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Existence of positive skewness of velocity gradient in early transition
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The present study uses direct numerical simulations to calculate two different transi-
tional flows from laminar flow to turbulence, that is, the two-scale wake flow and the
two-dimensional Reyleigh-Taylor unstable flow, respectively. Both results show that the
skewness of the longitudinal velocity gradient, Sk , can become positive in the early tran-
sition stage, which is beyond our expectation since the turbulent equilibrium state always
implies negative values of Sk . These phenomena are explained analytically by considering
only two dominant Fourier modes with harmonic relations. It is illustrated that the sign
of Sk is not only affected by the amplitudes of the perturbation velocities, but also related
to their phases. We expect that the present results will be helpful for understanding the
formation of turbulent equilibrium state and for constructing a new measurable criterion of
the transition onset.
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I. INTRODUCTION

Turbulence is usually regarded as a chaotic dynamic system characterized by the presence of var-
ious temporal and spacial scales. A distinguished phenomenon of turbulence is the interscale energy
transfer. When energy is transferred from large to small scales, it is referred to as the forward transfer
or energy cascade [1]; by contrast, the inverse energy cascade, also called energy backscatter, refers
to the energy transfer from small to large scales. In physical space, the interscale energy transfer can
be quantitatively represented by involving the concept of the third-order moments of the velocity
gradient or velocity increment [2,3]. Specifically, the skewness of the longitudinal velocity gradient
is defined as

Sk :=
〈(

∂u

∂x

)3〉/〈(
∂u

∂x

)2〉3/2

, (1)

with x being the longitudinal direction, u the fluctuation of longitudinal velocity component, and 〈〉
the ensemble averaging. In three-dimensional statistically steady and fully developed turbulence,
it is already known that Sk is a negative constant which weakly depends on Reynolds number
[4–7]. The negative sign corresponds to the forward interscale energy transfer, which supports
Kolmogorov’s 1941 theory [1,2]. In turbulence, the change of the sign of Sk or nonconstant
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value of Sk means that the flow is not in a statistically equilibrium state, which corresponds to a
self-organizing process among various turbulence scales. For example, a Gaussian random field
yields null Sk; an incompressible isotropic two-dimensional turbulence also leads to null Sk (see
Refs. [8,9] for discussions); and in some typical initial conditions the energy transfer is suppressed
in a very short time period [10,11], while Sk is accordingly near zero. We also observed positive Sk

when reversing the velocities in a fully developed three-dimensional turbulence [12,13], which leads
to a strong nonequilibrium procedure afterwards [14–16]. Indeed, positive Sk in real turbulence, such
as flow in air compressors [17], usually indicates a signal of energy backscatter.

In a recent direct numerical simulation (DNS), we found that in the early transition stage of
spatial-developing channel flow, the value of Sk can be unexpectedly positive [9]. This fact could
be surprising because intuitively we should expect Sk to decrease monotonically from 0 (Gaussian
random field) to the negative constant (turbulence), as predicted in turbulence closure theories [4].
The explanation of this phenomenon in Ref. [9] is an incomplete tentative. Moreover, we do not
even know if this positive Sk is universal or occasional. In this sense, we attempt to carry out more
investigations to reveal the behavior of Sk . We will report the statistical results of two numerical
configurations which respectively correspond to different scenarios of transition to turbulence
to argue that the phenomenon of positive Sk can occur in the early transition phase. Analytical
approximations and modelings are then presented to better explain these phenomena. Note that the
present observations only consider the skewness of streamwise velocity gradient as a characteristic
quantity in early transition of anisotropic flows without involving any local isotropy assumption on
velocity gradient moments.

In the following sections, we will present two different transition flows respectively: a two-scale
wake in Sec. II and a two-dimensional Reyleigh-Taylor flow in Sec. III. Both cases will show
positive Sk in the early transition stage. Analytical models then will be introduced to explain this
phenomenon, in Secs. II C and III C, respectively. Discussion of the underlying mechanism and the
perspectives will be given in Sec. IV.

II. TRANSITION IN A TWO-SCALE WAKE

In order to investigate the phenomenon of positive skewness in early transition, in this section
we design a numerical experiment for a two-scale wake. This case is an extreme simplification
of the wake transition and can also be interpreted as the experiment of a two-scale grid-generated
turbulence. Only two Fourier modes with harmonic relations are introduced as the inlet condition,
which simplifies the description of the wake flow and enables the analytical approximation in the
subsections.

A. Simulation settings

We consider a perfect-gas uniform flow with infinitesimal noises propagating through a semiper-
meable membrane panel of two-scale grids, which generates vorticities and fluctuations with
different scales in the wake of the panel, leading to transition to turbulence eventually. The flow
field is described in the three-dimensional Cartesian coordinate system (x1, x2, x3), with x1 along
the streamwise direction and the origin o at the panel. For a selected cuboid computational domain,
[−0.4L, 16L] × [0, 2L] × [0, 2L], 1640 × 200 × 200 grid points are allocated with uniform width
� in all directions, where L is the characteristic length scale of the grid panel. Periodic conditions
are employed in the two transverse directions (x2 and x3). See Fig. 1 for a sketch. The velocity
field (U1,U2,U3), density ρ, pressure P and temperature T are normalized by U∞, ρ∞, ρ∞U 2

∞,
T∞, where the subscript ∞ denotes the dimensional oncoming mean quantities. Two dimensionless
parameters are introduced, M = U∞/a∞ and Re = U∞L/ν∞, where a∞ and ν∞ are the sound speed
and kinematic viscosity of the oncoming stream.
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FIG. 1. Sketch of the computational domain of the two-scale wake. The membrane is highlighted.
(a) Global view; (b) zoomed view near inlet.

