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The head-on collision of two vortex rings can produce diverse phenomena: A tiara of
secondary rings, vortex sheets which flatten and interact iteratively, or the violent disinte-
gration of the rings into a turbulent cloud. The outcome of the interaction is determined
by the nature of the instability affecting two impinging vortex rings. Here we carry out a
systematic study to determine the dominant instability as a function of the parameters of
the problem. To this end, we numerically simulate the head-on collision of vortex rings
with circulation Reynolds numbers between 1000 and 3500 and varying slenderness ratios
� = a/R ranging from � = 0.1 to 0.35, with a the core radius and R the ring radius. By
studying the temporal evolution of the energy and viscous dissipation, we elucidate the role
azimuthal instabilities play in determining what the outcomes of the collision are. We then
compare these collisions to the head-on impact of a vortex ring on a free-slip and a no-slip
wall. The free-slip wall imposes a mirror symmetry, which impedes certain instabilities
and at sufficiently large Reynolds numbers leads to the formation of a half-tiara of vortices.
Impact against a no-slip wall results in the process where a secondary vortex ring is formed
after the ejection of the resulting boundary layer. When the Reynolds number is above
a certain threshold, which increases with �, the vortices disintegrate through azimuthal
instabilities, resulting in a turbulent cloud.

DOI: 10.1103/PhysRevFluids.6.104702

I. INTRODUCTION

In a fluid stirred at large scale, turbulence sets in when the Reynolds number is large enough.
The motion is then characterized by a hierarchy of eddies, from the forcing scale down to very
small scales. The mechanism describing the formation of these small eddies can be pictorially
described by the notion of Richardson cascade [1]. Taylor and Green made the essential remark
that generation of small scales in a fluid can be traced back to the nonlinear interaction in the
Navier-Stokes equations, which in fact could conceivably lead to the formation of singularities in
the Navier-Stokes equations [2]. A considerable amount of work has been devoted to a description
of the cascade in statistical terms [3,4] and more recently, into providing a mechanistic description
of it [5,6].

Understanding quantitatively the formation of higher harmonics, or equivalently of large velocity
gradients, is a multifaceted problem. By solving an instantaneous optimization problem, Lu and
Doering [7] proposed that head-on ring collisions are maximally enstrophy producing at high
Reynolds numbers. This result was later extended to finite time optimization by Kang et al. [8].
Thus, it is not surprising that historically vortex tube or vortex ring interactions have been used as
a framework for studying the formation of large velocity gradients [9–14] and the turbulent cascade
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[15]. In particular, the classical work of Lim and Nickels [16] showed that at sufficiently high
Reynolds numbers, the head-on collision of two vortex rings led to a rapid disintegration of the
coherent rings to form a turbulent cloud, and this has inspired further experimental and numerical
studies of this flow [6,17].

How such a turbulent cloud forms crucially depends on which azimuthal instability is pre-
dominant [6]. Below the threshold Reynolds number for cloud formation, Lim and Nickels [16]
observed the formation of a tiara-like structure of secondary rings. The interaction process is
started by azimuthal instabilities consistent with the mechanism originally discovered by Crow to
explain the growth of perturbation along antiparallel vortices [18] and is later mediated through
local reconnection events that result in the formation of the secondary vortices. We stress that the
Crow instability acts, in certain circumstances, as a precursor to local reconnection, but it cannot be
identified with reconnection as it can sometimes lead to disintegration of significant regions of the
vortices, leaving behind a turbulent cloud [19].

In other circumstances [6], the formation of turbulent clouds after vortex collision and disintegra-
tion was associated to the Tsai-Widnall-Moore-Saffman (TWMS) instability [20,21], also known as
the elliptical instability. McKeown et al. [6,17] further investigated the system in Ref. [16] using
high-speed imaging and simulations, observing diverse mechanisms of interaction, ranging from the
iterative formation and breaking of vortex sheet to a cascade of elliptical instabilities, finding that at
higher Reynolds number the elliptical instability tends to dominate [6]. However, the competition
between elliptical and Crow-like instabilities depends not just on Reynolds number, but also on ring
slenderness and the vorticity distribution [6,22]. For example, for vanishingly slender filaments, the
Crow instability, and not the elliptical instability dominates at high Reynolds numbers, as seen, for
example, in an aeroplane’s wake [23]. Thus, the regions of phase space corresponding to various
dynamical regimes are delimited by more than a single parameter.

The interaction of a single vortex ring with a wall is related to the head-on collision between
two rings. In particular, a ring approaching a free-slip wall can be thought of as interacting with
its mirror image. It is therefore interesting to consider the instabilities of the ring during the
interaction with both stress-free and no-slip walls. In the former case, the presence of a mirror image
imposes a strong symmetry, which favors the development of the Crow instability, and a certain
type of reconnection. Existing studies of this geometry have distinguished the three instabilities
happening during the interaction: The ring’s elliptical instability stemming from self-interaction, a
long-wavelength Crow-type instability between the image and the ring, and the short wavelength
elliptical-like instability between image and ring which is not present for two tubes with imposed
symmetry [24]. Using this, Archer et al. [24] proposed that the interaction between the initial TWMS
seeding and the Crow instability controls the transition between secondary ring pinch-off seen by
Lim and Nickels [16] and complete disintegration, further complicating the parameter space. A
similar phenomena was observed by Laporte and Corjon [25] in the interaction between two vortex
tubes.

On the other hand, head-on collision of a vortex against a no-slip wall forms boundary layers
close to the surface, which significantly affect the flow by forming opposite signed vorticity
structures which later lift-off to produce secondary and tertiary rings, and cause the vortex ring
to “rebound” off the wall [26–29]. While this appears to be remarkably distinct from the two vortex
collision, at sufficiently high Reynolds numbers the interaction between primary and secondary
vortex rings leads to complete disintegration of the ring after substantial deformations of the
secondary vortex [26]. The large strains arising from the primary (original) vortex are responsible for
destabilizing the secondary ring [28], so this process has been related to the elliptical instability [30],
which is responsible for the disintegration of vortex ring pairs during head-on collision. However,
more recent work has called this strict identification into question, as the calculations in Ref. [30]
do not account for the angular rotation effects [31]. In addition, Ref. [32] showed that centrifugal
instabilities can arise even when the Reynolds number is not large enough to curl the lifted boundary
layer up into a secondary vortex due to the changing vorticity sign. Regardless of the exact instability
type, at high Reynolds numbers the impact of a ring on a no-slip wall results in flow dynamics are
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that share many similarities with the head-on collision, and this merits that this case is included
alongside the other two as the parameter space is mapped.

This brief review makes it clear that a range of diverse instabilities and their interactions control
the outcome of the head-on collision of two vortex rings and of vortex rings impacting a flat surface.
Understanding when the rings disintegrate to form a turbulent cloud is crucial for understanding
the transfer of energy across scales in a fluid flow, and to relate it to the question of maximal
ensthropy growth [7,8]. In this paper, we conduct a series of direct numerical simulations of vortex
ring head-on collision, as well as vortex ring impact against a flat wall to explore the parameter
space and classify the different outcomes of the process, noting which regions of parameter space
produce the fastest transfer of energy across scales.

The paper is laid out as follows. Section II describes the code used, the simulation parameters and
the geometry used, as well as supporting the choices by conducting a series of additional simulations
of a single ring evolving in time. Section III describes the head-on collision between two thin rings,
and the collision between a thin ring and a stress-free wall. Section IV describes the effect of ring
thickness on these two cases. Section V describes the interaction between a no-slip wall and a ring.
Finally, Sec. VI presents the summary and conclusions of the study.

II. SIMULATION SETUP

A. Code details

Both configurations studied in this paper (head-on collision and ring-wall impact) are simulated
using the same code. This code solves the incompressible Navier-Stokes equations using an energy-
conserving second-order centered finite difference scheme in cylindrical coordinates. We emphasize
that the choice of cylindrical coordinates is crucial to avoid artifacts coming from a Cartesian
discretization of a toroidal fluid structure [33]. We will return to this point later; see Sec. V B.

Fractional time stepping is implemented: a third-order Runge-Kutta scheme is used for the
nonlinear terms and a second-order Adams-Moulton scheme is used for the viscous terms [33]. The
solver uses qr = rvr as a primitive variable to avoid singularities near the axis. Spatial discretization
is taken as uniform in the azimuthal direction, and points are clustered in the radial and axial
directions around the regions of interest (the collision region or the wall). The time step was
dynamically chosen so that the maximum Courant-Friedrich-Lewy (CFL) condition number was
1.2, with the stability limit of the code being ≈√

3 [33].
Vortex rings are implemented as initial conditions. We use vortex rings, starting from the standard

Gaussian (Lamb-Oseen) vorticity profile for a tube:

ωθ (ρ) = �

πa2
exp

(
−ρ2

a2

)
(1)

with ρ the distance to the vortex center. By using this vorticity distribution and extending it to a
ring, we obtain solutions with a circulation � and a core radius a, with the core radius defined
as the second moment of the vorticity around the vortex center [23]. This geometry results in
the ring self-advecting with a velocity Va ∼ log(a/R) [34]. We can characterize the rings using
two nondimensional control parameters: The circulation Reynolds number Re� = �/ν and the
slenderness ratio � = a/R, where R is the ring, or outer radius. A schematic of how these parameters
are defined can be seen in Fig. 1.

