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Stability of a horizontal vortex in weakly stratified flow
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A trailing vortex behind a wing moving through a stratified fluid will act to twist the
density field into a pattern where the density profile continuously overturns along the
axis of the vortex. This configuration is approximated here with a density field that is
overturning periodically along the axis of the vortex. The matching velocity field is found
approximately assuming weak stratification and constant axial vorticity at leading order
and confining the flow to a fixed radius. This base flow is shown to be unstable to a wave
triad consisting of two disturbance waves and a component of the base flow as the third
“wave.” Three components of this base flow lead to instability: (1) the twirling component,
(2) the streaming component, and (3) the rolling component. All three instabilities depend
strongly on the axial length for the density field to overturn (the pitch). The twirling
and rolling instabilities are important when the pitch is small and they also depend on
the Froude number. The streaming instability is dominant when the pitch is large and is
independent of the Froude number.

DOI: 10.1103/PhysRevFluids.6.104802

I. INTRODUCTION

A pair of counterrotating horizontal vortices released in a stratified fluid is an important and
relatively simple model of the wake of an airplane. Numerical simulations of this flow with the
buoyancy frequency N initially constant have been considered previously by many authors [1–6].
Most of the previous simulations were two dimensional [1–3,5,6]; however, Nomura et al. [4] treated
a three-dimensional case. Nomura et al. [4] chose the initial flow and density profile to be the same
for all axial positions. This caused the initially flat horizontal density surface to overturn uniformly
along the axial coordinate, similar to the two-dimensional cases.

However, this axially uniform configuration does not match the density field behind lifting
surfaces in a stratified fluid. For flow past a lifting surface, such as the wing of an airplane, the
undisturbed flat horizontal surface of constant density upstream of the wing gets twisted by the
trailing vortex system of the wing. The density profile overturns along the axis of each vortex. This
three-dimensional density field cannot be reduced to a two-dimensional case and is distinct from
the three-dimensional case of Nomura et al. [4]. The configuration treated here is an idealization
of this downstream overturning, assuming steady flow and periodicity along the axis of the vortex.
This configuration is arguably a closer approximation to stratified flow behind wings than previous
models.

The previous numerical simulations have shown that the results depend on the Froude number,
often defined for a vortex pair as

F̃r = W0

b0N
, (1)

where W0 is the velocity that one vortex induces at the center of the other vortex and b0 is the spacing
of the vortices. The tilde has been added to distinguish this Froude number from a different definition
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of Froude number to be introduced later. Garten et al. [1] performed two-dimensional simulations
and report that F̃r = 1 is a transitional value, and with F̃r > 1 the vortices remain coherent and the
vortex pair self-induces vertical propagation. However, with F̃r < 1 the vortex pair collapses and
creates a pattern of internal waves. Once the coherency of the vortices is lost, the vertical motion
of the vortex pair also does not happen. Shaw and McHugh [7] treat this same transition with a
distributed vortex pair. The vorticity was distributed uniformly over each half of a horizontal line,
with opposite sign for opposite sides as with a traditional vortex pair. They used two-dimensional
numerical simulations and showed that the distributed vortex also collapses into internal waves at
small F̃r, although the transitional Froude number was found to be somewhat larger and the resulting
flow patterns are different. Furthermore, Shaw and McHugh [7] found that the transition between
the two types of behavior appeared to be gradual, rather than a sharp change in behavior normally
associated with an instability.

Sarpkaya [8] performed laboratory experiments on the wake of a wing in stratified flow. The
wing was towed through a motionless stratified liquid and would be expected to have a density
field similar to real-world configurations. Sarpkaya found that for most runs with large values of
F̃r (Sarpkaya used N∗, which is the inverse of F̃r), the Crow instability [9] appeared in the wake.
However, for small F̃r, the Crow instability does not appear and instead the vortices “continued
to spin sometimes in highly disorganized forms along their length”. Sarpkaya also reported that
this disorganized behavior sometimes appears in the wake when the value of F̃r is large. Thus the
simulations of Garten et al. [1] and the experiments of Sarpkaya [8] agree that there is a strong
Froude number dependence on the behavior of a vortex pair in stratified flow. It will be shown here
that the axial length for the density field to overturn (the pitch) is also an important parameter.

The Crow instability [9] is a long-wave instability that causes a vortex pair to ultimately merge
and form vortex rings, sometimes visible in airplane contrails. Crow [9] ignored stratification and
modeled the wake of an airplane as a pair of irrotational vortices in constant-density flow. The
vortices had a finite-size core that he treated with the cutoff method. Crow showed that the dominant
effect leading to instability is that each vortex creates a straining field at the location of the other
vortex. Crow assumed that the position of the disturbed vortex filament had small slope, restricting
the results to long modes. Moore and Saffman [10,11] extended the results by treating a single vortex
in constant-density flow and provided an analytical estimate for the growth rate of the long-wave
unstable modes. The presence of the second vortex was modeled by imposing a weak strain field.
This straining field was uniform along the axis of the vortex. Moore and Saffman modeled the base
flow as irrotational outside of a core diameter and uniform axial vorticity inside the core, now known
as a Rankine vortex.

Widnall et al. [12] showed that there is a short-wave instability in a vortex ring in constant-density
flow. Moore and Saffman [13] and Tsai and Widnall [14] treated this short-wave instability, again
using a single Rankine vortex in an imposed strain field. The instability of a strained vortex is
now known as the elliptical instability, as reviewed by Kerswell [15], and is important in many
other flows. There are three components of the base flow treated here that lead to instability and
one of them is an elliptic type of instability. The elliptic distortion here is caused by overturning
stratification, rather than by the presence of a second vortex, and is not uniform along the axis of
the vortex. Furthermore, although the axial vorticity at leading order is chosen to be constant, the
velocity field is corrected for weak stratification and the corrected axial vorticity is not constant.

The nonzero axial velocity in the vortex treated below makes the flow similar to a jet with swirl.
The stability of an inviscid circular jet with swirl in constant density flow was treated by Lessen et al.
[16] and Loiseleux et al. [17]. Lacaze et al. [18] added weak elliptical distortion to the configuration.
For all these cases, the axial flow was constant inside the jet and the swirl (azimuthal) velocity
had constant vorticity inside the jet and was irrotational outside. The results show that there is an
unstable Kelvin-Helmholtz mode due to the jump discontinuity in axial velocity at the edge of the
jet, along with an infinite set of neutral helical modes. The vortex treated here is similar, but here the
exterior flow is ignored and a rigid cylindrical boundary is imposed. The rigid boundary is used so
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that the density field will be axially periodic. The rigid boundary eliminates the Kelvin-Helmholtz
mode, but allows the helical modes to exist in approximately the same manner.

Eloy and Le Dizès [19] and Sipp and Jacquin [20] treat the stability of a Lamb-Oseen vortex (also
known as a Gaussian vortex) with elliptical distortion. A significant complexity with Lamb-Oseen
vortices is that a critical layer may exist. A critical layer in a vortex is a radial position where
the azimuthal velocity is equal to the disturbance wave speed. Le Dizès and Laporte [21] treat
the stability of Lamb-Oseen vortex pairs, including corotating and counterrotating vortices, as well
as vortex pairs that are not equal in strength and size. Critical layers do not exist in vortices with
constant axial vorticity, such as Rankine vortices. Here the axial vorticity at leading order is constant,
as in a Rankine vortex. Thus the complexity of critical layers is avoided in the present configuration.