The dimensionless governing equations for the compressible flow are

∂ρ

∂t
+ ∂ (ρUk )

∂xk
=0, (2)

∂ (ρUi )

∂t
+ ∂ (ρUkUi )

∂xk
= − ∂P

∂xi
+ ∂τik

∂xk
− αρUi, (3)

∂E

∂t
+ ∂[(E + P)Uk]

∂xk
=∂bk

∂xk
− 1

2
αρUkUk, (4)

where the total energy E is defined as

E = 1

2
ρUkUk + ρT

�(� − 1)Ma2 , (5)

with � = 1.4 the specific heat capacity ratio. The stress tensor and heat flux vector are

τi j = μ

Re

(
∂Ui

∂x j
+ ∂Uj

∂xi
− 2

3
δi j

∂Uk

∂xk

)
,

bi =Ukτik + μ

PrRe(� − 1)Ma2

∂T

∂xi
,

(6)
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respectively, where δi j is Kronecker delta, Pr = 0.72 the Prandtl number, and μ the dynamic
viscosity determined by the Sutherland law

μ = T 1.5 TS/Tref + 1

T + TS/Tref
, (7)

with Tref = 298.15 K and TS = 110.4 K. Additionally, the equation of the state for a perfect gas
determines the relation between P, ρ, and T , namely,

P = ρT/(�Ma2). (8)

We arrange a semipermeable membrane panel with unbounded width in the x2 and x3 directions
in the streamwise range of 0 � x1/L � 0.05, which is equivalent to introducing a friction term
−αρUi on the right-hand side of Eq. (3). In this paper, we choose

α =
⎧⎨
⎩

25
2 {[1 − cos (2πx2/L)][1 − cos (2πx3/L)]
+[1 − cos (4πx2/L)][1 − cos (4πx3/L)]}, if 0 � x1/L � 0.05,

0, otherwise.
(9)

In this model, the friction coefficient varies in the (x2, x3) plane with two spatial scales, L and
L/2. This implies that the wake immediately behind the membrane will include only two dominant
Fourier modes, which enables the analytical approximation in the following subsections.

At the inlet of the computational domain, the infinitesimal noises are chosen to be Gaussian, with
a standard variation 0.001U∞ in the x1 direction. A far-field boundary condition [18] is applied at the
outlet of the domain, x1 = 16L. The Reynolds number is set as Re = 10 000, while the Mach number
is Ma = 0.3, indicating that the fluid can be approximately considered as incompressible (since the
density change due to velocity is correspondingly about 5%) [19]. This simulation is conducted by
an in-house compressible finite difference method solver ASTR, which has been verified in various
DNS cases [20,21]. A sixth-order compact central scheme [22] is used for the spatial discretization,
and a third-order three-step total variation diminishing Runge-Kutta method [23] is used for time
advance. The time step is set as 0.0006, determined by using the equation in Sec. 6.2.2 of Ref. [24]
with CFL = 0.73.

In order to quantitatively perform the following statistical analysis, we define 〈〉 as the averaging
over time t and both spanwise directions x2 and x3. We note that the nature of this treatment, which
involves spanwise average, is to consider the two large-scale structures as fluctuations rather than as
mean shear. It is acceptable because (1) the present calculation is a simplification of grid-generated
turbulence, which is always treated by spanwise averaging, and (2) as will be discussed later,
according to the present definition, the skewness Sk will include the information on the asymmetry
of large-scale structures and allows the treatment of both laminar and turbulent flows in the same
mathematical framework. Accordingly, the velocity fluctuation is defined as ui = Ui − 〈Ui〉.

As shown in Fig. 2(a), we define three typical spanwise positions for the convenience of the
following statistical analysis, i.e., (L, L), (L/2, L/2), and (L/2, L) in the (x2, x3) plane, respectively.
They are denoted as positions 1, 2, and 3, respectively. In each of these positions, we calculate the
local dissipation scales η at different x1 locations, and compare them with the grid length � as shown
in Fig. 2(b). It can be found that the maximum value of �/η is about 4.2, which is consistent in
magnitude with many existing DNS calculations [25–29] and supports the present mesh resolution.
For example, according to the conclusion of Ref. [25], we would expect that the error of first- and
second-order statistics is less than 5%, and the error of third- and fourth-order statistics is less than
10% in the present calculation.

B. DNS results

The transition of the flow can be visually illustrated by using the instantaneous velocities.
Figure 3 shows the snapshots of streamwise velocity U1 at different (x2, x3) planes; for complete-
ness, the snapshot of U1 at the x2/L = 0.25 plane [see the dashed line in Fig. 2(a) for a sketch] is
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FIG. 2. Streamwise evolution of �/η at different positions in the two-scale wake, respectively. (a) The
spanwise positions, denoted as 1, 2, and 3, respectively. The dashed line indicates the location of x2/L = 0.25;
(b) streamwise evolution of �/η.

shown in Fig. 4. The x1/L = 0.05 plane [Fig. 3(a)] is the location just behind the membrane, while
the streamwise velocity is redistributed due to the role of the friction term. The distribution of U1 is
quite similar to the friction coefficient α, which is dominated by structures at two spatial scales L
and L/2. As will be discussed in Sec. II C, this evolution of velocity redistribution also involves

FIG. 3. Snapshots of U1 at different (x2, x3) planes in the two-scale wake.
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FIG. 4. A snapshot of U1 at the x2/L = 0.25 plane in the two-scale wake.