The above definition of vorticity results in the following rotational velocity profile when the
radius R is very large (a straight vortex tube), i.e., when � → 0:

Vθ (ρ) = �

2πρ

[
1 − exp

(
−ρ2

a2

)]
. (2)

We show the initial profiles for several values of � in Fig. 2. In a ring with a finite radius, the
profiles of ωθ and Vθ will be modified after a brief transient, as the Lamb-Oseen solution is an
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FIG. 1. Schematic of vortex ring. The figure represents a cut of the ring by a plane containing the axis
of symmetry, shown as a dashed line. The ring slenderness � is defined as � = a/R. The ring self-advects
downwards with a velocity Va.

exact solution only for the case of straight tubes. The “inner” side of the ring interacts with other
parts of the vortex, the more so as the slenderness ratio, �, is larger. With time, the rings relax to
a vorticity distribution which is different from the original, while still being dependent on �. How
this relaxation occurs and the resulting vorticity profiles is discussed in more detail in the following
section.

We can see that even if the circulation is constant inside each ring (by definition), the vorticity
is much more concentrated for smaller values of �, and the maximum velocity in each ring also
increases with decreasing �. This will be later reflected in certain instabilities having a lower onset
value of Re� for slender rings than for thicker rings.

From this point onwards, space and time variables are nondimensionalized with the ring circu-
lation � and the initial ring radius R0. We also highlight that the choice of Re� and � as control
parameters is one usually done in numerics where the initial velocity profile is easily controlled.
In experiments, a vortex ring is usually generated using a piston, of diameter Dp, which moves a
stroke Lp at velocity Up. This leads to two dimensionless control parameters: A Reynolds number
defined using piston scales Rep = UpDp/ν, and a stroke ratio Lp/Dp. While both Reynolds numbers
are close to each other, with Rep usually being slightly higher, the relationship between the ring
thickness and the two experimental control parameters is much more complicated [6,35]. As such,
numerical simulations have a much more direct control over the slenderness of a ring.

FIG. 2. Vorticity (left) and rotation velocity (right) profiles for rings of different slenderness. The dashed
black line on the right panel denotes the point free-vortex asymptote Vθ = �/[2πρ].
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FIG. 3. Schematic of the head-on collision. The figure represents a cut of the two vortex rings by a plane
containing the axis of symmetry, shown as a dashed line. The two vortices are moving towards each other with
equal velocities.

B. Simulation geometry and white and colored noises

For head-on vortex ring collision, two aligned vortex rings of identical but opposite vorticity are
placed a distance Lz away, as shown in Fig. 3. A rotational symmetry (nsym) of order five was forced
on the simulation to reduce computational costs. This value was chosen following Ref. [36], which
postulate that modes with an azimuthal wave number m of five are most unstable modes for the
instabilities associated to a ring interacting with itself. We further justify this choice later.

The initial position of the cores are perturbed using a low-band noise:

R(θ, t = 0) = 1 +
20∑

k=1

εk sin[knsym(θ + φk )], (3)

with εk taken from a Gaussian distribution of zero mean and φk taken from a uniform distribution
between 0 and 2π .

Different random values were used for the two rings, and two types of perturbation were used,
for reasons we explain in the next paragraph. For the first, which we refer to as white noise, we
take 3 × 10−3 as the variance of the Gaussian distribution that gives εk for all the values of k (1 �
k � 20). This is done for all runs discussed in Secs. III A, III C, IV B, and V, as well as the first
half of Sec. IV A. For the second, which we denote colored noise, the amplitudes of the two largest
wavelengths in the system (ε1 and ε2) are amplified ten times after being obtained from a random
distribution. This is done for the runs discussed in Sec. III B, and in the second part of Sec. IV A. The
noise is calculated once per value of � and per geometry but is kept the same as Re� is increased.
We note that with the form of the perturbation used, Eq. (3), the azimuthal wave numbers in the
system k are a subset of the total azimuthal wave numbers m, and are related by m = knsym. So the
smallest wave number (k = 1) we can seed if nsym = 5 is m = 5, the second smallest is m = 10, and
so on.

The vortices were started at a distance of Lz = 2.5. This value is sufficient to relax the ring from
the initial conditions, as most of the dynamics we are analyzing in this paper happens away from the
axis (cf. Sec. II C for a discussion on relaxation). Larger values of Lz would also provide stronger
seeding for the Crow-type instabilities due to the ring’s self-instability acting for a longer time [24].
However, increasing Lz comes at the cost of computational resources, so as a proxy for increased
seeding of the long-wavelength cases due to large values of Lz we simulated the colored noise cases.
Furthermore, a discussion of how long-wavelength modes grow with increasing Lz is provided in
the Sec. II D.
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TABLE I. Summary of resolutions used for all simulations discussed in Secs. III, IV, and V.

Re� � Rext Nθ × Nr × Nz � Rext Nθ × Nr × Nz � Rext Nθ × Nr × Nz

Head-on collision with white noise
1000 0.1 5 384 × 512 × 264 0.2 5 384 × 512 × 264 0.35 6 384 × 512 × 264
2000 0.1 5 384 × 512 × 264 0.2 5 384 × 512 × 264 0.35 6 384 × 512 × 264
3500 0.1 5 384 × 512 × 264 0.2 5 384 × 512 × 264 0.35 6 384 × 512 × 264

Head-on collision with colored noise
1000 0.1 5 384 × 512 × 264 0.2 5 384 × 512 × 264 0.35 5 384 × 512 × 264
2000 0.1 5 384 × 512 × 264 0.2 5 384 × 512 × 264 0.35 5 384 × 512 × 264
3500 0.1 5 384 × 512 × 264 0.2 5 384 × 512 × 264 0.35 5 384 × 512 × 264

Stress-free wall impact
1000 0.1 8 192 × 256 × 256 0.2 10 192 × 192 × 256 0.35 10 192 × 192 × 256
2000 0.1 8 192 × 256 × 256 0.2 10 192 × 192 × 256 0.35 10 192 × 192 × 256
3500 0.1 8 256 × 512 × 256 0.2 10 256 × 256 × 256 0.35 10 192 × 192 × 256

No-slip wall impact
1000 0.1 4 128 × 192 × 256 0.2 4 128 × 192 × 256 0.35 4 128 × 192 × 256
2000 0.1 4 128 × 192 × 256 0.2 4 128 × 192 × 256 0.35 4 128 × 192 × 256
3500 0.1 4 128 × 192 × 256 0.2 4 128 × 192 × 256 0.35 4 128 × 192 × 256
5000 0.35 4 192 × 192 × 256

The range of Reynolds numbers based on the circulation Re� considered was between Re� =
1000 and Re� = 3500. Three values for ring slenderness � were considered: 0.1, 0.2, and 0.35.
The cylindrical computational domain was bounded by stress-free lateral walls at a distance Rext,
sufficiently far from the rings to not affect them significantly. This was chosen as one torus radius
below and above the rings, and between five and six torus radius from the ring axis in the radial
direction (Rext), depending on Re� and �. Resolution adequacy was checked by monitoring the
viscous dissipation and the energy balance. For a full list of the numerical parameters and resolutions
used see Table I.

For the vortex ring-wall impact, a ring is released a distance Lz = 4 away from the wall,
undergoing a head-on impact as shown in Fig. 4. The initial position of the ring is perturbed in
a similar manner to the rings in the head-on collision, and similarly only a fraction of the azimuthal
domain is considered. The rest of the cylindrical computational domain is bounded by stress-free
walls at a sufficient distance from the rings to not affect them significantly. For this case, it is one
torus radius below and above the rings, and four torus radii for no-slip walls and between eight to
ten torus radii for free-slip walls from the ring axis in the radial direction, depending on Re� and
�. Resolution adequacy was again checked by monitoring the viscous dissipation and the energy
balance. The parameters are provided in Table I.

C. Single vortex relaxation

To analyze the initial relaxation of the vorticity profile, we consider a series of single-ring
simulations where we impose complete axisymmetry (i.e., nsym → ∞), remove the azimuthal
noise, and vary Re� and �. The ring is allowed to self-advect and relax in cylinder for which the
collision plane is very far away from the initial position (Lz = 40). This makes the geometry for our
purposes effectively infinite (Lz � 1) as the ring never reaches the collision plane. A resolution of
Nr × Nz = 192 × 256 is used for all cases. We note that as the ring travels, more and more vorticity
will diffuse from the core due to viscosity, and one of the effects this has is to increase the effect
thickness of the ring, and to slow the axial translation due to self-induced velocity. So to distinguish
between relaxation and viscous diffusion, it is necessary to compare not only various values of �

but also various values of Re� .
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FIG. 4. Schematic of the head-on wall impact. The figure represents a cut of the ring by a plane containing
the axis of symmetry, shown as a dashed line. The vortex is moving towards the wall, shown as a thick line, at
a distance Lz from the vortex center.

In Fig. 5 we show the temporal evolution of the vorticity modulus integrated along the cylinder
axis (z-coordinate) for these simulations. Just after initialization, some remnants of vorticity appear
near the axis. This is especially prominent for slender rings and is a consequence of initializing
vorticity and velocity with Eq. (2), which are not exact solutions for rings. As the ring evolves,
the vorticity distribution flattens from a Gaussian (a parabola in semilog scales), to a broader
distribution, extending towards the axis of symmetry. The ring also widens out, as vorticity is
diffused from the core outwards. This is especially visible in the left panel at Re� = 1000 and
� = 0.1, where the final distribution of vorticity resembles that at the latest time of the right panel
(Re� = 3500 and � = 0.35) much more than they resemble the middle panel, which has the same
slenderness ratio � = 0.1 but a larger Re� equal to Re� = 3500. We also note that the vorticity
close to the axis in the middle panel are the remnants of vorticity that appear in the region close to
where the vortex ring is placed initially, and are left behind as the vortex advects itself. By taking
Lz � 2.5, we ensure that this trail is sufficiently far away from the collision plane that it does not
interfere with the dynamics.