The stability of a pair of Lamb-Oseen vortices in stratified flow was recently treated by Ortiz
et al. [22] assuming a quasisteady base flow. The base flow was determined with two-dimensional
numerical simulations. The disturbances were three dimensional. They concluded that the dominate
instabilities are again the long-wave Crow instability and the short-wave elliptic instability. They
also concluded that stratification is not important for these instabilities for large values of F̃r.
However, the density of the base flow in the work of Ortiz et al. was uniform along the axis of the
vortex and thus does not match the flow behind lifting surfaces as well as the present configuration.
The instability was caused by the presence of the other vortex, distorting the vortex uniformly along
its axis. In contrast, the base flow here has the density overturning downstream, and the stratification
is critically important to the instability.

Other instabilities exist and may be important in the vortex wake of an airplane. One case is
the centrifugal instability [23], such as that which exists between concentric cylinders and creates
Taylor vortices. For the present case, the circulation increases with radial position and centrifugal
effects are stable. Another case is the zigzag instability [24,25]. The zigzag instability occurs when
the axial alignment of a pair of vortices is disturbed and the direction of propagation of the vortex
pair varies along the axis. The present results treat a single vortex, where the zigzag instability does
not exist. It is unclear what role the zigzag instability may play in airplane wakes. Finally, the results
given here assume weak stratification. There may be other instabilities that appear in overturning
flows with strong stratification that have not yet been identified.

The stability results given below treat a stratified steady horizontal isolated vortex with the
density field overturning along the axis of the vortex. This configuration is still idealized, but is a
closer approximation to the flow behind a wing in the real world and in the laboratory experiments of
Sarpkaya [8]. Inviscid incompressible flow with weak stratification is assumed. The rigid boundary
condition is imposed at a fixed radius R so that a base density field that is periodic along the axis of
the vortex may be easily defined. The base velocity field that matches this density field is determined
approximately, assuming constant axial vorticity at leading order. This velocity field is similar to the
isolated Rankine vortex treated by previous authors, except here the exterior flow is ignored and the
total axial vorticity is not constant.

The disturbances for the instability treated here are pairs of helical waves that form a resonant
triad with the base flow, similar to those of Moore and Saffman [10] and subsequent authors. The
helical waves are identical to inertial waves in a spinning cylinder with axial periodicity. These
inertial waves were discussed by Greenspan [26] and Saffman [27] and were first discovered by
Lord Kelvin [28]. There are resonant axial wave numbers where inviscid theory predicts that the
inertial waves have unbounded amplitude, as found by Lord Kelvin. An analogous effect occurs in
the base flow velocity field given below at isolated parameter values, when the base flow mimics a
resonant disturbance wave.

Forced inertial waves in a spinning container of fluid have also been treated previously [29–32].
When the forcing frequency matches one of the resonant frequencies, the behavior is particularly
complex [32]. One method of forcing that has received special scrutiny is a precessing spinning
cylinder [30]. This configuration has many practical applications, including rotating fluid-filled
spacecraft and projectiles [29,30]. The instability that arises in a precessing spinning cylinder has
azimuthal component m = 1 [30], as with the streaming instability discussed here. The stability
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analysis of Lagrange et al. [30] is very similar to the present work with m = 1. A primary difference
is that the work of Lagrange et al. includes rigid boundaries at the ends of the cylinder, while here
the ends are periodic. Despite this and other differences, the stability results of Lagrange et al. show
trends that are similar to those of the streaming instability discussed here.

Overturning of a stratified flow also occurs in other flows, such as an unstable stratified shear
layer [33,34]. An unstable stratified shear layer will evolve into a pattern of billows, which are a
sequence of corotating vortices (rather than counterrotating vortices in the trailing vortex system
of a wing). The flow within the billows becomes increasingly complex, with strong mixing and
turbulence. The evolution is greatly influenced by the density overturning aspect of the flow.
Recently, Mashayek et al. [35] treated the importance of overturns by calculating the evolution
of several length scales using results from direct numerical simulations. They concluded that for
weakly stratified cases, turbulence and mixing are dominated by large density overturns. However,
the initial instability is driven by the shear, while the density is initially a stabilizing effect. Only after
the flow becomes complex do overturns become important. Furthermore, the initial density field of
an unstable shear layer is independent of the coordinate along the billow and the initial overturning
is two dimensional. In the configuration treated here the base-state density field overturns in the
axial direction and includes positions with statically stable and unstable density profiles. The
disturbances can extend over both regions, which then simultaneously influence the stability. In
contrast, the density field for the previous results with a stratified shear flow initially are statically
stable everywhere. Thus the results here treat a different configuration.

Some instabilities treated below depend on the Froude number Fr, now defined as

Fr2 = V 2

Rg
,

where V is the azimuthal vortex velocity and R is the vortex radius. In contrast to previous studies,
the results here also depend on the pitch L, which is the horizontal length for one complete rotation
of the density profile. The pitch is accounted for with the parameter k,

k = 2πR

L
.

The base flow density field here is chosen to be overturning in the axial direction with the
azimuthal component m = 1. The matching base flow velocity field is found assuming weak
stratification. At the leading order, the velocity is chosen to be axially uniform and have constant
axial vorticity, similar to a Rankine vortex. However, the first-order correction to the velocity must
conform to the density field and is axially nonuniform and the axial vorticity is not constant.
This velocity field has azimuthal components m = 0, 1, 2 at first order. Instabilities arise when
disturbances interact with each of these base flow components. The m = 0 part of the base flow
is an axisymmetric flow with swirl that oscillates periodically along the axis and will be called
the twirling component. This twirling component is unstable when the base flow pitch is relatively
short.

The instability with m = 1 will be called the streaming instability, since the flow is primarily
a pair of helical streams. Previous work on a precessing cylinder of fluid also found an instability
with m = 1 [30], as discussed above. Furthermore, Hattori and Fukumoto [36], and the references
therein, found an m = 1 instability in a helical shaped vortex and referred to it as the curvature
instability. This instability is distinct from the streaming instability treated here, since the boundary
of the vortex here is straight rather than helical. However, the streaming instability results here are
similar to the curvature instability results of Hattori and Fukumoto, showing similar trends. This
streaming instability depends strongly on the pitch, becoming increasingly stronger as the pitch
becomes large. Surprisingly, this streaming instability is independent of the Froude number.

The m = 2 instability will be called the rolling instability, since the base flow motion of this
mode has primarily a planar rolling character. Many previous investigations have found an m = 2
instability in an inviscid vortex, starting with those of Moore and Saffman [10,11,13] and Tsai and
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FIG. 1. Schematic diagram of the geometry.

Widnall [14]. The m = 2 instability is an elliptic-type instability and is the result of the distortion
of streamlines [15]. The rolling instability also depends strongly on the pitch and is the dominant
instability when pitch is small.