spanwise velocities and generates streamwise vortices. Similar to the self-sustaining process in
shear flows [30], the streamwise vortices feed the longitudinal streaks due to the lift-up mechanism.
In Fig. 4 we can clearly observe these streaklike structures before x1/L = 5. The advection of
these streaklike structures in spanwise directions involves more small-scale structures, as shown
in Figs. 3(b)–(d). When x1/L = 5 [Fig. 3(c)], slight asymmetry can be observed, indicating that
the small-scale perturbations are amplified because of the secondary instability, which is similar
as the bypass transition in boundary-layer flows [31]. This instability finally yields turbulent flow
structures, as shown in Figs. 3(e) and 3(f). The snapshot of P at the x2/L = 0.25 plane is shown
in Fig. 5, where it is clear that there is very weak adverse pressure gradient behind the membrane,
while in the early transition region the pressure is quasiconstant.

We present the turbulence intensity I and Taylor-scale Reynolds number Reλ in Fig. 6. The rapid-
increasing region of both them indicates the location of transition, which is about 4 < x1/L < 7, in
agreement with the snapshots of Figs. 3 and 4.

As introduced in Sec. I, we focus on the skewness of streamwise velocity fluctuation gradient,
defined as Eq. (1). As shown in Fig. 7, the value of Sk is positive in the very early evolution
before x1/L = 3, then it decreases rapidly to a negative number of about −1.7 and increases to
an asymptotic value of about −0.5. This asymptotic value −0.5 is in agreement with traditional
turbulence theories [2,4], indicating that the flow can be considered to be fully developed in the
region x1/L > 7. Before that, i.e., when 3 < x1/L < 7, the trend from decreasing to increasing
is similar to Fig. 6 of Ref. [13], which may indicate that the flow in this region has some common
properties as the nonequilibrium turbulence [9,14,15]. The most interesting phenomenon here would
be the positive values of Sk in the region x1/L < 3, i.e., the zone of early transition. We will introduce
an analytical model to approximately explain this phenomenon in the next subsection.

C. A simplified model for explaining the positive Sk

In order to explain the phenomenon of positive Sk , we introduce a simplified model by using the
following assumptions for the flow in the early transition stage:

(1) The flow is incompressible and inviscid. This was explained in the last subsection. Specifi-
cally, we remark that the inviscid assumption is appropriate since the flow in early transition is out

FIG. 5. A snapshot of P at the x2/L = 0.25 plane in the two-scale wake.
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FIG. 6. Streamwise evolution of (a) turbulence intensity I and (b) Taylor-scale Reynolds number Reλ in
the two-scale wake.

of equilibrium, while only advection is dominant. In fact, when the interscale energy transfer is well
constructed, the viscosity effect should not be neglected [5,6,32,33].

(2) Symmetry between the x2 and x3 directions. This is reasonable since the distribution of α is
symmetric.

(3) Similar to Ref. [30], we assume the decoupling between streamwise vortices and streamwise
velocity. The underlying reason is that the high- and low-speed structures in early transition are
analogous to the streaks in wall flows. This decoupling implies that the streamwise velocity is
U1(x1, x2, x3, t ), but the spanwise velocities should be almost independent of x1 and be written
as U2(x2, x3, t ) and U3(x2, x3, t ), respectively. This assumption is verified in Fig. 8 by showing the
spanwise velocities at different x1 locations. It is observed that the main structures of streamwise
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0

0.5

1

FIG. 7. Streamwise evolution of Sk in the two-scale wake.
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FIG. 8. Spanwise flow structures in the L × L cell at different x1 locations in early transition of the two-
scale wake, respectively. Arrows indicate the spanwise velocities, while contours are streamwise velocities.
(a) x1/L = 1; (b) x1/L = 2; (c) x1/L = 3.

vortices at different x1 locations are quite similar in Fig. 8, which can be sketched as Fig. 9. The full
analytical expression will be discussed later.

(4) We assume that the streamwise velocity U1 behind the membrane contains only the two
largest scales, leading to the velocity profile

U1|x1/L�0.05 = a0−b[1 − cos (2πx2/L)][1 − cos (2πx3/L)]

−c[1 − cos (4πx2/L)][1 − cos (4πx3/L)]

= a+b cos (2πx2/L) + b cos (2πx3/L) − b cos (2πx2/L) cos (2πx3/L)

+c cos (4πx2/L) + c cos (4πx3/L) − c cos (4πx2/L) cos (4πx3/L),

(10)

where a0, a, b, and c are positive and evolute slowly along the streamwise location and a = a0 −
b − c, as shown in Fig. 10. The values of b and c correspond to the amplitude of the largest Fourier
modes, respectively. To support this assumption, in Fig. 11 we show the streamwise evolution of
perturbation energy and (∂u1/∂x1)2 at different wave numbers, respectively. It is obvious that in
the early transition region the first two wave numbers dominate, which correspond to the two-
scale distribution of the friction coefficient. Higher wave numbers contain relatively less energy
and dissipation, especially in the early transition range, indicating that they could be approximately
neglected. According to Eq. (9) we have b = c when x1/L = 0.05, which is verified in Fig. 10. In

FIG. 9. Sketch of the main structures in the L × L cell of streamwise vortices in early transition of the
two-scale wake. Arrows indicate the flow direction in a streamwise slice.
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FIG. 10. The evolution of a, b, c, and b/c along the streamwise direction in the two-scale wake. The red
vertical line indicates the location behind the membrane x1/L = 0.05. The blue horizontal line corresponds to
b/c = 2.765, a critical value for the sign of Sk according to our model.