In summary, Fig. 5 shows that the Lamb-Oseen solution is far from the relaxed solution,
especially for thick vortices and in the direction towards the direction of the axis of symmetry. As

FIG. 5. Temporal evolution of the axially (z) integrated vorticity 〈ω〉z. Lines are plotted every ten time
units from t = 1 to 51, increasing in darkness as time progresses. Left: � = 0.1, Re� = 1000; center: � = 0.1,
Re� = 3500; right: � = 0.35, Re� = 3500. Arrows also indicate time progression.
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FIG. 6. Temporal evolution of the energy in the first ten azimuthal modes (k = m = 1 to k = m = 10),
for the full azimuthal extent, Re� = 3500 and � = 0.1 (left), � = 0.2 (center), and � = 0.35 (right). The
translation mode k = m = 1 is shown in a black dashed line. All other modes are shown in gray except when
highlighted due to their growth: k = m = 5 (red-brown), k = m = 6 (purple), k = m = 7 (green), k = m = 8
(dark yellow).

the rings expand rapidly when interacting, we do not expect the differences in the inner side to be
very relevant. We note that whatever our choice of Lz results from a compromise: The rings thicken
as Lz increases in a manner that is dependent on Re� . Therefore, larger values of Lz would not only
come at increased computational costs, but also complicate comparisons across Re� , as rings which
are started up with the same value of � would arrive in the collision plane with effectively different
thicknesses.

D. Single vortex self-instability

We also analyzed the self-elliptical instability of a single ring, i.e., that originating due to the
interaction of various points of the ring with other parts of the ring, as a function of �. These simula-
tions were performed to check how the self-instability would enter into play in our simulations if we
were to increase Lz beyond Lz = 2.5. For this, we ran the same cases as before: A ring self-advecting
and relaxing in a very long cylinder (Lz = 40 � 1), but removed any rotational symmetries and
simulated the full azimuthal extent of the domain (nsym = 1) which also means we can capture all
azimuthal modes (m = k). To ensure that we do not miss out any mode, we use a different seeding
procedure for these cases and add white noise of equal magnitude (i.e., not randomly sampled) to
the first 20 azimuthal modes (εk = 7 × 10−4). A resolution of Nθ × Nr × Nz = 192 × 192 × 256 is
used for all cases.

We then measure the energy contained in the azimuthal modes which evolves over time for the
first 60 time units. This can be used to estimate how larger values of Lz could bias the initial noise.
The results of this are shown in Fig. 6. The first thing to note is the prominence of the m = 1 mode,
which we have marked with a dashed line. This mode does not decay or grow much, and it can be
understood as representing a displacement of the ring from the axis as a whole. As such, it does not
decay much due to viscosity. In the simulations below, we take nsym > 1 and eliminate this mode.
This means we do consider the effects of possible ring misalignment in this study.

The other result we obtain is that it takes a long time for certain modes to begin to grow, if at all.
For � = 0.1, all modes seem to behave similarly, with a fast growth and a slow decay. For � = 0.2,
at later times the energy in a bandwidth of m modes m ∈ [6, 8] shows some exponential growth, with
the strongest growth for m = 8. However, the growth is very slow (or the growth rate is very small).
A similar amplification is observed for the m = 5 and m = 6 modes for � = 0.35, showing some
growth at later times. The self-instability modes roughly correspond to smaller values of m with
increasing �, something that makes sense from an analysis of the TWMS mode: The characteristic
wavelength is the core radii. Thicker rings have a larger wavelength, and thus a smaller value for
the most unstable m.

This analysis convinced us that the energy of the modes fluctuate substantially before much
growth is seen, and the observed amplification, in all cases, remains small. It is not significant
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FIG. 7. Vorticity volume visualization at several instances of time for � = 0.1 and white noise perturba-
tions. Reynolds number increases from left to right (Re� = 1000, Re� = 2000, and Re� = 3500), and time
increases from top to bottom (t = 6, 8, 10, and 12). Red denotes regions of particularly high vorticity, and blue
denotes regions of low vorticity. The colors are the same for all panels.

before t = 30, which roughly corresponds to eight or nine ring radii from the launch point for
� = 0.2 and seven or eight ring radii for � = 0.35, and would take another 40–50 more time units
to increase the energy in these modes by an order of magnitude. This means that the colored noise
simulations are effectively a proxy which captures a noise growth comparable to Lz ≈ 50, without
the problems associated to ring thickness growth mentioned in the section above. We thus feel
confident to proceed with our study, and to use the colored noise model as a proxy for long Lz.

III. INSTABILITY AND DISINTEGRATION FOR � = 0.1

A. Head-on collision with white noise

We first focus on the cases of a slender ring with � = 0.1 and white noise (〈ε2
k 〉 = 3 × 10−3),

and study the effect of the Reynolds number, Re� . Figure 7 shows the vorticity magnitude for
the three Reynolds numbers studied. For Re� = 1000, left column, the two vortices stretch each
other, expanding out while remaining relatively axisymmetric. Due to conservation of circulation,
we can observe that the total vorticity magnitude increases as the vortices are stretched and their
core becomes smaller. There is no disintegration or significant instabilities arising and the rings will
eventually decay due to viscosity.

As the Reynolds number is increased to Re� = 2000, middle column, the dynamics changes. We
can observe the onset of an azimuthal instability marked by the deformation of the vortex core. This
deformation arises from the elliptical instability, whose signature is shown in the small instability
wavelength as well as its general antisymmetric character during the initial, or “cooperative” phase
of the instability [37]. As the rings twist, small vortex filaments which are perpendicular to the pri-
mary rings are formed. The rings slow down as they lose circulation to the newly forming secondary
perpendicular filaments. However, the rings do not completely disintegrate into a turbulent cloud.

Only by further increasing the Reynolds number to Re� = 3500 does the interaction become
sufficiently strong to result in a turbulent cloud, see the right column. This happens through a similar
process that starts with the formation of secondary perpendicular filaments, but in this case they
contain more circulation which appears as a stronger red color in the visualization at t = 8. The ring
eventually stops and disintegrates into fine turbulent structures. This is already in the asymptotic
regime for vortex ring collision, where fine scales are generated through an iterative process of
cascading instabilities seen in Ref. [6]. We also note that the vorticity visualizations for Re� =
3500 show strong qualitative similarities to the photographs of the experiment in Ref. [37] of two
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FIG. 8. Contour plots of vorticity modulus at constant z for the top vortex at � = 0.1 and Re� = 2000 at
t = 9 (left) and Re� = 3500 at t = 7 (right). Contours are placed at intervals of �ω = 3 on the left panel and
�ω = 4 on the right panel.

antiparallel vortex tubes undergoing the elliptical instability, in both the early, or “cooperative,”
stage and the late stage. However, there are some differences, which we will elaborate on in the next
section.

To confirm that the asymptotic regime is reached once the elliptical instability is fully developed,
we first isolate the instability, confirming that it is indeed the elliptical instability. Evidence for this
can be seen by considering a series of isocontours of vorticity magnitude in the top vortex of the
simulation; see Fig. 8. We note that the vortex core and the periphery appear to deform in opposite
directions. This coincides with the deformation pattern predicted for an “invariant streamtube” in
Ref. [37], and suggests a possible mechanism for the formation of the secondary perpendicular
vortices, from the peripheral regions which deform away from the core. Further evidence for the
elliptical instability is provided by determining, in the following paragraphs, the growth rates of the
instability.

Having established the character of the instability, we continue by isolating the vortex cores
by following Ref. [6] and using the pressure minimum to define the position of the core. We
show the position of the core as a function of time for Re� = 2000 (left column) and Re� = 3500
(right column) in Fig. 9. As the two vortices stretch each other in the radial direction, they show
the signature of a growing antisymmetric instability. The azimuthal wave number m = 40 (k = 8)
results in an instability wavelength of 2πR(t )/m ≈ 0.2–0.4, depending on the instantaneous value
of R(t ). In any case, these wavelengths are very close to our core vortex radius. This further confirms
that the same elliptical instability is indeed arising for both cases. We also note that the rings deform
predominantly in the collision plane, and not perpendicular to it, i.e., in the z direction. This is unlike
the deformation seen in tubes for the elliptical instability, where the cores deform in all planes [6,37].

Furthermore, the deformation pattern appears earlier at Re� = 3500, consistent with the fact
that the elliptical instability has a slower growth rate at intermediate Re� and does not achieve
viscosity-independent growth rates until Re ≈ 3000 [23]. We can analyze the energy of the m = 40
mode across time to estimate the growth rate of the instability. This is shown in the left panel of
Fig. 10, which corroborates the fact that the elliptical instability is absent at low Reynolds numbers
and has a Re�-dependent growth rate for the values of Re� studied. By using a fit, we can estimate
the exponential growth rates of the elliptical instability as σ ≈ 1.8 at Re� = 2000 and σ ≈ 2.4
at Re� = 3500. To compare this value to the one in the experiments of Ref. [37], we estimate
the intervortex distance as approximately b ≈ 0.2 (see Sec. IV A), so σ can be expressed in the
same nondimensionalization as 0.6 for Re� = 3500. This value is consistent with the theoretical
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FIG. 9. Extracted vortex cores at several instances of time for � = 0.1. Left top panel: Cores at t = 6, 7,
8, 9, and 10 for Re� = 2000. Right top panel: Cores at t = 6, 7, and 7.8 for Re� = 3500. Bottom left panel:
Side view of the cores at t = 10 for Re� = 2000. Bottom right panel: Side view of the cores at t = 7.8 for
Re� = 3500.

asymptotic/inviscid growth rate of the instability [23,37], but lower than the one observed in the
experiment in Ref. [37].