The unstable twirling modes (m = 0) and rolling modes (m = 2) found here have disturbances
with growth rates that are inversely proportional to the square of the Froude number. Thus large
Froude numbers are not stable, but the instability is weaker and thus likely to be overcome by the
addition of viscosity and dissipation.

Section II discusses the base-state flow for the overturning stratified vortex. Section III discusses
the stability analysis. Section IV presents the results. Section V summarizes.

II. STEADY STRATIFIED VORTEX

A. Base-state density field

The base state is a steady overturning stratified flow. The geometry and coordinate system is
shown schematically in Fig. 1. Rather than the typical background vertical density profile, the
approach here will treat a flow with a background spiral density pattern. An isolated vortex in
an unbounded fluid is of primary interest; however, here an outer boundary consisting of a rigid
cylinder is included so that the density field may be easily defined to be axially periodic.

A spiral density field is defined starting with a density profile that is linearly decreasing with
altitude,

ρ = ρ0 − By′,

where ρ0 and B are constant and y′ is a coordinate in the plane perpendicular to the axis of the
vortex. Now rotate this profile uniformly about the z axis by transforming the coordinates using

x′ = x cos φ + y sin φ, y′ = −x sin φ + y cos φ,

where φ = φ(z) is the angle that the profile has been rotated. Then switch to cylindrical coordinates
using x = r cos θ and y = r sin θ to achieve

ρ = ρ0 + rB sin[θ − φ(z)]. (2)

Assuming incompressible flow, the density field is governed by

ρt + uρr + v

r
ρθ + wρz = 0, (3)
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where u, v, and w are the radial, azimuthal, and axial components of velocity, respectively. Note
that the axial coordinate z is horizontal. Insert (2) into (3) and assume steady flow. If the vortex is
circular, meaning the radial component of velocity is zero (u = 0), then

φz = v

rw
.

Choose the rate of rotation of the axis to be constant so that φ varies linearly with z, resulting in

v

rw
= 2π

L
, (4)

where L is the axial length for one oscillation of the density field (the pitch). The factor 2π is added
for convenience. The final density field is

ρ = ρ0 + rB sin

(
θ − 2πz

L

)
. (5)

Furthermore, for this density field to exist,

v

rw
= const.

B. Base-state velocity field

A base-state velocity field that approximately matches the density field in (5) is now found
assuming weak stratification and neglecting viscosity. First rescale all variables using

z → L

2π
z, r → Rr, t → R

V
t,

⎛⎝u
v

w

⎞⎠ → V

⎛⎝u
v

w

⎞⎠, p → ρ0V
2 p, ρ → ρ0ρ,

where p is the pressure. The dimensionless governing equations are

ρ

[
ut + uur + v

r
uθ + wkuz − v2

r

]
= −pr − 1

Fr2 ρ sin θ, (6)

ρ

[
vt + uvr + v

r
vθ + wkvz + uv

r

]
= −1

r
pθ − 1

Fr2 ρ cos θ, (7)

ρ

[
wt + uwr + v

r
wθ + wkwz

]
= −kpz, (8)

ur + u

r
+ 1

r
vθ + kwz = 0, (9)

ρt + uρr + v

r
ρθ + wkρz = 0, (10)

where

Fr2 = V 2

Rg
(11)

and

k = 2πR

L
. (12)

The density field (5) becomes

ρ = 1 + βr sin(θ − z), (13)
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where

β = BR

ρ0
(14)

is assumed to be a small parameter. Here β is similar to the inverse of the (dimensionless) density
scale height, often defined for a stratified fluid that has a stable background density profile.

The assumption that β is small implies that the density difference across the vortex is small.
However, small β does not mean that F̃r is small. First, the definition of F̃r in (1) uses length and
velocity scales involving two counterrotating vortices, which does not apply here. Using the length
and velocity scales for a single vortex and replacing the buoyancy frequency N with

√
gB/ρ0 gives

an equivalent definition

F̃r = V√
gβR

. (15)

The two Froude numbers are related by

F̃r =
√

βFr,

showing that the numerical values of the two parameters do not match. However, the value of F̃r
using (15) may be large, even with small β.

Expand the velocity, pressure, and density fields in a power series in β:⎛⎜⎜⎜⎜⎜⎝
u
v

w

p
ρ

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
u0

v0

w0

p0

1

⎞⎟⎟⎟⎟⎠ + β

⎛⎜⎜⎜⎜⎜⎝
u1

v1

w1

p1

ρ1

⎞⎟⎟⎟⎟⎟⎠ + β2

⎛⎜⎜⎜⎜⎜⎝
u2

v2

w2

p2

ρ2

⎞⎟⎟⎟⎟⎟⎠ + · · · .

The zeroth-order equations are identical to the inviscid constant-density equations, which allow a
solution with u0 = 0, v0 = v0(r), and w0 = w0(r). Choose the leading-order (zeroth-order) velocity
field to have constant axial vorticity,

v0 = r, w0 = 1

k
,

which gives
v0

rw0
= k,

as required by (3). This choice allows the velocity components at first order to be found analytically.
Using the above zeroth-order velocity field, the first-order equations become

u1θ + u1z − 2v1 = −p1r + rρ1 − 1

Fr2 ρ1 sin θ, (16)

2u1 + v1θ + v1z = −1

r
p1θ − 1

Fr2 ρ1 cos θ, (17)

w1θ + w1z = −kp1z, (18)

u1r + u1

r
+ 1

r
v1θ + kw1z = 0, (19)

ρ1θ + ρ1z = 0. (20)

The solution for ρ1 that matches (13) is

ρ1 = r sin(θ − z). (21)
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The other terms in (16)–(19) then experience terms containing ρ1 as inhomogeneous effects, and
each term may be treated individually. One of the terms in (16) that contains ρ1 becomes

rρ1 = r2 sin(θ − z). (22)

The other two forcing terms that appear in (16) and (17) may be expanded using (21) to get
1

Fr2 ρ1 sin θ = 1

2 Fr2 r[− cos(2θ − z) + cos z], (23)

1

Fr2 ρ1 cos θ = 1

2 Fr2 r[sin(2θ − z) − sin z]. (24)

Thus, among the three forcing terms (22)–(24) there are m = 0, 1, and 2 azimuthal harmonics.

1. Zeroth azimuthal harmonic

The terms in (23) and (24) that have no azimuthal dependence force an axisymmetric solution⎛⎜⎜⎝
u1

v1

w1

p1

⎞⎟⎟⎠ = 1

2 Fr2

⎛⎜⎜⎜⎝
r sin z
r cos z

1
k 2r cos z
1
k2 2r cos z

⎞⎟⎟⎟⎠. (25)

Since u1 is nonzero, an additional homogeneous part must be added to meet the boundary condition
at r = 1. The final solution is ⎛⎜⎜⎝

u1

v1

w1

p1

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
f (r) sin z
g(r) cos z
h(r) cos z

− 1
k h(r) cos z

⎞⎟⎟⎟⎠, (26)

where

f = 1

2 Fr2

[
r − J1(

√
3kr)

J1(
√

3k)

]
, (27)

h = 1

2 Fr2

[
r − 2

J1(
√

3kr)

J1(
√

3k)

]
, (28)

g = 1

2k Fr2

[
2 −

d
dr [rJ1(

√
3kr)]

rJ1(
√

3k)

]
. (29)

Here and later, Jm is the Bessel function of order m. This solution is unbounded at an infinite
sequence of resonant values of k, given by

J1(
√

3k) = 0. (30)

The first ten k values are listed in the first column of Table I.