the interval 0.05 < x1/L < 5, The evolution trends of b and c in Fig. 10 are similar to the curves
k = 1 and k = 2 in Fig. 11(a), respectively, since they both describe the energy at large scales. The
value of a corresponds to the mean streamwise velocity, which increases from 1 to about 1.12 behind
the membrane. This increase corresponds to the weak compressibility. In the early transition stage
behind the membrane, it is shown in Fig. 10 that a is quasiconstant due to the zero pressure gradient,
indicating the assumption

∂〈U1〉
∂x1

= 0. (11)
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FIG. 11. Streamwise evolution of (a) kinetic energy and (b) (∂u1/∂x1)2 at several wave numbers in the
two-scale wake. The wave number in normalized by 2π/L.
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This assumption is a weak version of Taylor’s frozen-flow hypothesis, which has been widely used
in experimental studies of grid turbulence [34]. Note that we do not assume constant b or c.

(5) Also, we assume that the velocity profiles of U2 and U3 contain only the two largest scales.
To introduce the model in the early transition region, we start from the advection equation

U1
∂U1

∂x1
+ U2

∂U1

∂x2
+ U3

∂U1

∂x3
= 0. (12)

Comparing to the advection-diffusion equation (1) of Ref. [30], here we neglect the diffusion
because of assumption (1). There is no pressure term in Eq. (12) because of the following two facts:
(1) As shown in Fig. 5, in the early transition region the pressure is quasiconstant. (2) As discussed
in Ref. [30], the pressure effect is not important for the generation of streaks by streamwise vortices
(this can be explained by the lift-up mechanism without the attendance of pressure gradient),
although it plays a role in the formation of small-scale waves due to instability. Because in the
early transition region the instability waves have not been accumulated to finite level, the pressure
effect is neglected. From assumption (4), we have locally ∂〈U1〉

∂x1
= 0, hence ∂U1

∂x1
= ∂u1

∂x1
. In addition,

in the present case U1 is always positive at any position in the calculation domain, leading to the
relation

sgn(Sk ) = sgn

〈(
U1

∂U1

∂x1

)3〉
= sgn

〈(
−U2

∂U1

∂x2
− U3

∂U1

∂x3

)3〉
. (13)

Here U1 is assumed to satisfy the expression (10). Therefore, in order to explain the phenomenon of
positive Sk , a key question is to write the expressions of spanwise velocities U2 and U3.

Following Waleffe [30], the distribution of spanwise velocities should be a solution of the left-
hand side of Eq. (6) in Ref. [30]. As a consequence, for U2(x2, x3, t ) we write(

∂

∂t
− 1

Re
∇2

)
∇2U2(x2, x3, t ) = 0. (14)

For the convenience of writing the solutions, we define a coordinate transformation ξ2 = x2 −
L/2, ξ3 = x3 − L/2, and rewrite Eq. (14) as(

∂

∂t
− 1

Re
∇2

)
∇2U2(ξ2, ξ3, t ) = 0. (15)

Due to periodicity and symmetry (see Fig. 9 for the sketch), U2(ξ2, ξ3, t ) should be symmetric with
respect to the ξ3 axis and antisymmetric with respect to the ξ2 axis. The boundary conditions are

U2(±L/2, ξ3, t ) = 0. (16)

For U3(ξ2, ξ3, t ) the description is similar.
On another hand, due to the decoupling with streamwise velocity [assumption (3)], the continuity

equation writes

∂U2(ξ2, ξ3, t )

∂ξ2
+ ∂U3(ξ2, ξ3, t )

∂ξ3
= 0. (17)

As shown in the Appendix for the derivation details, for all two-scale solutions [assumption (5)]
of Eqs. (15) and (17), the only symmetric solution [assumption (2)] should be written as⎧⎪⎨

⎪⎩
U2(ξ2, ξ3) = −d sin (2πξ2/L) cos (4πξ3/L) + d

2
sin (4πξ2/L) cos (2πξ3/L),

U3(ξ2, ξ3) = −d sin (2πξ3/L) cos (4πξ2/L) + d

2
sin (4πξ3/L) cos (2πξ2/L),

(18)

with d positive constant. The velocity field is accordingly shown in Fig. 9.
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The sign of Sk can be evaluated by substituting Eqs. (10) and (18) into Eq. (13). We obtain

sgn(Sk ) = sgn

(
−bc2d3

[
20

(
b

c

)2

+ 289
b

c
− 952

])
. (19)

It is then easy to obtain Sk > 0 when b/c < 2.765, while Sk < 0 when b/c > 2.765. In the present
DNS case, as shown in Fig. 10, we have b/c = 1 just behind the membrane; therefore Sk is positive,
corresponding to the phenomenon in DNS.

This result can be further used to predict the streamwise interval for positive Sk . According to
Fig. 10(b), the value of b/c increases from 1 to 2.765 in the streamwise interval x1/L < 3.8, which
corresponds to positive Sk from the above model. This interval is close to the DNS evidence in
Fig. 7, where positive Sk corresponds to about x1/L < 3.

We can remark on the present model from the viewpoint of energy transfer. If the flow is
dominated by only two largest scales, the sign of Sk is determined by the ratio of the energies at
the two scales, i.e., b/c. If initially the smaller scale contains enough energy, i.e., c is not too small,
then b/c can be less than 2.765 and the value of Sk is positive. On the other hand, we know that
positive Sk usually indicates the backward energy transfer in turbulence [2,14], thus analogically it
is reasonable in the present case that the smaller scale transfers energy towards the larger scale, i.e.,
c decreases, b increases, and b/c increases. Finally b/c increases to greater than the critical value
2.765, yielding negative Sk , which corresponds to forward energy transfer.