In the center panel of Fig. 10, we show the energy of the m = 10 (k = 2) mode, which is
associated to the longer-wavelength Crow instability. The growth rates are much smaller, and the
jump in energy for Re� = 3500 is associated to the disintegration of the vortex and the transition
to turbulence, which happens at t ≈ 8. The original rings no longer remain at this time as seen in
Fig. 7, so this growth cannot be associated to a long-wavelength instability of the rings.

We can further corroborate that Re� = 3500 is in the asymptotic regime by showing the viscous
dissipation ε in the right panel of Fig. 10. While the dissipation rate does not change significantly
between Re� = 1000 and Re� = 2000, the tenfold increase of ε for Re� = 3500 coincides with
the asymptotic behavior of ε seen in Ref. [6] for two vortex tubes decaying through the elliptical
instability. We can thus anticipate that the behavior of the collision is asymptotic at Re� = 3500,
and that further increasing Re� will only produce finer length scales without modifying the external
dynamics much, such as seen for Re� = 4500 in Ref. [6]. Energy is swiftly transferred from the
large scales to the finer scales, and this is reflected in the very fast growth of dissipation.

FIG. 10. Left and center panels: Energy of the m = 40 (left) and m = 10 mode (center) against time for
� = 0.1 and Re� = 1000 (black), Re� = 2000 (dark red/green), and Re� = 3500 (light red/green). Right:
Dissipation against time for the same cases with white noise.
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FIG. 11. Vorticity volume visualization at several instances of time for � = 0.1 and colored noise pertur-
bations. Reynolds number increases from left to right (Re� = 1000, Re� = 2000, and Re� = 3500), and time
increases from top to bottom (t = 6, 8, 10 and 12). Red denotes regions of particularly high vorticity, and blue
denotes regions of low vorticity. The same color map is used across all graphs.

B. Head-on collision with colored noise

Having established this picture, we can now contrast the white noise simulations with the colored
noise simulations, i.e., those where the noise in the two longest azimuthal wavelengths noise
is started at a tenfold higher level (〈ε2

1〉 = 〈ε2
2〉 = 3 × 10−2). This is done in an attempt to find

the parameter space where the Crow instability becomes important and can cause vortex ring to
reconnect more locally.

Figure 11 shows a volume visualization of the vorticity modulus for all cases with � = 0.1
and colored noise. As seen above, for Re� = 1000, left column, the rings stretch out radially and
are slowly dissipated by viscosity, even if some more perturbations to the core can be seen due
to the higher noise levels. For Re� = 2000, middle column, we see the formation of secondary
vortex rings, with strands of perpendicular vorticity filaments attached to them. These do not appear
to be as clean as in the experiments of Ref. [16], which can be expected: The dye used in the
experiments does not track vorticity amplification, and these perpendicular filaments contain very
amplified vorticity [6]. Finally, at Re� = 3500, right column, we can see the disintegration of the
rings. The elliptical instability now dominates the Crow instability, but the long-wavelength we have
superimposed causes the production of fine scales to be azimuthally inhomogeneous. The cores are
first brought together at certain points, and this locally increases the growth rate of the elliptical
instability. A similar flow phenomenology was also observed for two counter-rotating vortex tubes
in the experiments of Ref. [37] and the simulations of Ref. [25], where short- and large-wavelength
perturbations caused decay to occur more rapidly in certain areas than others.

The inhomogeneous growth of the elliptical instability can be better observed by looking at
the centroid of the interacting vortex tubes, shown in Fig. 12. For both Re� = 2000, left column
and Re� = 3500, right column, the growth of the perturbation happens first at certain sites, which
coincide with the sites where the rings are brought together by the Crow instability, before extending
to the full azimuthal domain. This leads to the uneven generation of small scales seen in the final
panel. As in the case with white noise, the centroids of the rings present significant deformation
only in the collision plane and not perpendicular to it.

It thus appears that different seeding can produce slightly different outcomes. This was already
observed by Laporte and Corjon [25] in numerical simulations of the interaction between two vortex
tubes. By controlling the ratio of large-wavelength to small-wavelength noise, they were able to
show both local tube reconnection and tube disintegration in their simulations. We can quantify this
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FIG. 12. Extracted vortex cores at several instances of time for � = 0.1 and colored noise. Left top panel:
Cores at t = 6, 7 and 8 for Re� = 2000. Right top panel: Cores at t = 6, 7, and 8 for Re� = 3500. Bottom left
panel: Side view of the cores at t = 8 and Re� = 2000. Bottom right panel: Side view of the cores at t = 8 and
Re� = 3500.

effect for our case the by showing the temporal evolution of the energy in the m = 40 and m = 10
modes in the first two panels of Fig. 13. Because the energy of m = 10 now starts off from a higher
level (contrast the initial value of E to that of Fig. 10), the Crow instability is able to grow enough
to initiate reconnection, despite its smaller growth rate. The elliptical instability can be seen to kick
in around the same time (t ≈ 5) as in the white noise case, but it is not able to grow fast enough
to prevent reconnection for Re� = 2000 and two secondary rings can be seen to form. These rings
advect away from the primary ring’s axis, as was the case in the experiment of Ref. [16]. After this
short time, they are damped by viscosity.

For Re� = 3500 (see the top-left panel of Fig. 12), we obtain a mixture of elliptical and Crow:
There is an azimuthally inhomogeneous production of small scales, and the rings end in total
disintegration. The result is similar to the asymptotic regime seen for white noise, even if the
disintegration is inhomogeneous. To corroborate this, we show the instantaneous dissipation in the
right panel of Fig. 13. The large dissipation values show that there is a large transfer of energy from
the large to the small scales. It is also worth noting that the peak of dissipation happens earlier in
this case than in the white noise case, indicating that the local growth of the elliptical instability
induced by the Crow instability hastens the disintegration process.

FIG. 13. Left and center panels: Energy of the m = 40 (left) and m = 10 mode against time for � = 0.1
and Re� = 1000 (black), Re� = 2000 (dark red/green) and Re� = 3500 (light red/green) and colored noise.
Right: Dissipation against time for the same cases.
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FIG. 14. Vorticity volume visualization at several instances of time for ring impact against a stress-free
wall at � = 0.1 and white noise perturbations. Reynolds number increases from left to right (Re� = 1000,
Re� = 2000, and Re� = 3500), and time increases from top to bottom (t = 18, 22, 26, and 30 for left and
center, t = 16, 20, 24, and 28 for right). Red denotes regions of particularly high vorticity, and blue denotes
regions of low vorticity.

From these results, we can conclude that the process which produces secondary rings which
survive for a short time is prevalent in a rather small region of Re� and hinges on the fact that
longer wavelengths are seeded more than others, so the Crow instability can develop fully before
the elliptical one overtakes it. We note that our study was somewhat limited: We increased the ratio
between seedings only to be tenfold, but preliminary simulations which increased even more the
seeding of the long-wavelength modes resulted in dynamics that were very dependent on the phase
difference between both instabilities and barely reproducible, so we did not pursue this further.
To further study the competition between instabilities, we instead measure their growth rates. In the
case of the Crow instability, this cannot be done from the curves shown in Fig. 13 due to the presence
of the elliptical instability as a confounder. But by making a ring collide against a stress-free wall, we
enforce symmetry and severely mitigate the elliptical instability, as we discuss in the next section.

C. Stress-free wall

As in the previous section, we first focus on the cases with � = 0.1 and white noise, and study
the effect of Re� . As mentioned in the introduction, impact against a stress-free wall can also be
understood as collision with the mirror ring, so we expect similar dynamics in the initial phases of
the collision.

Figure 14 shows a volume visualization of the vorticity magnitude for the three Reynolds
numbers studied as the ring interaction with the stress-free wall proceeds. As was the case for the
head-on collision, for Re� = 1000, left panel, the ring impacts the wall (mirror ring), and stretches
out, remaining approximately axisymmetric. The total vorticity magnitude first increases as the
vortex is stretched to conserve circulation, and then rapidly decreases as vorticity dissipates the
ring.

For Re� = 2000, center panel, a long-wavelength instability arises. Because the ring is stretching
at the same time as the instability is growing, the base wavelength is constantly changing, and the
instability is barely able to develop until the point where the ring and its mirror image come into
contact, a process that leads to a local reconnection to form (half) a secondary vortex. By t = 28,
protostructures of secondary rings, consisting of parallel filaments, can be observed very close to the
point of contact between the ring and the wall. However, these are rapidly dissipated due to viscosity.
We note that viscosity acts much later than during the head-on collisions considered earlier, so the
ring has up to seven to eight times from its initial radius, compared to four or five ring radii earlier.
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FIG. 15. Left and center panels: Energy of the m = 10 (left) and m = 40 mode against time for stress-free
wall impact for � = 0.1 and Re� = 1000 (black), Re� = 2000 (dark color), and Re� = 3500 (light color) and
impact. Right: Dissipation against time for the same cases.

To actually see (the top half of the) secondary rings forming, as done experimentally in Ref. [16],
we have to increase Re� to Re� = 3500. We can then observe in the figure that at the last stage, two
secondary rings are created; see the right column of Fig. 14. The vorticity of the secondary rings
quickly dissipate, in agreement with the head-on collision videos of Ref. [16] which show that
the red-blue secondary rings stop traveling, and with the previous case at Re� = 2000 and colored
noise. In the experiments, the dye remains, but the vorticity has dissipated and the ring ceases to
exist. We note that the reconnection procedure here is qualitatively similar to that seen for vortex
tubes in for example Refs. [19,38]. There the two tubes touch at certain points, forming very thin
sheets. These sheets then rapidly dissipate and leave behind a changed topology. This is especially
apparent in the right panel of Fig. 14, where the formation of thin sheets with high vorticity that
later dissipate can be appreciated, and the two half-rings are left behind. Furthermore, the rest of
the vortex filament is highly distorted, with the formation of very short-wavelength perturbations,
as it was the case in Ref. [24]. This points to the resilience of the elliptical instability, despite the
enforcement of the seemingly unfavorable symmetry induced by the stress free wall.