2. First azimuthal harmonic

The term rρ1 in (16) results in the forced contribution

v1 = −1

2
r2 sin(θ − z), (31)

w1 = − 1

2k
r sin(θ − z), (32)

with u1 = p1 = 0. Since u1 is zero everywhere with this part, the boundary condition is satisfied
and no additional homogeneous solution is required.
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TABLE I. Values of k where the base flow
velocity solution is unbounded.

mc = 0 mc = 2

2.2122 2.4352
4.0505 4.1975
5.8737 5.9808
7.6924 7.7762
9.5093 9.5779
11.3252 11.3831
13.1405 13.1907
14.9555 14.9997
16.7702 16.8097
18.5827 18.6204

3. Second azimuthal harmonic

The forced solution for the second azimuthal harmonic terms given in (23) and (24) is

u1 = − 1

2 Fr2 r sin(2θ − z),

v1 = − 1

2 Fr2 r cos(2θ − z),

with w1 = p1 = 0. A homogeneous solution is also required to meet the boundary condition at
r = 1, finally resulting in ⎛⎜⎜⎝

u1

v1

w1

p1

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
f (r) sin(2θ − z)
g(r) cos(2θ − z)
h(r) cos(2θ − z)

− 1
k h(r) cos(2θ − z)

⎞⎟⎟⎟⎠, (33)

where

f = 1

2 Fr2

[
− r + 1

r4

d
dr [r4J2(

√
3kr)]

d
dr [r4J2(

√
3kr)]|r=1

]
, (34)

g = 1

2 Fr2

[
− r + 2

r

d
dr [rJ2(

√
3kr)]

d
dr [r4J2(

√
3kr)]|r=1

]
, (35)

h = k

2 Fr2

[
3

J2(
√

3kr)
d
dr [r4J2(

√
3kr)]|r=1

]
. (36)

This solution is also unbounded at an infinite sequence of resonant values of k, defined by
d

dr
[r4J2(

√
3kr)]|r=1 =

√
3kJ ′

2(
√

3k) + 4J2(
√

3k) = 0, (37)

where the prime acting on a Bessel function means derivative with respect to the argument. This
expression may be solved numerically to determine these values, and the first ten values are listed
in the second column of Table I.

C. Character of the base flow

The total base flow solution is the sum of the three azimuthal harmonics. Higher-order contribu-
tions may be obtained, but are not required to determine the stability of the flow. It will be shown
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FIG. 2. Contours of kinetic energy of the base flow at four axial positions (a) z = 0, (b) z = π

2 , (c) z = π ,
and (d) z = 3π

2 , with β = 0.5 and k = Fr = 1.

below that any of the three components may be unstable. The component of the flow given by (26)
(the zeroth azimuthal harmonic) and (33) (the second azimuthal harmonic) represents the direct
effect of the gravitational body force to distort the stratified vortex. The zeroth azimuthal harmonic
is an axisymmetric flow with swirl. The flow twists and pulses axisymmetrically along the vortex
axis and will be called the twirling component.

The forced part of the second azimuthal harmonic is a rolling planar flow and will be called
the rolling component (when the homogeneous part is added the flow is no longer planar). This
component is an elliptical distortion, similar to that of Crow [9], Moore and Saffman [10], and
subsequent authors. The elliptical distortion is different here since it varies in the axial direction and
has nonzero axial vorticity.

The component given by (31) and (32) (the first azimuthal harmonic) is not directly caused by
gravity and could exist without gravity, as long as a stratified vortex is overturning as described
above. This component exists due to the centrifugal acceleration of a spinning stratified fluid.
Overall, this mc = 1 flow is a helical pattern strongest near the outer boundary. Furthermore, the
azimuthal dependence causes the flow to be maximum at one azimuth and minimum on the opposite
side of the vortex. It can be visualized as a pair of helical streaming flows, one flow contributing to
the base flow and one opposing, and will be called the streaming component.

One example flow pattern (β = 0.5 and k = Fr = 1) for this base state is shown in Fig. 2 using
contours of kinetic energy at four axial positions. These images show that the core of vortex is not
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FIG. 3. Contours of kinetic energy of the base flow at four axial positions (a) z = 0, (b) z = π

2 , (c) z = π ,
and (d) z = 3π

2 , with β = 0.5, k = 5, and Fr = 1.

centered at the origin as it cycles around the origin with increasing z. It is also apparent that the core
is not circular but is flattened, and this effect also rotates with increasing z. A second example flow
pattern with larger k (β = 0.5, Fr = 1, and k = 5) is shown in Fig. 3. As k increases, the pitch of the
overturning density field is becoming shorter. This shorter axial length also has more oscillations in
the radial direction, as can be seen in Fig. 3.

III. STABILITY

Now add a disturbance to this base flow,

ui = ūi(r, θ, z) + u′
i,

and similar expressions for ρ and p, where the overbar indicates a base flow quantity, taken to be
the steady distorted vortex solution discussed previously. Insert these expressions into the governing
equations (6)–(9), subtract the base flow terms, and neglect products of disturbance quantities. The
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base flow solution may be written as⎛⎜⎜⎜⎜⎜⎝
ū
v̄

w̄

p̄
ρ̄

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
u0

v0

w0

p0

1

⎞⎟⎟⎟⎟⎟⎠ + β

⎛⎜⎜⎜⎜⎜⎝
u1

v1

w1

p1

ρ1

⎞⎟⎟⎟⎟⎟⎠ + O(β2), (38)

where the O(1) and O(β ) quantities are given in the preceding section. The disturbance is presumed
to be a normal mode ⎛⎜⎜⎜⎜⎜⎝

u′

v′

w′

p′

ρ ′

⎞⎟⎟⎟⎟⎟⎠ → εei(σ t+mθ+ jz)

⎛⎜⎜⎜⎜⎜⎝
u(r)
v(r)
w(r)
p(r)
ρ(r)

⎞⎟⎟⎟⎟⎟⎠, (39)

where ε is the disturbance amplitude, j is the axial wave number, and σ is the complex frequency,
expanded using

σ = σ0 + βσ1 + O(β2).

Equation (10) becomes

iσ̂ ρ = O(β ), (40)

where

σ̂ = σ0 + m + j. (41)

Thus the disturbance density is higher order in β compared to the disturbance velocity components
and disturbance pressure. This in turn causes the buoyancy terms in the momentum equations that
contain ρ ′ to also be O(β ). With this in mind, the equations reduce to

iσ̂u − 2v = −pr − β(iσ1u + Q1), (42)

iσ̂v + 2u = −1

r
imp − β(iσ1v + Q2), (43)

iσ̂w = −ik̂ p − β(iσ1w + Q3), (44)

ur + 1

r
u + im

1

r
v + ik̂w = 0, (45)

where

k̂ = k j (46)

and the interaction terms give

Q1 =
〈
u1ru′ + u1u′

r + 1

r
v1u′

θ + kw1u′
z +

(
1

r
u1θ − 2

r
v1

)
v′ + ku1zw

′
〉
, (47)

Q2 =
〈

1

r
(v1θ + u1)v′ + u1v

′
r + 1

r
v1v

′
θ + kw1v

′
z +

(
v1r + 1

r
v1

)
u′ + kv1zw

′
〉
, (48)

Q3 =
〈
kw1zw

′ + u1w
′
r + 1

r
v1w

′
θ + kw1w

′
z + w1ru′ + 1

r
w1θv

′
〉
. (49)
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The angular brackets refer to the process that extracts the part of the O(β ) interaction terms that
have azimuthal and axial wave numbers matching the primary harmonic, as discussed in the next
section. Terms containing ρ1 do not appear at this order. They combine to cancel exactly since the
coefficients of ρ1 are the same as the linear terms, which the linear solution satisfies exactly.