The present model illustrates that the energies, or, e.g., amplitudes, at the two largest scales can
affect the sign of Sk . This mechanism will be supported by another different flow example in the
next section.

III. TRANSITION IN A TWO-DIMENSIONAL RAYLEIGH-TAYLOR FLOW
WITH A DIFFUSE INTERFACE

A. Physical model

In this section, we will show another physical problem to illustrate the phenomenon of positive
Sk . The physical model to be studied is a two-dimensional inviscid Rayleigh-Taylor (RT) problem
occurring at a diffuse interface of two miscible fluids with different densities (see Ref. [35] for
details). The two-dimensional Cartesian coordinate system (x, y) is employed, with the origin o
at the interface and x and y perpendicular and parallel to the interface. The positive x is towards
the light fluid, so is the acceleration g. The density disparity is characterized by a dimensionless
parameter, the Atwood number, which is defined as A = (ρh − ρl )/(ρh + ρl ), where ρh and ρl are
the densities of the heavy and light fluids, respectively. The length scales (x, y), time t , velocity
field U = (u, v), density ρ, and pressure p are normalized by Lm,

√
Lm/g,

√
gLm, ρh, and ρhgLm,

respectively, where Lm = min[ρ∗
0/(dρ∗

0/dx∗)] is the minimum density gradient scale length, and
the asterisk represents the dimensional quantities. The flow is governed by dimensionless Eulerian
equations, which are the same as (2) with the body force and viscous terms neglected. Note that the
present model is based on the inertial confinement fusion engineering, for which the temperature is
extremely high such that all the gas molecules are dissociated. Thus, the perfect-gas model is also
employed, but in the equation of the state (8), the ratio of the specific heat � is referred to as the
adiabatic exponent, with its value being changed to 5/3.

At the beginning, the flow field is a sum of a base flow which satisfies the steady Eulerian
equation and an infinitesimal perturbation,

(ρ, u, v, p) = (ρ0, 0, 0, p0)(x) + ε0(exp(−x2), 0, 0, 0) cos(ky), (20)

where ε0 � 1 denotes the initial amplitude of the perturbation, and k the wave number in the
direction tangential to the interface. The density and pressure of the base flow are selected as

ρ0(x) = [1 − A tanh(δx)]/(1 + A), (21)
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FIG. 12. Evolution of the amplitude of the fundamental (k = 4.672) and harmonic (k = 9.344) perturba-
tions in the two-dimensional RT flow.

p0(x) = pc +
∫ x

xc

ρ0(x) dx, (22)

where δ = A/[2(1 − √
1 − A2)] is a dimensionless coefficient such that min[ρ0/(dρ0/dx)] = 1 and

pc is a reference pressure at a reference position xc. For the diffuse interface, δ−1 characterizes the
thickness of the density-adjustment layer. In this paper, we choose (pc, xc) = (45,−15), A = 0.4,
ε0 = 10−6, and k = 4.672, the same as the parameters of case 1 in Ref. [35]. In the simulation, the
computational domain is selected as [−10, 10] × [0, yl ], with 2001 × 121 grid points employed,
where yl = 2π/k ≈ 1.34.

B. Numerical results

The temporal evolution of the perturbation starting from (20) is obtained by DNS. The am-
plitude of the fundamental perturbation is shown by the red solid line in Fig. 12. As revealed
by Refs. [36,37], the RT instability for a diffuse interface admits an infinite number of discrete
eigenmodes with different growth rates. An arbitrarily introduced initial perturbation [the second
term on the right-hand side of (20)] is considered as a superposition of all the eigenmodes, whose
amplitudes can be obtained by the multimode decomposition as in [35]. At early time instants, t < 2,
all of these eigenmodes are competing, rendering an algebraic growth of the total amplitude, which
was referred to as a prelinear phase. Then the dominant eigenmode (with the greatest growth rate)
amplifies exponentially, with its growth rate obtained by the slope of the amplitude curve, 0.817,
which agrees with the prediction of the linear stability theory (the black circles). After t ≈ 15, the
amplitude tends to be saturated due to nonlinearity, which is referred to as the nonlinear saturation
phase. In this phase, the bubble-spike structure, as shown in Fig. 13, appears and grows. At ever
later time instants, the small-scale structures appear due to the Kelvin-Helmholtz instability regime,
which eventually leads to transition to turbulent mixing.

The dashed line in Fig. 12 denotes the amplitude of the second-order harmonic perturbation,
whose wave number is twice of the fundamental wave number. Before t = 15, the harmonic per-
turbation amplifies exponentially, with the growth rate being about twice of that of the fundamental
one.

104608-12



EXISTENCE OF POSITIVE SKEWNESS OF VELOCITY …

x

y/
y l

-4 -2 0 2 40

0.5

1

t=20

y/
y l

0

0.5

1
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

t=18

y/
y l

0

0.5

1

t=19

FIG. 13. Contours of the density at t = 18, 19 and 20 for the DNS result of the two-dimensional RT flow,
respectively.

Since the base flow is stationary, the instantaneous velocity u is also the perturbation to the base
flow. We define the ensemble 〈〉 as the spatial averaging over the y direction. According to Eq. (1),
it is easy to see that in the linear phase, for which the perturbation is sinusoidal with a single wave
number in y, the skewness is exactly zero. However, if the flow field includes more length scales
with moderate amplitudes in the y direction, Sk may be nonzero. Such a situation can occur when a
single-mode RT instability evolves to the weakly nonlinear phase, which is almost the most simple
setup of the RT instability simulations.