We can now measure the growth rate of the long-wavelength perturbation associated to the
Crow instability by looking at the energy of the m = 10 mode. This is shown in the left panel of
Fig. 15. The growth rates of the instability are much smaller than what we observed in the previous
section. We obtain growth rates of σ ≈ 0.5 at Re� = 2000 and σ ≈ 0.8 at Re� = 3500 for the
long-wavelength instability. For comparison, we show in the center panel of Fig. 15 the energy in
the m = 40 mode, from which we can obtain a growth rate of σ ≈ 1.2 at Re� = 3500. By using
the stress-free wall, we have halved the growth rate of short wavelength instabilities and this has
allowed us to observe the reconnection process and the formation of secondary rings. It is unclear
whether the short wavelength instability is associated to the elliptical instability (as postulated in
Ref. [24]) but it is clear that the core is deformed at the largest Re� studied. We estimate the growth
rate of the instability to be about 50% larger than that of the Crow instability, and this points to the
relevance of short wavelength instabilities for both stress-free and head-on collision.

As the ring stretches out as it interacts with the wall, and there is no fast disintegration, the
production of small scales is heavily curtailed in this case. This can be quantified through the
temporal behavior of the dissipation, shown in the right panel of Fig. 15. The dissipation first
decreases with time, as the ring approaches the wall. As the ring begins to interact with the wall,
vorticity increases and dissipation follows, until a peak is reached. The observed peaks in Fig. 15
are about ten times smaller than those observed in Figs. 10 and 13. After the peak, further increases
in vorticity are overwhelmed by smaller energy available, so dissipation begins to decrease. This is
the case not only at the lower Re� , where the ring remains axisymmetric, but also when azimuthal
instabilities and reconnection happen. This shows that the formation of secondary rings through
local reconnection is a very different process from the disintegration through the elliptical instability
seen in the section above, as was analyzed for vortex tubes in Ref. [19]. The temporal behavior of the
dissipation is very similar to the head-on collision at Re� = 1000, which remained axisymmetric,
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FIG. 16. Left panel: Azimuthally averaged ring trajectory for Re� = 1000. Center panel: Temporal evolu-
tion of the outer radius for several � at Re� = 1000. Right: Estimation of a/b parameter for the same cases. A
dashed line which marks the theoretical limit of a/b = 0.5 is shown.

and the peak values of dissipation obtained are drastically below those seen for the head-on collision,
even when the noise is colored and local reconnections are present.

Unlike in the previous section, the cases with colored (long-wavelength) noise do not present
significant differences from the white noise cases. The main difference we saw was that in some
cases five half-rings (one per rotational symmetry wedge) were generated, rather than the ten (two
per rotational symmetry wedge) seen above. However, this depends mainly on the level of noise of
the two long-wavelength modes (m = 5 and m = 10). The growth rates of the instabilities remained
relatively constant. We expect that in a real scenario, or in the absence of any rotational symmetry,
the number of secondary rings generated will be between five and ten.

IV. THE EFFECT OF RING THICKNESS ON THE INSTABILITIES

A. Head-on collision

Up to now, we have not considered the effect of ring thickness (or equivalently, �) on the
dynamics. As shown earlier in Fig. 2, the larger core sizes result in smaller velocities for the
same circulation. Thicker rings also self-advect slower than thin rings, with the dependence being
approximately logarithmic on the radius [34]. Finally, it is unclear how the thickness of the ring
is reflected in the effective nondimensional ratio between the tube size and distance which is an
important parameter in determining the growth rate of the elliptical instability. This parameter is
usually denoted as a/b where a is the tube radius and b the distance between tube centers [23].

To study this, we now vary the ring thickness ratio �, and simulate cases with � = 0.2 and
� = 0.35. We then contrast the results with those presented above with � = 0.1. We first note that
the Re� = 1000 simulations all remain relatively axisymmetric for both white and colored noise,
similar to the cases with � = 0.1. The rings come into contact forming a ring dipole, then stretch
each other before diffusing away due to the effect of viscosity. However, the resulting dynamics
differ when starting off with rings of different thickness and result in a vortex dipole of different
characteristics. We can thus use these simulations to quantify the effect of ring thickness on the a/b
parameter mentioned above. We isolate the centroids of the rings as done before and azimuthally
average over the small deviations to obtain the radial and axial position of the two vortex cores. The
resulting trajectories are shown in the left panel of Fig. 16. We also show the temporal evolution
of the radial coordinate R(t ) of the top ring in the center panel of Fig. 16, to confirm the slower
evolution of the cases with thicker rings, which take longer to come into contact and spread
each other.

To estimate the evolution of the a/b parameter, we first obtain b, the distance between the two
ring centers, directly from the axial coordinates of the vortex centroids. Obtaining the core radius
a is harder, we approximate it using a/a0 = √

R0/R, which comes from conservation of volume of
the ring. This method is inaccurate, as it assumes that the ring retains an approximately constant
shape. This is later reflected in the fact that the value of a/b exceeds the theoretical limit of 1

2 in one
case, which would mean overlapping rings. Despite its obvious shortcoming, our method allows us
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FIG. 17. Vorticity volume visualization at several instances of time for Re� = 3500 and white noise
perturbations. Left is � = 0.2, and right is � = 0.35. Time increases from top to bottom (left: t = 12, 14,
16, 18, right: 14, 18, 20 and 24). Red denotes regions of particularly high vorticity, and blue denotes regions of
low vorticity.

to draw a qualitative picture of the behavior of a/b. We show a/b for the three cases in the right
panel of Fig. 16, where we can observe that the a/b parameter is larger for thicker rings, and at first
approximation, this will cause the growth rate of the elliptical instability to be higher at moderate
Re� [23].

However, this initial intuition is not borne out in the simulations. For white noise, the cases
with Re� = 2000 remain relatively axisymmetric for � = 0.2 and � = 0.35. Unlike the � = 0.1
case, significant distortions of the ring or the formation of parallel vortices cannot be observed.
Despite their lower value of a/b, thinner rings are more unstable and undergo disintegration at
lower Re� . To see the azimuthal instabilities set in and change the evolution of the system we
have to increase the Reynolds number further to Re� = 3500, as shown by the visualization of the
instantaneous vorticity in Fig. 17, the vorticity contours through the top ring in the left panel of
Fig. 18, and the temporal evolution of the dissipation in the left and center panels of Fig. 19. The
� = 0.2 case at Re� = 3500, illustrated by the left column of Fig. 17, shows rapid disintegration
through the elliptical instability, and we can again observe deformations of the vortex consistent
with the shape that the the invariant streamtube takes during an elliptical instability in Fig. 18 [37].
The core can be first seen to distort with a short-wavelength pattern in the cooperative stage of
the instability. This is followed by the emergence of perpendicular filaments, and finally the ring
disintegrates. The dissipation profiles corroborate the mechanism, as we can observe a large increase
in the instantaneous dissipation consistent with what was seen for � = 0.1.

On the other hand, the � = 0.35 case at Re� = 3500, shown in the right column of Fig. 17,
presents a more complicated picture. While short-wavelength patterns arise on the ring, the cores
significantly distort around the collision plane and at times come closer to each other, something
not observed at lower values of �. We can also compare the contours of vorticity shown in the
right panel of Fig. 18 to the characteristic deformations of for the theoretical invariant streamtube
in Ref. [37]. Whereas the deformation pattern at � = 0.1 (Fig. 8) was indicating that the core and
periphery regions deform in opposite directions, this trend is largely absent at � = 0.35 (right panel
of Fig. 18). We note that even if these contours are shown for a single time instant, this corresponds
to the instant where the deformation can be most clearly appreciated. At no other point in time does
the shape of the vortex resemble the characteristic shape seen earlier.

Furthermore, at the later stages (t = 18), a clear long-wavelength pattern can be observed, even
when this is not seeded at a higher level than the short wavelength. While some phenomena, from
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FIG. 18. Contour plots of vorticity modulus at constant z for the top vortex at Re� = 3500 and � = 0.2 at
t = 11 (left) and � = 0.35 at t = 16 (right). Contours are placed at intervals of by �ω = 2 on the left panel
and �ω = 1.6 on the right panel.

visual inspection, can be interpreted as effects of the late-stage elliptical instability, such as signif-
icant in-plane core distortion, the rings do not generate intense perpendicular filaments throughout
the entire azimuthal extent, contrary to what happens when � = 0.1 and 0.2. Furthermore, the
instantaneous dissipation does not show a large instantaneous increase contrary to what was seen for
other � once the transition to the elliptical instability sets in (cf. Fig. 19). The interaction between
tubes happens through diverse mechanisms, consonant with what was studied in Ref. [17], which
showed the generation of small scales through the forming of vortex sheets. The dynamics for
thick rings are more complicated than simple Crow-like and elliptical-like instabilities, none of the
two can grow fast enough, and there appear to be more complicated phenomena happening as the
curvature of the vortex line becomes important.