Eliminate u, v, p, and ρ from the linear terms in (40)–(42) to obtain

r2wrr + rwr − m2w + 4 − σ̂ 2

σ̂ 2
k̂2r2w = β

1

σ̂ 2

[
r

∂

∂r
[r(iσ1A1 + A2)] − (iσ1B1 + B2)

]
, (50)

where

A1 = iσ̂wr − i2k̂v + k̂σ̂u,

B1 = iσ̂m2w − ik̂σ̂mrv + 2k̂mru,

A2 = iσ̂Q3r − i2k̂Q2 + k̂σ̂Q1,

B2 = iσ̂m2Q3 − ik̂σ̂mrQ2 + 2k̂mrQ1.

Disturbance solution

The solution to (50) at leading order is

w = Jm(γ r), (51)

where

γ 2 = 4 − σ̂ 2

σ̂ 2
k̂2, (52)

and γ will be shown to be real. Note that γ may be negative, in which case

w = (−1)mJm(|γ |r).

The other velocity components are related to w by

u = i
1

γ 2

k̂

σ̂

[
σ̂wr + 2

m

r
w

]
,

v = − 1

γ 2

k̂

σ̂

[
2wr + σ̂

m

r
w

]
.

This solution is identical to the linear modes of a spinning cylinder of fluid (see Refs. [26,27]).
Values of γ are obtained by imposing u(1) = 0, giving

γ σ̂J ′
m(γ ) + 2mJm(γ ) = 0. (53)

Hence (52) and (53) are two algebraic equations for γ and σ̂ . Greenspan [26] proved that σ̂ is
always real and |σ̂ | < 2. The wave numbers k and j must be real to retain axial periodicity, making
k̂ also real. This fact along with (52) means that γ is also real. Since σ̂ , m, and j are all real for any
disturbance, then (41) means that the frequency σ0 of each disturbance is real. Thus the base flow
at leading order, which does not include any distortion, is stable, since all disturbances are purely
oscillatory in time.

Instability arises at the next order, O(εβ ), when the product of the O(β ) base flow quantities and
the O(ε) disturbance quantities produces a waveform that matches the linear disturbance waveform.
Such terms exist when there are two disturbances that satisfy the three-wave resonance conditions:

ma = mb + mc, (54)

ja = jb − 1, (55)

σa = σb, (56)
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FIG. 4. First five profiles of σ̂ for two azimuthal wave numbers (a) m = 1 and (b) m = −1.

where ma, ja, and σa are the wave numbers and frequency of one disturbance, while mb, jb, and σb

are for the other. The base flow is the third member of the wave triad, with wave numbers mc = 0, 1,
or 2, jc = −1, and a frequency of zero. Phillips [37] introduced the idea of three-wave resonances
for studying three interacting free-surface waves. Moore and Saffman [13] used the three-wave
resonance with the vortex base flow modeling one of the waves, as here. A primary difference
between here and Ref. [13] is that the base flow has an axial wave number k, while in the work
of Moore and Saffman the base flow did not have an axial variation, and (55) was replaced with
ja = jb.

The disturbance pairs must obey the resonance conditions (54)–(56), while each member of
the pair must individually satisfy the dispersion relation (52) and the boundary condition (53).
Thus (52)–(56), along with the definitions in (41) and (46), uniquely determine the disturbance
pairs. To find disturbances that satisfy all the conditions, choose azimuthal wave numbers for two
disturbances ma and mb that combine with an azimuthal component of the base flow mc to satisfy
(54). All base flow azimuthal components mc = 0, 1, 2 result in a multitude of disturbance pairs.

The relationship between σ̂ and k̂ may be determined first for each value of m, without reference
to the resonance conditions. Consider, for example, ma = 1 and mb = −1, which successfully
combine with the mc = 2 of the base flow to satisfy (54). Profiles of σ̂ (k̂) for m = ±1 are show
in Figs. 4(a) and 4(b), respectively. There is an infinite set of modes for each m (discussed by
Greenspan [26]). Only the first five are shown in Figs. 4(a) and 4(b). More modes would have
smaller values of σ̂ and increasingly larger values of γ , making the behavior of each additional mode
increasingly oscillatory with the radial coordinate. The profiles are not antisymmetric and must be
determined uniquely for negative k̂ as well as positive. Each profile along with the definitions (41)
and (46) may be used to construct a dispersion profile σ0( j) for each value of the base-state wave
number k.

Dispersion profiles σ0( j) for two example values of k are shown in Fig. 5, choosing the first
profile of σ̂ (k̂) in Figs. 4(a) and 4(b). Each panel in Fig. 5 has two solid lines and two dashed lines.
The solid lines are the dispersion profiles for m = +1, while the dashed lines are for m = −1.
There are two lines for each because σ̂ may be positive or negative at a fixed value of σ̂ (k̂).
One solid line is a dispersion profile as in Fig. 4. This profile is “positive” in that positive k̂
correspond to positive σ̂ . The other solid line is formed by taking the negative of this first set of
σ̂ values. This second solid line is “negative” in that positive k̂ correspond to negative σ̂ . Each
profile is then used along with (41) and (46) to extract the profiles σ0( j), one negative and one
positive.

The process is repeated for the dashed lines, which are then shifted along the abscissa by unity to
account for the resonance condition in (55). The intersection of a solid line with a dashed line gives
a valid solution to the resonance conditions, since the frequency’s σ0 match at the intersections,
satisfying (56), while each figure is constructed to satisfy the other two resonance conditions (54)
and (55).
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FIG. 5. Dispersion profiles for ma = 1, mb = −1, and mc = 2 for two example values of k: (a) k = 1 and
(b) k = 5.

The example in Fig. 5(b) has k = 5 and shows four intersections. Thus, for this case there are four
sets of disturbances, each set consisting of a pair of disturbance waves. No parameter values have
been found with more that four sets. The four sets are arbitrarily labeled modes 0, 1, 2, and 3.
Modes 0 and 1 are intersections of dispersion profiles with the same sign: positive-positive or
negative-negative. Mode 2 is a negative-positive intersection and mode 3 is a positive-negative
intersection. A more physically meaningful characterization of the four modes has not emerged.
The search for allowable modes is performed with one of each dispersion profile, finding one mode
at a time, suggesting this characterization. Precise values of σ0 for the intersections of these profiles
are found numerically using the bisection method.