Figure 14 shows the values of Sk in the x-t plane. Sk is exactly zero in the early time, but from
t ≈ 11 to 15, positive skewness can be observed around the interface x ≈ 0. Intuitively, this should
be due to the weakly nonlinear growth of the harmonic mode. As time advances, higher-order
harmonics are excited and reach finite amplitude, rendering a more complicated distribution of Sk .
Additionally, two strips with negative Sk are located at the edges of the spike and bubble, which
expand as time advances.
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FIG. 14. Contours of the skewness Sk (x, t ) in the two-dimensional RT flow.
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C. Prediction of the skewness using the weakly nonlinear theory

In the weakly nonlinear phase, when the fundamental mode reaches a finite amplitude, the high-
order harmonics are exited in sequence. Now our attention is restricted in the early nonlinear stage,
in which only the second-order harmonic mode comes into play, and the feedback from the growth of
the harmonic mode to the fundamental one, as well as to the base flow, is negligible. The perturbation
field is therefore expressed as

ϕ = ϕ0(x) + εϕ̂1(x) eγ t+i ky +ε2ϕ̂2(x, t ) e2 i ky + · · · + c.c., (23)

where ϕ0 = (ρ0, 0, 0, p0)T , ϕ̂ = (ρ̂, û, v̂, p̂)T , i = √−1, ε is the amplitude of the excited RT
instability mode, and c.c. represents the complex conjugate. ε can be obtained by the multimode
decomposition as in Ref. [35], and for the present configuration, ε = 1.02ε0.

Following Ref. [37], the eigenfunction of the fundamental mode for a high wave number k 
 1
(in the present setup, k = 4.672 is already sufficient to be approximated as k 
 1, as proven by
Ref. [37]) can be described by the Wentzel-Kramers-Brillouin approximation, and the perturbation
velocity û1 reads

û1 ∼ sin

(
k
∫ x

xB

√
G0 dx + π

4

)
, x ∈ (xB, xA), (24)

where

G0 =
(

ρ0

p0�
− ρ ′

0

ρ0

)
/γ 2 − 1, (25)

and xB and xA are the two zero (turning) points of G0. For mode-1 perturbation, the most unstable
mode,

k
∫ xA

xB

√
G0 dx = π

2
. (26)

Note that in the regions x < xB and x > xA, the eigenfunction dampens to zero exponentially. The
variations of the base flow ρ0 and p0 are much slower than the exponential (sin) behavior of the
perturbation. In the following, the analysis will be performed at different local positions with a
rather short length scale x, such that the variations of the base flow are negligible.

From the linearized Eulerian equation, we obtain the perturbation pressure, density, and tangen-
tial velocity in terms of asymptotic series,

p̂1 = p̂10

k
+ p̂11

k2
+ O(k−3),

ρ̂1 =ρ̂10 + ρ̂11

k
+ O(k−2),

v̂1 =v̂10 + v̂11

k
+ O(k−2),

(27)

where

p̂10 = −γ ρ0
√

G0 cos �, p̂11 = −γ ρ2
0

�p0
sin �,

ρ̂10 = 1

γ

(
ρ2

0

�p0
− ρ0x

)
sin �, ρ̂11 = −γ ρ2

0

√
G0

�p0
cos �,

v̂10 = i
√

G0 cos �, v̂11 = i ρ0

�p0
sin �,
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with � = k
∫ x

xB

√
G0 dx + π

4 .
The second-order harmonic behaves like

ϕ̂(x, t ) = �(t ) exp

(
2k

∫ x

xB

√
G0 dx + π

2

)
+ c.c., (28)

where � = (�ρ,�u,�v,�p)T . Substituting into the Eulerian equations, and collecting the leading-
order terms, we obtain

�′
ρ + 2 i kρ0(

√
G0�u + �v ) + ρ0,x�u = −A1 e2γ t ,

ρ0�
′
u + 2 i k

√
G0�p − �ρ = −A2 e2γ t ,

ρ0�
′
v + 2 i k�p = −A3 e2γ t ,

�′
p + ρ0�u + 2 i k�p0(

√
G0�u + �v ) = −A4

k
e2γ t ,

(29)

where

A1 = ρ0

2γ�p0

(
ρ2

0

�p0
− ρ0,x

)
, A2 = ρ0,x

4
, A3 = −

√
G0ρ0,x

4
, A4 = − i γ

√
G0(1 + �)ρ2

0

4�p0
.

Eliminating �ρ,v,p, and noting that k 
 1, we arrive at

�′′
u − F1�u = F0 e2γ t , (30)

where

F1 = 1

G0 + 1

(
ρ0

p0�
− ρ ′

0

ρ0

)
, F0 = −A1 + 2γ A2 − 2A3γ

√
G0

(G0 + 1)ρ0
.

Taking into account (25), we obtain

F1 = γ 2, F0 = − 1

2γ ρ0

(
ρ0

p0�
− ρ ′

0

ρ0

)
. (31)

Note that F1 is positive, and F0 is negative at all positions of our interest. The solution for �u is

�u = F0

3γ 2
e2γ t +C1 eγ t +C2 e−γ t , (32)

where C1 and C2 are constants. We will focus on the particular part with a growth rate of 2γ , as
confirmed by the dashed line in Fig. 12.

