reflected (violet-dashed)
dispersion curves are overlaid.

B. Experimental results

Results from two model-scale experiments are presented here: a ship hull moving in a straight
line with constant acceleration, and a ship following a circular path with constant angular velocity.
The experiments were conducted at the Australian Maritime College in a shallow water basin using
the AMC 00-01 model with waterline length of 1 m, beam of 0.227 m, and draught of 0.089 m (all
measured when the model is at rest) [42]. The water depth in the basin is 0.3 m, which is small
enough for finite-depth effects to be present.

For the constant-acceleration experiment, the hull was accelerated from rest at a rate of 0.375
ms−2 over a distance of 12 m. Two sensors were placed at a lateral distance of 2 m from the sailing
line, 5 m (S1) and 11 m (S2) from the initial leading edge of the model. Sensor S1 observed the hull
moving predominately at subcritical speeds, while sensor S2 observed both sub- and supercritical
waves. The signals are nondimenionalized as outlined in Sec. II, where U is given by the hull speed
when it is closest to the sensor.

The spectrograms produced from the two sensors are presented in Fig. 9. We can see that
the (black) dispersion curve does a reasonable job of predicting the location of some of the
color intensity present in the spectrogram. However, we note that for the subcritical spectrogram
[Fig. 9(a)], to correctly match the dispersion curve we had to assume that the disturbance started
moving 6 m upstream of the sensor. This adjustment is equivalent to assuming that the main source
of the waves is at the stern of the hull. The subcritical spectrogram shows a significant high intensity
color region corresponding to low-frequency waves to the left, and below, the classical dispersion
curve. As with our theoretical example in Fig. 8(a), we have overlaid a (black dashed) modified
dispersion curve; in this case, the curve does not do as good a job of predicting the location of these
low-frequency waves outside of the caustic, although its general behavior is captured.

Finally, for both of the experimental spectrograms in Fig. 9, there is a medium color intensity
region corresponding to high-frequency waves above the leading edge of the dispersion curves.
These waves are caused by nonlinearity, as discussed in Refs. [1,3,8], and so cannot be predicted by
our linear theory.

The second model-scale experiment involved a hull moving along a circular path of radius 4m,
with a constant angular speed of 1.535 ms−1 and a sensor placed 3 m from the center of the circle.
Figure 10 shows the spectrogram for the measured wave elevation signal with the (black) classical
dispersion curve again providing good agreement with the high color intensity. As with Fig. 8(b),
more than one revolution was performed, resulting in a second classical dispersion curve with the
same shape as the first being included. We also note that, as with Figs. 8(b) and 9(a), Fig. 10 also
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shows the low-frequency waves before the leading edge of the classic dispersion curve. However,
the prediction from the (black dashed) modified dispersion curve is for higher-frequency waves than
what are observed.

The spectrogram in Fig. 10 is unfortunately complicated by a further region of color intensity,
which appears between the two classical dispersion curves. This additional color intensity region is
due to wave reflection off the test basin walls. Such reflection is reduced in the experimental set-up
by using wave-damping ropes on the walls, however the small-amplitude reflecting waves are still
detected by the sensors. We have included in Fig. 10 a reflected dispersion curve as a violet dashed
curve, generated by supposing there is a “ghost” ship traveling along a mirrored path. This reflected
curve shows very good agreement with the additional color intensity in question.

VI. DISCUSSION

In this paper we explore the use of spectrograms to analyze surface elevation data collected from
a single fixed sensor due to a ship accelerating along an arbitrary path, expanding upon our previous
work for steadily moving ship. This work is an important step in developing the knowledge for
using spectrograms to decode these wave signals in a way that allows for the prediction of features
of an accelerating ship that causes the wake, given that not all shipping vessels are traveling at
constant speed. We use the method of stationary phase on a toy problem to determine the dispersion
curve for these problems, which predicts the theoretical location of the highest color intensity in a
spectrogram. We further developed a simple geometric method for calculating the dispersion curve.
For the examples presented in this paper (i.e., a ship accelerating or decelerating in a straight line
and a ship turning in a circle in infinite depth), the dispersion curve exhibited two rising frequency
branches that could potentially be used to estimate physical features such as the minimum distance
between the ship to the sensor and the ship’s starting distance from the sensor. Unlike the simpler
problem with steady ship waves, a proper analysis of the inverse problem must be conducted to
determine the feasibility of reconstructing the speed of the ship from the dispersion curve. We leave
these issues related to the inverse problem for future research.

We have highlighted a problem of nonuniqueness of spectrograms by constructing two very
different paths (accelerating in a straight line and turning in a circle) that lead to identical linear
dispersion curves. This nonuniqueness reinforces how difficult it is to back-calculate information
about the cause of the disturbance based on this information alone. Finally, we applied the dispersion
curve calculated for finite-depth ship waves to linear ship waves and experimental data. While the
dispersion curve showed good agreement with the measured spectrogram, there were additional
regions of color intensity that could be explained by properties such as nonlinearity and reflection,
and a region that aligned with the previously identified precursor wave [3]. The comparison with
experimental data shows that the linear dispersion curve for an accelerating ship can be applied to
real world scenarios.