The numerical results show that for all values of k considered with mc = 1, each combination
of allowable profiles σ̂ (k̂) results in four independent modes that satisfy the three-wave conditions.
The frequency σ0 of these allowable disturbance modes is shown in Fig. 6 for four values of ma and
mb. Note that mode 0 is shown with a black line, 1 is blue, 2 is red, and 3 is green, in Fig. 6 and
beyond. Mode numbers are also shown near each line. The results shown in Fig. 6 use the the first
dispersion profile for each m, giving the smallest values of γ . Choosing other profiles results in a
different set of modes with larger values of γ .

With mc = 0 and 2, larger values of k also result in four modes, as in Fig. 5(b). However, smaller
values of k with mc = 0, 2 only have two modes, as in Fig. 5(a). The negative solid profile no longer
intersects the negative dashed profile in Fig. 5(a), unlike Fig. 5(b). Thus there is no mode 0 or 1 for
this value of k with ma = 1, mb = −1, and mc = 2.

Figures 7 and 8 show the frequency σ0 of allowable modes with mc = 0 and 2, respectively, for
four cases each. As before, all modes in Figs. 7 and 8 use the first σ̂ (k̂) profiles. It can be clearly
seen that modes 0 and 1 merge and do not exist for smaller values of k in both figures.

There are values of k with mc = 0, 2 where one of the disturbances is resonant. At such a resonant
value, the axial wave number j of the resonant disturbance becomes zero. With j = 0, the axial
disturbance velocity is also zero, w = 0, and the solution for the disturbance velocity in (51) is no
longer valid. The equation governing the other velocity components u and v at these special points
is of Cauchy-Euler type. With m �= 0, the resulting solution is unbounded at the origin, while with
m = 0 the solution cannot meet the boundary condition u(1) = 0. Thus the formulation treated here
does not provide a disturbance solution at these discrete values of k. Any of the four modes may
have resonant values and there may be more than one resonant value for any mode.

If k = 0, there is no axial variation and the base flow reduces to a purely two-dimensional motion.
Furthermore, the mc = 2 component of the base flow becomes zero with k = 0. Thus the present
configuration with k = 0 does not match previous configurations. Previous authors considered
uniform axial distortion, caused by the presence of a second vortex, which is neglected here. This
previous work, such as those of Moore and Saffman [13] and Lacaze et al. [18], also included
potential flow for r > 1, different than here, thus the two cases do not match, even with k = 0.
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FIG. 6. Frequency of disturbance waves with mc = 1: (a) ma = 2 and mb = 1, (b) ma = 1 and mb = 0,
(c) ma = 0 and mb = −1, and (d) ma = −1 and mb = −2.
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FIG. 7. Frequency of disturbance waves with mc = 0: (a) ma = mb = 2, (b) ma = mb = 1,
(c) ma = mb = 0, and (d) ma = mb = −1.
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FIG. 8. Frequency of disturbance waves with mc = 2: (a) ma = 3 and mb = 1, (b) ma = 2 and mb = 0,
(c) ma = 1 and mb = −1, and (d) ma = 0 and mb = −2.

IV. RESULTS OF THE STABILITY ANALYSIS

The sum of the two disturbances is substituted into (50) and the resulting expression is multiplied
by the waveform for each disturbance in successive steps and integrated over the spatial domain.
The azimuthal and axial parts of the integral represent the angular brackets in (47)–(49), may
be performed exactly, and act to collect all contributions with the same wave numbers. The
radial part of the integrations is more complex and the final algebraic equations are determined
by multiplication by rJm(γ r) using m and γ for each disturbance in successive steps and then
integration. The result is two algebraic equations

[
σ1Da Ea

Eb σ1Db

](
εa

εb

)
= 0, (57)

where εa and εb are the amplitudes of the two disturbances. Thus,

σ 2
1 = EaEb

DaDb
, (58)

where

Da =
∫ 1

0

(
r

∂

∂r
(rA1) − B1

)
rJma dr,

Db =
∫ 1

0

(
r

∂

∂r
(rA1) − B1

)
rJmbdr,
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Ea =
∫ 1

0

(
r

∂

∂r
(rA2) − B2

)
rJma dr,

Eb =
∫ 1

0

(
r

∂

∂r
(rA2) − B2

)
rJmbdr.

The integrals are performed numerically using the trapezoid rule.

A. Twirling instability mc = 0

As discussed above, disturbance pairs will combine with the part of the base flow that has
mc = 0, 1, or 2 to form three-wave combinations. Once the disturbances are determined, (58), along
with corresponding expressions for Qi (47)–(49), is used to determine the value of σ 2

1 . The flow is
unstable when a disturbance has a value of σ with a positive imaginary part. Since σ0 is purely real,
only σ1 can have a nonzero imaginary part, which occur as positive and negative pairs when the
value of σ 2

1 is negative.
First consider the case of mc = 0, which is an axisymmetric flow that oscillates along the vortex

axis and is being called the twirling component. The following expressions for Qi are valid for both
disturbances when considering mc = 0. When finding the values of Qi for the a disturbance, use
the upper sign and the wave parameters m, j, and σ0 for the b disturbance. Conversely, for the b
disturbance,

Q1 = ε
1

2

[
± i( f u)r + i

m

r
gu + i jkhu ± 2

r
gv + k f w

]
,

Q2 = ε
1

2

[
i
m

r
gv ± i f

1

r
(rv)r + i jkhv + 1

r
(rg)ru ∓ ikgw

]
,

Q3 = ε
1

2

[
i( j ∓ 1)khw ± i f wr + hru + i

m

r
gw

]
.

With mc = 0, use (27) and (28) for f , g, and h.
Values of σ 2

1 for the case with mc = 0 are shown in Fig. 9 for four combinations of ma and mb,
matching the cases in Fig. 7. The flow is only stable if σ 2

1 is positive for all triads at a chosen value
of k. Note that stability here does not require positive σ 2

1 for all k, as k is a fixed parameter for the
base flow.

Figure 9 shows that for smaller values of k, the values of σ 2
1 are small and positive, indicating

that these modes are stable. Larger values of σ 2
1 exist at larger values of k, as the value of σ 2

1 shows
oscillatory behavior with increasing k. Different modes are the most unstable over different intervals
of k. This is shown in Fig. 10, which provides the value of Im(σ ) for the most unstable modes with
mc = 0. The most unstable mode is the disturbance that has the largest value of Im(σ ) at a chosen
k. For small k, there are no modes that have been found with nonzero imaginary part, thus the
twirling component of the base flow is stable for small k. The twirling instability is relatively strong
over the interval considered when k � 1.57. Mode 0 with ma = mb = 1 is the strongest mode near
k ≈ 2.2; however, another mode dominates as k increases. There are many other modes: different
σ̂ (k̂) profiles and larger positive or negative values of ma and mb. Some of these modes have also
been considered and found to be increasingly more stable. Thus the most unstable modes with
mc = 0 use the first σ̂ (k̂) profile.