Now we can express the instantaneous velocity as

u = εĀ cos(ky) + ε2B̄ cos(2ky), (33)

where Ā = sin � eγ t and

B̄ = (F0/3γ 2) sin(2�) e2γ t . (34)

Figure 15 plots the eigenprofiles of the fundamental and second-order harmonic perturbations at
representative time instants in the weakly nonlinear phase, the simplified profiles (33) are overall
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FIG. 15. Eigenprofiles of the fundamental and second-order harmonic perturbations for different t in the
two-dimensional RT flow. The curves for t = 14 and 15 are shifted for plotting convenience.

confirmed. Then the skewness at a time instant t0 is expressed as

Sk (x, t0) = 1

ylC̄

∫ yl

0

(∂u

∂x

)3
dy

= 1

ylC̄

∫ yl

0

[
εĀx cos(ky) + ε2B̄x cos(2ky)

]3
dy

= 1

ylC̄
ε3Ā2

x B̄x

∫ yl

0
cos2(ky) cos(2ky) dy

= 1

ylC̄
ε3Ā2

x B̄x

∫ yl

0

1

2
cos2(2ky) dy = ε3Ā2

x B̄x

4C̄
,

(35)

where the subscript x denotes partial derivative in the x direction, and C̄ > 0 represents the
denominator of Sk . Because Ā2

x and C̄ are non-negative, the sign of Sk depends only on the behavior
of B̄x. It is obtained from (34) that

sgn[B̄x] = sgn[
2F0

√
G0k

3γ 2
cos(2�)] = sgn[− cos(2�)]. (36)

In the interval of our interest, x ∈ (xB, xA), because the cos function changes its phase from π/2
to 3π/2, which is always negative, B̄x is positive, so is the skewness Sk . However, in the regions
x < xB and x > xA, Sk could become negative. As shown in Fig. 14, in the weakly nonlinear phase,
10 < t < 15, Sk is positive around the interface x = 0, but negative in the outer regions, x < xB and
x > xA. This is exactly in agreement with the above theoretical predictions.

Figure 16 further compares the theoretical prediction of the skewness with the numerical results
for different time instants, t = 11, 13, and 14, where the skewness is normalized by its maximum
value Sk,max = maxx(Sk ). The distributions of different curves around the interface x = 0 agree
well, confirming our weakly nonlinear analysis. Note that the distributions of Ā2

x and C̄ are quite
similar, the normalized skewness can be approximated by Sk/Sk,max ≈ B̄x/ maxx(B̄x ), confirming
the significance of B̄x on predicting the sign of Sk . In later times, the single-peak distribution of Sk is
replaced by a multipeak distribution, due to the excitation of higher-order harmonics, which is not
shown, however, because it is unrelated to our topic.

We remark that the present model shows the similar mechanism for the phenomenon of positive
Sk as the two-scale wake case. Here the relation of the amplitudes of harmonic mode is much smaller
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FIG. 16. Comparison of normalized skewness by its maximum value, Sk/Sk,max, between the theoretical
prediction and the simulation results.

than the fundamental mode, characterized by B̄x, is found to be the main origin of the positive Sk

phenomenon in Eq. (36). In the next section we will give more explanations and perspectives.

IV. CONCLUDING REMARKS

In the statistical point of view, the skewness of the longitudinal velocity gradient Sk is usually
related to energy transfer in turbulence; for example, the Kolmogorov forward energy cascade in
fully developed turbulence implies negative Sk , while Gaussian random noise and infinitesimal
perturbations lead to zero Sk . In this sense, revealing more about the evolution of Sk will be helpful
for understanding the formation of the equilibrium turbulence, which is undoubtedly a key unclear
question till now. In the present contribution, we have shown by two DNS cases that, in the early
transition stage, Sk can be positive, in contrast to the energy cascade in equilibrium turbulence.

Two analytical models, introduced in Secs. II C and III C, can predict the phenomenon of positive
Sk , which is in good agreement with the DNS results. Both models assume that the flow is constituted
by only two dominant Fourier modes with harmonic relations. Although this is a very simple
simplification, the phenomenon of positive Sk is well captured. Both analytical models show that
Sk can be positive or negative, according to the different interactions between these two Fourier
modes. In both flows, the sign of Sk is attributed to the amplitudes of the largest modes. We remark
that this does not mean that the relation of amplitudes is the only mechanism. In fact, the effect of
amplitudes was obtained by fixing the relation of velocity phases in the present paper. For example,
the distribution function (9) of α implies that the velocity phases at the two largest scales are aligned.
We will show that the phase relation can also affect the sign of Sk . Taking a two-dimensional flow as
an example, if the longitudinal velocity component u1 can be expressed in terms of Fourier series,
i.e., u1(�x) = ∑

�k ei�k·�xa1(�k)eiφ1(�k) + c.c., simple derivations will lead to the expression〈(
∂u1

∂x1

)3〉
=

∑
�k=�p+�q

k1 p1q1a1(�k)a1( �p)a1(�q) sin[φ1( �p) + φ1(�q) − φ1(�k)]. (37)

Here a1 is the amplitude, and φ1 is the phase. In particular, a triad phase, φ1( �p) + φ1(�q) − φ1(�k),
is explicitly represented on the right-hand side, indicating the link between Sk and the phase of
velocities (see Refs. [11,38–40] for more discussions). This expression explicitly illustrates that
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FIG. 17. Evolution of the the skewness values of ∂u1/∂x1, ∂u2/∂x2, and ∂u3/∂x3 in the two-scale wake,
respectively.

both the amplitudes and the phases can affect the evolution of Sk . Considering the coupling of the
phase evolution and amplitude, the related analysis will be much more complicated and is expected
to be investigated in the future.