It is worth emphasizing that the derivations in Sec. III involve a general wave function 	(k)
[more specifically, the wave signal derived in Sec. III A holds for an infinitely deep fluid, while
the theory in Secs. III B and III C applies for any 	(k)]. As such, while we were focused on
infinite-depth and finite-depth surface gravity waves due to a moving ship, our analysis can easily
be adapted for applications with different dispersion relations. Typical examples that may be of
interest include problems for which the effects of surface tension together with gravity are important
[23,43,44], models for weakly damped ship waves [45], hydroelastic waves such as those on floating
ice sheet [46,47], internal or surface waves due to a stratified fluid [13,48], and ship waves with
constant vorticity [21,49] (although further modifications would be required in the latter case due to
	 = 	(k, ψ )). Our results in Sec. III therefore have the potential for widespread usage.

The pressure distribution we use in our study creates a surface depression which changes shape
with velocity and acceleration, qualitatively mimicking the effects of sinkage and trim. The effect
of using such a deformable hull in the model instead of a rigid hull is not clear, at least in terms of
the spectrograms. With this in mind, one of the obvious extensions of our work here and elsewhere
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[1,8] is to include a serious model for the shape of the ship hull and study how details of the hull
shape appear in the time-frequency domain. Preliminary results in that direction are reported in
Ref. [50]. Questions remain about the role of wave interference with real ship hulls [51,52], as the
combination of waves created at the bow and stern of a hull may lead to periodic patterns along the
sliding frequency mode in a spectrogram heat map (such a phenomenon is hinted at in Ref. [8]).
There are a number of open problems regarding how nonlinearity manifests in the time-frequency
domain, especially when it comes to steep surface gravity waves [5,16–18,53] or weakly nonlinear
waves propagating ahead of a ship traveling at near-critical speed [3,6,54]. Finally, as mentioned
above, the ultimate goal of this line of research is to devise algorithms to unpick experimental
spectrograms so that, with only data collected from one or more fixed sensors, the key characteristics
of the relevant vessel and its path may be predicted. This work is ongoing.
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APPENDIX: DERIVATION OF EQUATION (4)

We begin by considering an inviscid, irrotational fluid bounded above by a free surface,
z = ζ (x, y, t ), and below by a flat bottom of depth h (that can be extended to infinity). In such
a dimensionless framework, h = F−2

H , where FH is the depth-based Froude number. The fluid is
initially at rest and we apply a pressure disturbance, p(x, y), to the surface as a single instance. We
then linearise the system about the undisturbed free surface, z = 0. For the linearized system, the
time-dependent velocity potential of the fluid, φ(x, y, z, t ), satisfies Laplace’s equation

∇2φ = 0 for − h < z < 0, (A1)

and is subject to the linear kinematic and dynamic conditions,

ζt = φz, φt + D{ζ } + δ(t )p(x, y) = 0 on z = 0,

where D is a differential operator formed from a linear combination of constants and partial deriva-
tives (of any order) with respect to x and y, and δ(t ) is the Dirac delta function. For example, D =
1 − γ /(∂xx + ∂yy) for gravity-capillary waves, D = 1 for gravity waves and D = −γ /(∂xx + ∂yy)
for capillary waves, where γ is a dimensionless surface tension. We enforce no flow through the
bottom boundary so that

∂φ

∂z
= 0 on z = −h.

The initial conditions are

φ = φt = ζ = ζt = 0 at t = 0.

Applying the two-dimensional Fourier transform

g̃(k, ψ ) =
∫ 2π

0

∫ ∞

0
g(x, y)e−irk cos(θ−ψ )r dr dθ,
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where r =
√

x2 + y2 and θ = tan−1(y/x) to the governing equations gives

−k2φ̃ + φ̃zz = 0 for − h < z < 0, (A2)

ζ̃t = φ̃z on z = 0, (A3)

φ̃t + D̃(k, ψ )ζ̃ + δ(t ) p̃(k, ψ ) = 0 on z = 0, (A4)

∂φ̃

∂z
= 0 on z = −h, (A5)

where D̃ is a function defined so that D̃ζ̃ is the Fourier transform of D{ζ }. Solving (A2) and
applying the bottom boundary condition (A5) gives

φ̃ = A(k, ψ, t ) cosh kz + A(k, ψ, t ) tanh kh sinh kz.

Returning to the kinematic condition (A3), we have

ζ̃t = A(k, ψ, t )k tanh kh = kφ̃ tanh kh on z = 0. (A6)

Substituting (A6) into (A4), we rearrange to get a second-order ODE for ζ̃

ζ̃tt + k tanh kh D̃ζ̃ = −δ(t )k tanh kh p̃(k, ψ ), (A7)

subject to the initial conditions

ζ̃ (k, ψ, 0) = 0, (A8)

ζ̃t (k, ψ, 0) = 0. (A9)

Equations (A7)–(A9) are equivalent to ζ satisfying the wave equation subject to an initial velocity
given by −k tanh kh p̃(k, ψ ) in phase space. As such we let 	(k, ψ ) = k tanh kh D̃(k, ψ ) be the
dispersion function. Additionally, because we only consider isotropic free-surface effects in this
paper, we can remove the dependence on ψ from the dispersion function.

Thus, we can write the governing equations as

ζ̃tt + 	(k)2ζ̃ = −δ(t )k tanh khp̃(k, ψ ), (A10)

ζ̃ (k, ψ, 0) = 0, ζ̃t (k, ψ, 0) = 0. (A11)

Solving (A10) and (A11) and inverting the Fourier transform gives the wave profile in polar
coordinates,

ζ (r, θ, t ) = − 1

4π2

∫ ∞

0

∫ π

−π

k2 tanh kh

	(k)
p̃(k, ψ ) sin [	(k)t]eikr cos(θ−ψ ) dψ dk. (A12)

We recover Eq. (4) by taking the depth out to infinity, h → ∞.
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