In general, disturbances may be propagating with the base rotation or against it (Saffman [27]
calls this cograde or retrograde, respectively) and propagating upstream or downstream. With
mc = 0, the two disturbances have the same value of m and the same frequency to satisfy the res-
onance conditions, thus they propagate with the same azimuthal speed. For the case ma = mb = 0,
the disturbances do not propagate in the azimuthal direction. For other cases with mc = 0, with
k � 1 the azimuthal velocity for both disturbances is negative for all four modes, meaning that both
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FIG. 9. Values of σ 2
1 with mc = 0, Fr = 1: (a) ma = mb = 2, (b) ma = mb = 1, (c) ma = mb = 0, and

(d) ma = mb = −1.

disturbances rotate against the base flow and are retrograde. With k � 1, one disturbance becomes
cograde; however, the twirling component is stable for such small k.

With k ≈ 2.2, mode 0 with ma = mb = 1 is most unstable and both disturbances are traveling
upstream, one mode faster than the base flow and the other mode slower. As k increases, mode 1
with ma = mb = 1 is most unstable and both disturbances are traveling downstream.

Some of the profiles in Fig. 9 show a gap, the position of which is indicated with a dashed
line segment. The position of this gap is the value of k where one of the disturbances is resonant,

0 5

k

0

1

|Im
(σ

)|

iii

iv

i

ii

FIG. 10. Growth rates (imaginary part of σ ) for the most unstable modes with mc = 0 and Fr = 1:
(i) mode 2 with ma = mb = −1 and mode 3 with ma = mb = 1, (ii) mode 3 with ma = mb = 0, (iii) mode
0 with ma = mb = 1 and mode 1 with ma = mb = −1, and (iv) mode 1 with ma = mb = 1 and mode 0 with
ma = mb = −1. To obtain dimensional values, multiply by V/R.
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FIG. 11. Values of σ 2
1 with mc = 1: (a) ma = 2 and mb = 1, (b) ma = 1 and mb = 0, (c) ma = 0 and mb =

−1, and (d) ma = −1 and mb = −2.

with an axial wave number of zero, j = 0. As mentioned previously, the solution found here
is not valid at these discrete values. Furthermore, in the immediate neighborhood of a resonant
value, the associated value of γ becomes large, the behavior of the solution becomes highly
oscillatory, and numerical accuracy suffers. Thus reliable results in the immediate neighborhood
of a resonant disturbance are difficult to achieve with the chosen numerical approach. The rolling
instability (mc = 2) also has resonant cases; however, the streaming instability (mc = 1) does not
show resonant disturbances within the parameter values considered.

B. Streaming instability mc = 1

The base flow component with mc = 1 is a pair of helical streams and is called the streaming
component. The process for calculating σ 2

1 with mc = 1 is the same as described above, except now
use

Q1 = ∓ε
1

4
[(m + j)ru + i2rv],

Q2 = ∓ε
1

4
[(m ± 1 + j)rv + i3ru + kr2w],

Q3 = ∓ε
1

4

[
(m ∓ 1 + j)rw − 1

k
(iu ∓ v)

]
.

Values of σ 2
1 for the case with mc = 1 are shown in Fig. 11, again for four examples, matching

the examples in Fig. 6. Figure 11 shows much different behavior than before. Now, with mc = 1,
the largest values of σ 2

1 occur for small k, and σ 2
1 not oscillatory with k.

The most unstable modes with mc = 1 are shown in Fig. 12. For small k, the most unstable mode
is mode 3 with ma = 2 and mb = 1 (Fig. 12, green line). Both disturbances are retrograde, with
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FIG. 12. Growth rates (imaginary part of σ ) for the most unstable modes with mc = 1: (i) mode 3 with
ma = 2 and mb = 1 and (ii) mode 1 with ma = 3 and mb = 2. To obtain dimensional values, multiply by V/R.

one disturbance traveling downstream rapidly and the other traveling upstream but slower than the
base flow. As k increases in value, mode 1 with ma = 3 and mb = 2 becomes the most unstable
mode (blue line). Both disturbances are cograde and both are traveling downstream slowly at nearly
identical speeds.

As before, there are many modes other than those shown in Fig. 11, modes with different σ̂ (k̂)
profiles and larger positive or negative values of ma and mb. For this case (mc = 1), these other
modes are more stable.

C. Rolling instability mc = 2

For mc = 2, calculate σ 2
1 as described above, except now use

Q1 = ε
1

2

[
∓ i( f u)r + i

m

r
gu + i jkhu ± 2

r
( f ∓ g)v − k f w

]
,

Q2 = ε
1

2

[
i(m ± 2)

1

r
gv ∓ i f

1

r
(rv)r + i jkhv + 1

r
(rg)ru ∓ ikgw

]
,

Q3 = ε
1

2

[
i( j ∓ 1)khw ∓ i f wr + i

m

r
gw + hru ± i

2

r
hv

]
,

and (34)–(36) for f , g, and h.
Profiles of σ 2

1 with mc = 2 are shown in Fig. 13, again for four cases. Note the larger scale for
the ordinate, compared to either Fig. 9 or 11. Figure 13 shows that the value of σ 2

1 approaches zero
as k → 0. This feature is present for modes 2 and 3 for all cases considered. Modes 0 and 1 do not
have wave triads for small values of k, as discussed previously. For larger k, Fig. 13 shows that σ 2

1
becomes larger in absolute value in an oscillatory manner, similar to the case of mc = 0.

Again, the most unstable modes are shown with values of Im(σ ), now in Fig. 14. The behavior
is similar to the case of mc = 0, except the growth rates are much stronger with mc = 2. Thus the
rolling instability is more important than the twirling instability in that both behave similarly with
k, yet the rolling instability has larger growth rates. Furthermore, the rolling instability is unstable
even with small k, although the streaming instability is the most dominant for small k.

Figure 14 shows that a variety of modes become dominant as k ranges over 0 < k < 5. All
of these different modes are either retrograde or do not propagate azimuthally; none are cograde.
Table II gives the sense of the azimuthal wave speed σ0/m for each mode shown in Fig. 14. A
negative sign in Table II means the disturbance is retrograde, while 0 indicates zero azimuthal wave
speed. The disturbances may be propagating upstream or downstream, also indicated in Table II
with the sense of σ0/ j, the axial wave speed.
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FIG. 13. Values of σ 2
1 with mc = 2, Fr = 1: (a) ma = 3 and mb = 1, (b) ma = 2 and mb = 0, (c) ma = 1

and mb = −1, and (d) ma = −0 and mb = −2.

Cases i–iv in Fig. 14 are disturbance pairs involving the first dispersion profile σ̂ (k̂) for each
of the two disturbances. Other profiles and other values of m have resulted in weaker or stable
modes, similar to the twirling and streaming instabilities. However, case v in Fig. 14 uses the second
dispersion profile for the b disturbance, producing the most unstable mode for the interval shown.
Using the first dispersion profile for both disturbances results in a smaller value of σ 2

1 and thus

0 5

k

0

5

10

|Im
(σ

)|

i

iii

ii

ii

iv
v

FIG. 14. Growth rates (imaginary part of σ ) for the most unstable modes with mc = 2 and Fr = 1: (i) mode
2 with ma = 2 and mb = 0, (ii) mode 0 with ma = 3 and mb = 1, (iii) mode 3 with ma = 2 and mb = 0, (iv)
mode 0 with ma = 0 and mb = −2, and (v) mode 3 with ma = 2 and mb = 0 and using the second dispersion
mode for the b disturbance. To obtain dimensional values, multiply by V/R.
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TABLE II. Sense of disturbance azimuthal and axial speeds for
most unstable modes with mc = 2.