In addition, we remark that the present evidence and analysis are still not sufficient to assert that
the skewness is positive in all situations, because laminar-turbulent transition could be triggered by
more types of boundary conditions and initial perturbations. However, the value of our finding is to
stimulate further observations of Sk in future transition studies in order to confirm the universality
of the emergence of positive Sk . Since the positive Sk is a direct consequence of the nonlinear
interaction of different Fourier modes, which is considered as the early fingerprint of transition, a
new criterion for determining the transition onset may be constructed by observation of Sk , which is
superior to the skin-friction coefficient c f as in many engineering applications because the former
is easier to be measured experimentally.

Finally, we comment that although the present study considers only the skewness of the
longitudinal component of velocity gradient in the streamwise direction, the anisotropy of the
sixth-order velocity gradient tensor, 〈 ∂ui

∂u j

∂uk
∂ul

∂um
∂un

〉, is an interesting topic [41]. For example, in the
two-scale wake case, we can calculate more longitudinal components and show the values of
the skewness of ∂u1/∂x1, ∂u2/∂x2, and ∂u3/∂x3 (denoted as Sk11, Sk22, and Sk33, respectively) in
Fig. 17. The curves of Sk22 and Sk33 coincide because of symmetry. Although the values of Sk22

and Sk33 are not equal to Sk11, it is interesting that they have some qualitative similarities: (1) In
the region of x1/L > 12 the values of skewness coincide, because there is no large-scale shear
structure and the flow is quasi-isotropic. We remark that even in anisotropic flows, the skewness of
streamwise velocity gradient might also be approximately used together with the Karman-Howarth
equation of isotropic turbulence. For example, in Ref. [42] the subgrid-scale model is derived with
local isotropy assumption, but the longitudinal direction is specifically selected as the streamwise
direction in channel flow (see Fig. 12 of Ref. [42]). This indicates that the skewness of streamwise
velocity gradient is, at least, a characteristic quantity in anisotropic flows. (2) Similar to Sk11,
the values of Sk22 and Sk33 are positive in most of the early transition region (0.05 < x1/L < 3),
although the exact values are not the same. We then expect that these interesting facts can
inspire future studies on the anisotropy of the sixth-order velocity gradient tensor in anisotropic
flows.
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APPENDIX: DETAILS FOR OBTAINING THE SPANWISE VELOCITIES (18)

We want to find the variable separation solutions of Eq. (15) with boundary condition (16),
written as U2(ξ2, ξ3, t ) = A(ξ2, ξ3)T (t ). Moreover, we assume that ∇2A can also be written in
variable separation form, i.e., ∇2A = Y (ξ2)Z (ξ3).

Solving these equations by using the variable separation method, we obtain the following
nontrivial solutions corresponding to a temporal evolution rate T (t ) = exp (−λt/Re):

A(ξ2, ξ3) =
∑

i

C1i sin

(
2k1iπ

ξ2

L

)
cosh

(
2k1iπ

ξ3

L

)

+
∑

i

C2i sin

(
2k2iπ

ξ2

L

)
cos

(√
λ − 4k2

2iπ
2/L2ξ3

)

+C3

[
sin

(√
λξ2

)
sin

(√
λL/2

) − 2ξ2

L

]

+C4

[
sinh

(√
λξ2

)
sinh

(√
λL/2

) − 2ξ2

L

]
cos

(√
λξ3

)

+
∑

i

C5i

[
sin (

√
λ + piξ2)

sin (
√

λ + piL/2)
− sin (

√
piξ2)

sin (
√

piL/2)

]
cosh (

√
piξ3),

(A1)

with k1i, k2i ∈ N+, C• ∈ R, and λ, pi ∈ R\{0}. Using the continuity equation (17), we can calculate
the distribution of U3. Considering the boundary condition for U3, a similar expression to (16), all
possible solutions for A are

A(ξ2, ξ3) =
∑

i

C2i sin

(
2k2iπ

ξ2

L

)
cos

(√
λ − 4k2

2iπ
2/L2ξ3

)

+C4

[
sinh

(√
λξ2

)
sinh

(√
λL/2

) − 2ξ2

L

]
cos

(√
λξ3

)

+
∑

i

C5i

[
sin (

√
λ + piξ2)

sin (
√

λ + piL/2)
− sin (

√
piξ2)

sin (
√

piL/2)

]
cosh (

√
piξ3),

(A2)

with either

C4 �= 0, λ − 4k2
2iπ

2/L2 = 4n2
1iπ

2/L2, λ = 4n2
2π

2/L2, pi = −4n2
3iπ

2/L2, ∀i

or

C4 = 0, λ − 4k2
2iπ

2/L2 = 4n2
1iπ

2/L2, pi = −4n2
3iπ

2/L2, ∀i,

where n1i, n2, n3i ∈ N+. Following Waleffe [30], we further assume that the temporal evolution is
relatively weak, such that the flow can be written as a locally steady form. From assumption (5)
we focus on the two largest scales, and thus we take the Fourier transform and perform large-scale
truncation on these possible solutions. All possible solutions for U2 are therefore

U2(ξ2, ξ3) = C21 sin (2πξ2/L) cos (4πξ3/L) + C22 sin (4πξ2/L) cos (2πξ3/L), (A3)
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which corresponds to k21 = 1, k22 = 2, and λ = 20π2/L2 in Eq. (A2).
We further use the continuity equation (17) to calculate U3, and compare the expression between

U2 and U3, respectively. Due to assumption (2), the expressions of U2 and U3 should be symmetric,
leading to the only final expression (18).
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