We can analyze the short-wavelength instabilities by looking at the ring filaments shown in
Fig. 20. The suspicion that the wave number mode of the elliptical instability had to decrease
with increasing ring thickness is invalidated by this figure. Both cases show a m = 35 or a m = 40
pattern, which are very close to those observed earlier for � = 0.1. What changes with increasing
� is that the elliptical instability sets in later once the ring has expanded beyond a certain radius,
and that this setting radius becomes larger with increasing �. As a larger ring (outer) radius means
that the core (inner) radius is smaller, and the core radius sets the length scale for the elliptical
instability, this results in the observed instability wave number that is essentially constant. This is

FIG. 19. Temporal evolution of the dissipation and Re� = 1000 (black), Re� = 2000 (dark color) and
Re� = 3500 (light color) for � = 0.2 and white noise perturbations (left) and � = 0.35 and white noise
(center) and colored noise (right) perturbations.
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FIG. 20. Left and center: Evolution of the ring filaments for Re� = 3500 and several time instants. Left
panel: � = 0.2 at times t = 9, 10, 11, 12. Center: � = 0.35 at times from t = 8 to t = 17 increasing in unit
intervals. Right: Energy of the m = 40 mode for Re� = 3500 and � = 0.1 (black), � = 0.2 (dark green) and
� = 0.35 (light green).

further corroborated in the right panel of Fig. 20, which shows the energy of the m = 40 mode for all
the cases at Re� = 3500. The exponential growth phase of the instability, present in all cases, comes
in later for the thicker rings, and with a reduced growth rate (σ ≈ 0.8 for � = 0.2 and σ ≈ 0.6 for
� = 0.35, as compared to σ ≈ 2.4 for � = 0.1). These results urge for caution when extending the
intuition gained from studying the elliptical instability for tubes to vortex rings.

We turn to the colored noise cases to analyze the effect of seeding the long wavelengths at a
higher level. The � = 0.2 cases do not differ substantially from what was seen for � = 0.1 in
Fig. 11: The formation of secondary rings for Re� = 2000, and an azimuthally inhomogeneous
disintegration for Re� = 3500. The � = 0.35 cases do present a distinct behavior, which can be
seen in the volume visualizations of vorticity of Fig. 21 for Re� = 2000 and Re� = 3500. The
vortices can be seen to come together at certain places, and to flatten as sheets. However, these sheets
are not the precursor of local reconnection, as was seen for � = 0.1 and � = 0.2. Instead, the sheets
tear apart and roll back to form one or two vortices as was seen in the simulations and experiments of
Ref. [17]. This mechanism of tubes evolving into sheets evolving into tubes, suggested in Ref. [12]
as a possible mechanism for the turbulent cascade, is very elusive in parameter space: It clearly
appears only for relatively thick rings, and only once the levels of long-wavelength noise are
large enough to trigger the process. This mechanism results in larger values for the instantaneous
dissipation, as shown in the right panel of Fig. 19 for the colored noise case than for the white noise
case. However, even if these are larger than the corresponding values for white noise, they are still
much smaller than the large increase seen when the elliptical instability dominates. Overall it is hard

FIG. 21. Vorticity volume visualization at several instances of time for � = 0.35 and colored noise
perturbations. Left is Re� = 2000, and right is Re� = 3500. Time increases from top to bottom (t = 12, 16,
18, 20). Red denotes regions of particularly high vorticity, and blue denotes regions of low vorticity.

104702-19



MISHRA, PUMIR, AND OSTILLA-MÓNICO

FIG. 22. Vorticity volume visualization at several instances of time for Re� = 3500 and impact against a
free-slip wall. Left is � = 0.2, and right is � = 0.35. Time increases from top to bottom (left: t = 22, 28, 36,
42, and 48). Red denotes regions of particularly high vorticity, and blue denotes regions of low vorticity.

to conclude much about the universality of the ring collision process for � = 0.35. It no longer
resembles the relatively simpler picture of vortex tube interaction, where the elliptical instability
takes over everything, and instead physical phenomena only found when two rings interact can be
seen. We expect this complicated picture to still hold for even larger values of �.

B. Free-slip wall

As in the previous section, we also ran simulations where the vortex ring would impact a flat
free-slip wall to best analyze the long-wavelength instabilities. We find that ring thickness also
has an important effect on the behavior. For low Re� , the rings remain relatively axisymmetric as
was seen for � = 0.1. A long-wavelength instability, which appears as Re� increases, leads to the
formation of secondary half-ring vortices. Figure 22 provides a visualization of the vorticity field
at high Re� for the two cases � = 0.2 (left column) and � = 0.35 (right column) at Re� = 3500.
The first visible difference is that unlike the � = 0.1 case, there is no short-wavelength instability
leading to the disintegration of the remnants of the primary ring that connect the secondary vortices
(compare with the right column of Fig. 14). Thus, the remnants remain in place even at later times,
until viscosity damps them.

To further quantify this, we analyze how the energy in the m = 10 mode and the m = 40 modes
are affected by the increased ring thickness. Figure 23 shows the temporal evolution of these
energies for a set of parameter values. The instability growth rate for the m = 10 mode becomes
significant for � = 0.35 only for Re� = 3500, and it is halved from the � = 0.1 case: We can
estimate σ ≈ 0.4 for � = 0.2 and σ ≈ 0.2 for � = 0.35 at Re� = 3500, which are smaller than
the previously obtained value of σ ≈ 0.8 for � = 0.1. Second, the short wavelength modes are

FIG. 23. Left and center: Energy of the m = 10 mode against time for Re� = 2000 (left) and Re� = 3500
(center) for � = 0.1 (black), � = 0.2 (dark color), and � = 0.35 (light color) Right: Energy of the m = 40
mode for Re� = 3500 and the same cases. All simulations are for impact against a stress-free wall.
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FIG. 24. Vorticity volume visualization at several instances of time for ring impact against a no-slip wall
at � = 0.1 and white noise perturbations. Reynolds number increases from left to right (Re� = 1000, Re� =
2000, and Re� = 3500), and time increases from top to bottom (t = 12, 18, 21, 23, and 28 for left, 12, 16, 18,
21, 24 for center and 12, 15, 18, 21, 23 for right). Red denotes regions of particularly high vorticity, and blue
denotes regions of low vorticity.

practically nonexistent for � = 0.35 and present a very mild growth for � = 0.2 even at the
highest Re� . This is consistent with what is observed from the vorticity visualizations and what
was observed for the head-on collision where the elliptical instability grew slower for thicker rings.

To conclude, we can state that ring thickness adversely affects the growth rate of both Crow-like
long-wavelength instabilities that lead to local reconnection, and of elliptical-like short-wavelength
instabilities that lead to disintegration. However, the former are dampened less than the latter, so
long-wavelength instabilities predominate, and as these are the precursors to local reconnection, we
can expect to observe more instances of local reconnection for thicker rings.

V. NO-SLIP WALL

A. Thin rings � = 0.1

In this final section, we analyze the collision of a ring against a no-slip wall. This case appears
to have attracted more numerical and experimental attention [26–29,31] than those studied in Secs.
III and IV. The process through which a secondary vortex is generated from a lifted boundary
layer is well understood. As long as axisymmetry is preserved, which can either be imposed
in the equations or naturally happens naturally at low Re� , this liftoff process can be repeated,
producing tertiary vortices [27]. This process leads to an interaction between the lifted secondary
vortex and the primary vortex that ends up producing a turbulent cloud at high Re� [26,31]. The
primary ring and the secondary ring lifted off from the wall have circulations which differ not
only in magnitude, but also, more crucially, in sign. As such, we can expect instabilities governed
by large core deformation to appear at large Re� . Indeed, such instabilities have already been
noticed and analyzed in simulations [28–30] and in experiments [31]. However, distinguishing the
precise azimuthal instability responsible for the disintegration has been a matter of debate. Whereas
Ref. [28] attributes the disintegration of the vortex rings to the elliptical instability, Ref. [31] argues
that due to the mean rotation of the system, the elliptical instability is superseded by a displacement
bending type of instability, consistent with the Crow mechanism.

In this study, we focus on how Re� and � affect the total disintegration of the system, while
bracketing out the precise identification of the instability. Figure 24 shows the vorticity magnitude
for the three Reynolds numbers studied as the ring interaction with the no-slip wall proceeds. As
the ring approaches the wall, it generates a boundary layer with opposite-signed vorticity. With
increasing Reynolds number, the boundary layer becomes thinner and has stronger vorticity. As

104702-21



MISHRA, PUMIR, AND OSTILLA-MÓNICO

FIG. 25. Azimuthal vorticity in an axisymmetric simulation of impact against a no-slip wall (at z = 5) for
� = 0.1 at the moment of liftoff. Reynolds number increases from left to right (Re� = 1000, Re� = 2000, and
Re� = 3500). Time is t = 13 in the left panel and t = 12 for the center and right panels. The circulation of
the secondary vortex increases as Re� increases, up to approximately 25%–30% of the primary vortex ring’s
circulation for the right panel.

time evolves, the primary ring stretches out against the wall, and the boundary layer eventually lifts
up. If Re� is sufficiently large, the boundary layer curls up as a secondary vortex with a much smaller
circulation and radius than the primary ring. Two vortex tubes of unequal circulation rotate around
a center which is located closer to the vortex with a higher circulation. In practice, this means that
the secondary vortex will be rapidly pushed around the primary vortex, while the primary vortex
will be slightly separated from the wall, which is usually interpreted as a rebound [26]. We also note
that during this interaction, the primary ring also stops expanding, having reached only two or three
times its initial radius, a much smaller stretching than in the other cases [26,29].