σ0/m σ0/ j

Mode a b a b

i − 0 − −
ii − − + −
iii − 0 + −
iv 0 − − −
v − 0 + −

a smaller growth rate for this interval. This is shown in Fig. 15, which gives the value of σ 2
1 for

three cases. Case (i) uses the first dispersion profile for both disturbances, while cases (ii) and
(iii) substitute the second and third profiles, respectively, for disturbance b. Clearly, case (ii) has
the largest negative value of σ 2

1 for k � 4. This is the only example that has been found where a
disturbance pair is dominant and uses a dispersion profile other than the first one. Note that other
modes dominate for k � 5.

D. Further discussion

With the twirling instability (mc = 0) and the rolling instability (mc = 2), the strength of the base
flow is proportional to the inverse of the square of the Froude number. Ultimately this means that

Im(σ ) ∝ 1

Fr2 .

The above values for Im(σ ) with mc = 0, 2 determined with Fr = 1 can be used to find Im(σ ) for
any other Froude number merely with division by Fr2. Thus the growth rates decrease dramatically
as Fr increases. Unstable modes given above for Fr = 1 are still unstable at large Fr, but growth
rates are smaller. The streaming instability is independent of Fr.

The behavior with k of the streaming instability is much different from the behavior with k
of the twirling and rolling instabilities. The streaming instability is strong for small k, which
corresponds to a long pitch of the base flow. The twirling and rolling instabilities are strong for
larger k, corresponding to a short pitch.

0 5

k

−40

−20

0

20

40

σ
2 1

iii

ii
i

FIG. 15. Values of σ 2
1 for mode 3 with mc = 2, ma = 2, and mb = 0. The a disturbance uses the first

dispersion profile σ̂ (k̂), while the b disturbance uses the (i) first, (ii) second, and (iii) third profiles. To obtain
dimensional values, multiply by V/R.
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The solution for the base flow velocity for the twirling and rolling modes becomes unbounded
at a sequence of values of k, as discussed previously. This happens when the divisor in (30) or (37)
becomes zero. This divisor appears in each term of both algebraic equations in (57) and thus cancels
in (58). As a result, finite values of σ 2

1 are achieved at these resonant values of k. Furthermore, the
maxima of σ 2

1 that appear in Figs. 10 and 14 do not generally correspond to these resonant k values.

V. CONCLUSION

Previous numerical simulations of a pair of counterrotating vortices released in a density stratified
fluid approximated the flow behind a wing. These simulations were either two dimensional or had
the density field initially uniform along the axis of the vortices. However, the density field behind a
wing in laboratory experiments or in the field is quite different. The trailing vortex system behind
a wing twists the density field such that it overturns along the axis of the vortices. Thus the base
flow behind a wing has a density profile that oscillates between statically stable and unstable states.
This density field is approximated here assuming a steady flow that has the density overturning
periodically along the axis of a vortex. The matching base-state velocity is found approximately
assuming weak stratification.

This steady base flow is shown here to be unstable. Attention is restricted to the case where the
base velocity field has constant axial vorticity at leading order and the flow is contained within a
rigid cylinder. With weak stratification, the disturbance modes are identical to waves in a spinning
cylinder of fluid. An instability exists when the disturbances satisfy the three-wave resonance
conditions, with two disturbance waves interacting with a component of the base flow to form the
wave triad.

The base-state velocity field has components with azimuthal wave number mc = 0, 1, 2. Distur-
bance pairs that satisfy the resonance conditions exist with all of these components individually.
The mc = 1 component is a streaming flow, featuring a pair of helical streams superimposed on the
base vortex. The results show that many of the disturbance pairs that combine with the streaming
component are unstable such that the flow is always unstable. This streaming instability depends
strongly on k and is dominant for small k, corresponding to a large pitch of the base flow. However,
the streaming instability is independent of the Froude number Fr.

The twirling (mc = 0) component is an axisymmetric flow with swirl, oscillatory along the vortex
axis. This twirling component is stable for small k and unstable as k becomes larger (short pitch).
Growth rates for the twirling instability are smaller than those for the rolling instability (mc = 2),
thus the rolling instability dominates the behavior as k becomes large.

The rolling mc = 2 component is similar to the elliptic instability. The mc = 2 distortion here is
distinct because it is caused by stratification and varies along the vortex axis, whereas the elliptic
distortion in previous studies was caused by the presence of a second vortex and was axially uniform.
Another difference is that the velocity field here has axial vorticity that is not constant and previous
cases with a Rankine vortex did have constant axial vorticity. The results here show that many of
the disturbance pairs that combine with the rolling component are also unstable. The strength of this
rolling instability varies with k in a complex manner. Furthermore, the strength of the instability is
inversely proportional to the square of the Froude number Fr.

More generally, the present theory demonstrates that vortices in the wake of a wing in a stratified
fluid are governed not only by the Froude number, but also by the pitch of the density field, as
measured by k. Previous studies recognized the importance of the Froude number, but not k.

The previous three-dimensional simulations by Nomura et al. [4] had an initial density field
that was axially uniform, which corresponds to an infinite pitch and therefore k = 0. However, the
present theory with k = 0 has zero mc = 2 distortion and therefore no rolling instability. Nomura
et al. treated a vortex pair and the presence of the second vortex generated the elliptic instability,
which dominated the simulations, according to Nomura et al. Thus the results here do not correspond
to the configuration of Nomura et al.
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Previous two-dimensional simulations of a vortex pair correspond trivially to axial uniformity.
Although the simulations include two vortices, which suggests an elliptic instability, elliptic dis-
turbances are three dimensional and do not exist in two dimensions. Similarly, the twirling and
streaming instabilities found here are three dimensional, even with k = 0, for which the disturbance
axial wave numbers are equal, ja = jb, but not zero. Thus the complex behavior at small values
of F̃r in the two-dimensional simulations is not completely explained by the present results. The
behavior might be due to a different mechanism, involving the slow nearly static overturning of a
strongly stratified fluid.

The previous laboratory experiments of Sarpkaya [8] would not have had a density field that was
axially uniform, thus each case of Sarpkaya had a nonzero value for k, although this parameter is not
mentioned by Sarpkaya. Using their published data, the value of k in the experiments of Sarpkaya
[8] is estimated here to be k ≈ 0.1. This means that the density field inside the vortex would
be overturned in approximately five core radii along the vortex axis. Values of k for commercial
aircraft are smaller, while values for wind turbines and other relatively slow-moving applications
are much larger. For the small-k value of Sarpkaya’s experiments, the streaming instability mc = 1 is
dominant. However, the experiments also had a second vortex, which is neglected here. The second
vortex could also be responsible for the results of the experiments.

Trailing vortices behind airplanes are not confined to a fixed radius, suggesting an extension of
the present work to an open geometry. The overturning feature of the stratified flow that has been
treated here will also exist in an open geometry and therefore the same instabilities are expected
to exist. However, the analysis is significantly more complex and beyond the scope of the present
work.
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