We first start by characterizing the size and strength of the secondary vortex as a function of
Re� . For this we conduct a series of simulations of the impact with an imposed axisymmetry. In
Fig. 25 we show the vorticity at the time where the boundary layer has lifted off and, for larger Re� ,
curled up into a secondary vortex. The difference in circulation between both vortices can be really
appreciated in this picture. For the highest Re� , can estimate the circulation of the secondary vortex
to be only between 25%–30% that of the primary vortex. This number is in line with what was
reported in Ref. [31] for finite Re� , who also postulate that the circulation of the secondary vortex
asymptotically tends to 40% of the initial circulation as Re� → ∞.

Having established this, we return to the fully three-dimensional cases, which are shown in
Fig. 24. As was revealed in the axisymmetric simulations, for Re� = 1000 (see the left column)
the lifted boundary layer is very weak, and does not form a secondary vortex. It is rapidly damped
by viscosity. No centrifugal instabilities of this uncurled boundary layer are present along the lines
seen in Ref. [32]. The ring keeps on producing a boundary layer, which again lifts off at later
times. The vorticity in the system rapidly decreases and the flow approaches equilibrium, while
remaining axisymmetric. For Re� = 2000, see middle column, the secondary vortex is more intense,
as reflected in the figure. It also undergoes a short wavelength azimuthal deformation, similar to
the patterns seen before for the case of the elliptical instability, in a similar manner to what was
observed in Ref. [30] for a tube and a no-slip wall. However, the contamination due to the presence
of the no-slip wall, as well as the mean rotation due to the unequal vortex strengths makes it hard to
attribute the dynamics to this instability. Furthermore, the experimental results from Ref. [31] show
that some characteristic features of the elliptical instability are missing, and we note that our results
much more closely resemble those in Ref. [31], attributed to a Crow-like displacement instability,
than those in Ref. [28], attributed to an elliptical instability. For lack of a definite characterization,
we will refer to the corresponding mechanism as short-wavelength instability.

The secondary ring then wraps around the primary ring, tearing it apart and generating small
scales, while a tertiary vortex is being generated. This whole process becomes predominantly
turbulent, even if large-scale structures can still be distinguished. For Re� = 3500, right column,
the secondary vortex is further destabilized, and the thin, perpendicular filaments characteristic of
the late-stage elliptical instability can be seen at t = 18. The system rapidly evolves to turbulence
as fine structure predominates at later times. The flow phenomenology seen here matches very well
that observed experimentally in Ref. [26], where the distortion of the secondary vortex is seen to
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FIG. 26. Azimuthal vorticity in an axisymmetric simulation of impact against a no-slip wall for Re� =
3500 at the moment of liftoff. Slenderness ratio increases from left to right (� = 0.1, � = 0.2 and � = 0.35).
Time is t = 12 in the left panel, t = 15 for the center and t = 20 for the right panel. The circulation of the
secondary vortex is approximately the same in all panels, 25%–30% of the primary vortex rings’s circulation.

increase with increasing Re� until the secondary vortex cannot really be discerned as it rapidly
destabilizes and the flow transitions to a turbulent cloud.

For the case illustrated in Fig. 24, the fastest growing mode can be identified visibly to be the
m = 10 mode for the thinner secondary vortex. It is unclear whether we can identify this mode with
the elliptical instability as the wavelength appears to be larger than other cases, about ≈1.2–1.4R0,
coincident with experiments [31] and much larger than that observed in the simulations of [28].
However, the presence of strong perpendicular filaments at the highest Re� shows that there must
be some role played here by either this instability, or by the strains which are generated by two
anti-parallel vortex tubes and is regularly associated to it.

In any case, the presence of this relatively weak vortex is enough to feed back on the primary
vortex and aid in its disintegration. This process shows the importance the late-stage dynamics
of elliptical-like instabilities take for thin vortex rings in the three kinds of collisions considered
here. In the three cases, the evolution largely follows the same pattern: An initial stretching, which
remains largely axisymmetric at low Reynolds numbers. As the Reynolds number increases, az-
imuthal instabilities kick in which at the highest Reynolds numbers are dominated by elliptical-like
instabilities that lead to rapid disintegration of the rings.

B. Effect of ring thickness

For the final set of simulations, we vary � for the cases of no-slip impact considered above.
To start, we repeat the axisymmetric simulations to characterize how the size and strength of the
secondary vortex changes as � varies. In Fig. 26 we show the azimuthal vorticity for Re� = 3500,
at the time where the boundary layer has lifted off and curled into a secondary vortex which is to
the side of the primary vortex. This time increases with �, as the ring travels slower. We notice
the increasing thickness of both the primary and the secondary vortex, as well as the lower values
of vorticity. Interestingly, the relative circulation of the secondary vortex remains approximately
constant, at 25%–30% of the value of the primary circulation independently of �. The size ratio
between primary and secondary vortex also seems independent of � from visual inspection, even if
adequately measuring this is a challenge due to the sensitivity of this statistic on the choice of where
the cut is made between secondary vortex and boundary layer.

Having established this, we return to the three-dimensional simulations. For � = 0.2, the
simulation at Re� = 1000 remains relatively axisymmetric, while the cases at Re� = 2000 and
Re� = 3500 end up with the disintegration of the vortices after a fast interaction between primary
and secondary vortices. In the left panel of Fig. 27, we visualize the vorticity magnitude for the
largest Reynolds number simulated, Re� = 3500, and � = 0.2 as the ring interaction with the
no-slip wall proceeds. Indeed, it can be seen how for the secondary vortex is strongly deformed by
the primary vortex, wrapping around it, until they both disintegrate into a turbulent cloud together.

For � = 0.35, the Re� = 1000 case again remains axisymmetric. For Re� = 3500, we do not
observe a disintegration of the vortices. The only thing we can observe is how the secondary
vortex deforms, as shown in the visualization in the right panel of Fig. 27 at Re� = 3500. The
increased thickness of the ring prevents destabilization in a similar manner to what was observed
in the previous sections. In the absence of any other mechanisms such as the centrifugal instability
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FIG. 27. Vorticity volume visualization at several instances of time for ring impact against a no-slip wall at
Re� = 3500 and white noise perturbations. Left panel: � = 0.2, Right panel: � = 0.35. Time increases from
top to bottom (Left: t = 14, 19, 22, 24, 28, and 36. Right: t = 12, 18, 21, 28, 32 and 36). Red denotes regions
of particularly high vorticity, and blue denotes regions of low vorticity.

observed in Ref. [32], the vortex ring does not disintegrate. From the axisymmetric studies, we know
that the changes cannot be attributed to just the circulation, as the circulation of the secondary vortex
does not depend on �. Instead, this shows the combined effect of both � and Re� in determining the
outcome of all simulations. We conducted one additional simulation for � = 0.35 at Re� = 5000
to determine whether this behavior was asymptotic, or if disintegration would happen for further
increases in Re� . We found that for this case, the ring disintegrated, suggesting that at sufficiently
high Reynolds numbers all configurations result in disintegration.

We note that although these results are in accordance to the experiments of Refs. [26,31], they
do not match the simulations of Ref. [29]. In particular, Ref. [29] shows vortex disintegration at
Reynolds numbers as low as Re� ≈ 925 (Re = 500 using their definition), for � = 0.21, while our
simulations remain axisymmetric at Re� = 1000. Following Ref. [33] we hypothesize that the main
reason for this is their use of rectangular coordinates, versus our use of cylindrical coordinates. We
can clearly observe that the main mode of instability in their simulations is m = 4, associated to
the use of a rectangular coordinate frame which artificially increases the instability for that mode
[33] (as a comparison, the experiments in Ref. [26,31] show instabilities at higher values of m, or
smaller wavelengths). Meanwhile our use of cylindrical coordinates avoids this artificial forcing,
and the ring is able to preserve its axisymmetry. We also note that when Re� is insufficiently large
to curl up the boundary layer into a secondary vortex, we do not see any indication of the centrifugal
instabilities observed in Ref. [32]. As the wave number observed there is rather large, this absence
cannot be attributed to the enforced symmetry.

VI. CONCLUSIONS AND OUTLOOK

We have conducted an exploration of the parameter space of two vortex rings colliding head-on,
and of a vortex ring impacting a no-slip and a free-slip wall. For thin rings, we have consistently
found that the elliptical instability dominates the interactions at sufficiently large Reynolds numbers,
following the general evolution pattern in Ref. [37], and resulting in the formation of very fine scales

104702-24



INSTABILITY AND DISINTEGRATION OF VORTEX …

consistent with Ref. [6]. Modifying the relative sizes of the initial noise levels triggers inhomoge-
neous structure formation, but at sufficiently large Reynolds numbers the ring still disintegrates.
At intermediate Reynolds number, we can capture the formation of secondary rings through a
long-wavelength instability which can be assimilated to the Crow instability following Ref. [16].
As the rings become thicker, the interactions become more complex, and for � = 0.35, we can see
vortex behavior that cannot be simply reduced to either Crow-like or elliptical-like instabilities, and
instead relates to the formation and tearing up of sheets, and the formation of vortices from rolled
up sheets, similar to the mechanisms postulated in Ref. [12] and observed in Ref. [17].

For the cases with head-on impact against a free-slip wall, we were able to obtain local
reconnection through a Crow-like instability quite robustly as long as the Reynolds number was
large enough. This allowed us to estimate the Crow instability’s growth rate, which was found to
be approximately three times smaller than that of the elliptical instability at large Reynolds number,
providing an indication of why this instability always dominates the asymptotic behavior. Making
the rings thicker weakened the Crow instability, but the flow behavior did not change much as local
reconnection always prevailed.

Finally, we studied the impact of a ring against a no-slip wall. In agreement with earlier studies,
we find that as a secondary vortex appears due to the boundary layer lift-off and curling at high
Reynolds number, the new vortex pair undergoes a short-wavelength instability [30,31]. Due to
the large asymmetry between primary and secondary vortex, we cannot attribute this instability to
a pure elliptical instability, instead suggesting other mechanisms such as a displacement-bending
Crow-like instability [31]. We also found that for the thickest rings, the secondary vortex shows
some indications of instability, but the significant deformations do not occur. Only once Re� was
increased to Re� = 5000 we observed a turbulent cloud.

This paper provides a large parameter space exploration which complements the works in
[6,17,19], further solidifying the claim that the most important instability at high Reynolds number
is related to the elliptical instability and to its associated strains in some shape or form. It also
further corroborates the fact that high Reynolds number vortex ring collisions are a good framework
for studying the generation of small scales and large dissipation occurring in turbulence.

ACKNOWLEDGMENTS

We would like to thank R. Verzicco for many valuable discussions. We acknowledge the Research
Computing Data Core (RCDC) at the University of Houston for providing us with computational
resources and technical support. A.P. acknowledges financial support from the project TILT from
the French Agence Nationale de la Recherche, under Contract No. ANR-20-CE30-0035.

[1] L. F. Richardson, The supply of energy from and to atmospheric eddies, Proc. R. Soc. London Ser. A 97,
354 (1920).

[2] G. I. Taylor and A. E. Green, Mechanism of the production of small eddies from large ones, Proc. Roy.
Soc. A 158, 499 (1937).

[3] G. K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge,
1953).

[4] S. B. Pope, Turbulent Flow (Cambridge University Press, Cambridge, 2000).
[5] T. Gotoh, S. Hatanaka, and H. Miura, Spectral compact difference hybrid computation of passive scalar

in isotropic turbulence, J. Comput. Phys. 231, 7398 (2012).
[6] R. McKeown, R. Ostilla-Mónico, A. Pumir, M. P. Brenner, and S. M. Rubinstein, Turbulence generation

through an iterative cascade of the elliptical instability, Sci. Adv. 6, eaaz2717 (2020).
[7] L. Lu and C. R. Doering, Limits on enstrophy growth for solutions of the three dimensional Navier-Stokes

equations, Ind. Univ. Math. J. 57, 2693 (2008).

104702-25

https://doi.org/10.1098/rspa.1920.0039
https://doi.org/10.1098/rspa.1937.0036
https://doi.org/10.1016/j.jcp.2012.07.010
https://doi.org/10.1126/sciadv.aaz2717
https://doi.org/10.1512/iumj.2008.57.3716


MISHRA, PUMIR, AND OSTILLA-MÓNICO

[8] D. Kang, D. Yun, and B. Protas, Maximum amplification of enstrophy in three-dimensional Navier–Stokes
flows, J. Fluid Mech. 893, A22 (2020).

[9] A. Pumir and E. D. Siggia, Vortex dynamics and the existence of solutions to the Navier-Stokes equations,
Phys. Fluids 30, 1606 (1987).

[10] R. Kerr, Evidence for a singularity of the three-dimensional, incompressible Euler equations, Phys. Fluids
A 55, 1725 (1993).

[11] Y. T. Hou and R. Li, Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible
Euler equations, J. Nonlinear Sci. 16, 639 (2006).

[12] M. P. Brenner, S. Hormoz, and A. Pumir, Potential singularity mechanism for the Euler equations, Phys.
Rev. Fluids 1, 084503 (2016).

[13] H. K. Moffatt and Y. Kimura, Towards a finite-time singularity of the Navier–Stokes equations. Part 2.
Vortex reconnection and singularity evasion, J. Fluid Mech. 870, R1 (2019).

[14] J. Yao and F. Hussain, On singularity formation via viscous vortex reconnection, J. Fluid Mech. 888, R2
(2020).

[15] K. Shariff and A. Leonard, Vortex rings, Annu. Rev. Fluid Mech. 24, 239 (1992).
[16] T. T. Lim and T. B. Nickels, Instability and reconnection in the head-on collision of two vortex rings,

Nature (London) 357, 225 (1992).
[17] R. McKeown, R. Ostilla-Mónico, A. Pumir, M. P. Brenner, and S. M. Rubinstein, Cascade leading to the

emergence of small structures in vortex ring collisions, Phys. Rev. Fluids 3, 124702 (2018).
[18] S. C. Crow, Stability theory for a pair of trailing vortices, AIAA J. 8, 2172 (1970).
[19] R. Ostilla-Mónico, R. McKeown, M. P. Brenner, S. M. Rubinstein, and A. Pumir, Cascade and reconnec-

tion in interacting vortex filaments, Phys. Rev. Fluids 6, 074701 (2021).
[20] D. W. Moore and P. G. Saffman, The instability of a straight vortex filament in a strain field, Proc. R. Soc.

London A 346, 413 (1975).
[21] C.-Y. Tsai and S. E. Widnall, The stability of short waves on a straight vortex filament in a weak externally

imposed strain field, J. Fluid Mech. 73, 721 (1976).
[22] C.-C. Chu, C.-T. Wang, C.-C. Chang, R.-Y. Chang, and W.-T. Chang, Head-on collision of two coaxial

vortex rings: Experiment and computation, J. Fluid Mech. 296, 39 (1995).
[23] T. Leweke, S. Le Dizès, and C. H. K. Williamson, Dynamics and instabilities of vortex pairs, Annu. Rev.

Fluid Mech. 48, 507 (2016).
[24] P. J. Archer, T. G. Thomas, and G. N. Coleman, The instability of a vortex ring impinging on a free

surface, J. Fluid Mech. 642, 79 (2010).
[25] F. Laporte and A. Corjon, Direct numerical simulations of the elliptic instability of a vortex pair, Phys.

Fluids 12, 1016 (2000).
[26] J. D. A. Walker, C. R. Smith, A. W. Cerra, and T. L. Gloigasky, The impact of a vortex ring on a wall,

J. Fluid Mech. 181, 99 (1987).
[27] P. Orlandi and R. Verzicco, Vortex rings impinging on walls: Axisymmetric and three-dimensional

simulations, J. Fluid Mech. 256, 615 (1993).
[28] J. D. Swearingen, J. D. Crouch, and R. A. Handler, Dynamics and stability of a vortex ring impacting a

solid boundary, J. Fluid Mech. 297, 1 (1995).
[29] M. Cheng, J. Lou, and L.-S. Luo, Numerical study of a vortex ring impacting a flat wall, J. Fluid Mech.

660, 430 (2010).
[30] J. A. Luton and S. A. Ragab, The three-dimensional interaction of a vortex pair with a wall, Phys. Fluids

9, 2967 (1997).
[31] D. M. Harris and C. H. K. Williamson, Instability of secondary vortices generated by a vortex pair in

ground effect, J. Fluid Mech. 700, 148 (2012).
[32] M. C. Thompson, T. Leweke, and K. Hourigan, Sphere–wall collisions: Vortex dynamics and stability,

J. Fluid Mech. 575, 121 (2007).
[33] R. Verzicco and P. Orlandi, A finite-difference scheme for three-dimensional incompressible flow in

cylindrical coordinates, J. Comput. Phys. 123, 402 (1996).
[34] P. G. Saffman and G. R. Baker, Vortex interactions, Ann. Rev. Fluid Mech. 11, 95 (1979).

104702-26

https://doi.org/10.1017/jfm.2020.204
https://doi.org/10.1063/1.866226
https://doi.org/10.1063/1.858849
https://doi.org/10.1007/s00332-006-0800-3
https://doi.org/10.1103/PhysRevFluids.1.084503
https://doi.org/10.1017/jfm.2019.263
https://doi.org/10.1017/jfm.2020.58
https://doi.org/10.1146/annurev.fl.24.010192.001315
https://doi.org/10.1038/357225a0
https://doi.org/10.1103/PhysRevFluids.3.124702
https://doi.org/10.2514/3.6083
https://doi.org/10.1103/PhysRevFluids.6.074701
https://doi.org/10.1098/rspa.1975.0183
https://doi.org/10.1017/S0022112076001584
https://doi.org/10.1017/S0022112095002060
https://doi.org/10.1146/annurev-fluid-122414-034558
https://doi.org/10.1017/S0022112009991753
https://doi.org/10.1063/1.870357
https://doi.org/10.1017/S0022112087002027
https://doi.org/10.1017/S0022112093002903
https://doi.org/10.1017/S0022112095002977
https://doi.org/10.1017/S0022112010002727
https://doi.org/10.1063/1.869408
https://doi.org/10.1017/jfm.2012.108
https://doi.org/10.1017/S002211200600406X
https://doi.org/10.1006/jcph.1996.0033
https://doi.org/10.1146/annurev.fl.11.010179.000523


INSTABILITY AND DISINTEGRATION OF VORTEX …

[35] M. Gharib, E. Rambod, and K. Shariff, A universal time scale for vortex ring formation, J. Fluid Mech.
360, 121 (1998).

[36] K. Shariff, R. Verzicco, and P. Orlandi, A numerical study of three-dimensional vortex ring instabilities:
Viscous corrections and early nonlinear stage, J. Fluid Mech. 279, 351 (1994).

[37] T. Leweke and C. H. K. Williamson, Cooperative elliptic instability of a vortex pair, J. Fluid Mech. 360,
85 (1998).

[38] F. Hussain and K. Duraisamy, Mechanics of viscous vortex reconnection, Phys. Fluids 23, 021701 (2011).

104702-27

https://doi.org/10.1017/S0022112097008410
https://doi.org/10.1017/S0022112094003939
https://doi.org/10.1017/S0022112097008331
https://doi.org/10.1063/1.3532039

